
S e⃝MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 15, стр. 987–995 (2018) УДК 510.5
DOI 10.17377/semi.2018.15.083 MSC 03D15,68Q15

ON THE COMPLEXITY OF FORMULAS IN SEMANTIC
PROGRAMMING

S. OSPICHEV, D. PONOMAREV

Abstract. We consider the complexity of ∆0 formulas augmented
with conditional terms. We show that for formulas having n bounded
quantifiers, for a fixed n, deciding the truth in a list superstructure with
polynomial computable basic operations is of polynomial complexity.
When the quantifier prefix has n alternations of quantifiers, the truth
problem is complete for the n-th level of the polynomial-time hierarchy.
Under no restrictions on the quantifier prefix the truth problem is PSPACE-
complete. Thus, the complexity results indicate the analogy between the
truth problem for ∆0 formulas with conditional terms and the truth
problem for quantified boolean formulas.

Keywords: semantic programming, list structures, polynomial time/space
complexity, ∆0-formulas.

1. Introduction

In this paper, we study the algorithmic complexity of hereditarily finite list exten-
sions of structures. The generalized computability theory based on Σ-definability,
which has been developed by Yuri Ershov [1] and Jon Barwise [2], considers hered-
itarily finite extensions consisting of hereditarily finite sets. In the papers by Yuri
Ershov, Sergei Goncharov, and Dmitry Sviridenko [3, 4, 5, 6, 7] a theory of heredi-
tarily finite extensions has been developed, which rests on the concept of Semantic
Programming. In the paradigm of Semantic Programming, a program is specified
by a Σ-formula in a suitable superstructure of finite lists. Two different types of

Ospichev, S., Ponomarev, D., On the complexity of formulas in semantic
programming.

c⃝ 2018 Ospichev S., Ponomarev D.
The authors were supported by the Russian Science Foundation (Grant No. 17-11-01176).
Received June, 28, 2018 , published September, 10, 2018.

987

988 S. OSPICHEV, D. PONOMAREV

implementation of logic programs on the basis of Σ-definability have been consid-
ered [8]. The first one is based on deciding the truth of Σ-formulas corresponding
to the program in the constructed model. The second approach is based on the ax-
iomatic definition of the theory of the list superstructure. Both of these approaches
raise the natural question of how fast one can compute a program represented by
Σ-formulas. In the recent paper [8] Sergey Goncharov has put a hypothesis that in
case the base model M is polynomially computable then deciding the truth of a
given ∆0-formula in a hereditarily finite list extension of M has polynomial com-
plexity. In this paper, we confirm this hypothesis and consider the complexity of
this problem for a number of natural restrictions on ∆0-formulas.

2. Preliminaries

The reader is referred to [3] for basic concepts and notations on list structures
and to [9, 10] for the fundamentals of the complexity theory.

2.1. Complexity Classes. For a finite alphabet Σ, we denote by Σ∗ the set of all
words over Σ. For A ⊆ Σ∗, a function f : A → Σ∗ is said to be P-computable/NP-
computable if there is a deterministic/nondeterministic Turing machine T , respec-
tively, and a polynomial p such that for any x ∈ A the value of f(x) can be computed
by T in no more than p(|x|) steps, where |x| is the length of the word x.

A function f : A→ Σ∗ is PSPACE-computable if there is a Turing machine T and
a polynomial p, such that for any x ∈ A the value of f(x) can be computed by T
using no more than p(|x|) cells of the tape of T .

A subset A ⊆ Σ∗ is said to be P-/NP-/PSPACE-computable, respectively, if so is
the characteristic function χA : Σ∗ → {0, 1}.

We say that a structure M is P-computable if so are the functions, predicates,
and the domain of M.

A set A is P-reducible to a set B if A is m-reducible to B by some P-computable
function. The notion of a complete set in some class (with respect to P-reducibility)
is defined in a standard way.

The polynomial-time hierarchy is an analogue of the arithmetic hierarchy, in
which P-computable sets play the role of computable ones and NP-computable sets
play the role of computably enumerable sets. The classes of the polynomial-time
hierarchy are defined as follows:

∆p
0 = Σp

0 = Πp
0 = P

∆p
i+1 = PΣ

p
i

Σp
i+1 = NPΣ

p
i

Πp
i+1 = coNPΣ

p
i

where P is the class of P-computable sets and PA is the class of sets, whose char-
acteristic functions are computable in a polynomial number of steps by a determin-
istic Turing machine with an oracle, a P-complete set from the class A. The classes
NPA and coNPA are defined similarly. Then the notion of a Σp

k- or Π
p
k-computable

function (or a subset), for k > 0, is defined in a straightforward way.

For any i > 0, it holds that Σp
i ∪Πp

i ⊆ ∆p
i+1 ⊆ Σp

i+1 ∩Πp
i+1.

ON THE COMPLEXITY OF FORMULAS IN SEMANTIC PROGRAMMING 989

2.2. List Structures and ∆∗
0-formulas. Here we follow [3] and introduce a frame-

work for working with lists.

Let M be a model of signature σ. A superstructure of finite lists HW (M) for
M is defined by extending σ with the following LISP-like functions and predicates
over lists:

(1) nil – the constant which represents the empty list;

(2) head – the last element of a non-empty list and nil, otherwise;

(3) tail – the list without the last element, for a non-empty list, and nil, oth-
erwise;

(4) cons – the list obtained from adding a new last element to a list;

(5) conc – concatenation of two lists;

(6) ∈ – the predicate “to be an element of a list”;

(7) ⊑ – the predicate“to be an initial segment of a list”.

∆0-formulas are first-order formulas, in which quantification is of the following
two types:

• a restriction onto the list elements ∀x ∈ t and ∃x ∈ t;
• a restriction onto the initial segments of lists ∀x ⊑ t and ∃x ⊑ t.

Note that for any list terms s, t, s ⊑ t is equivalent to s ∈ t′, where t′ =
⟨t, tail(t), tail(tail(t)), . . .⟩, and this transformation can be done in polynomial time
in the size of t. Therefore, in this paper we consider bounded quantifiers only of
the form ∃x ∈ t and ∀x ∈ t. The equality of terms s = t can be represented as
s ⊑ t ∧ t ⊑ s and hence, is expressible via the ∈-predicate with no more than
polynomial increase of the size of the expression.

In [8], the language of ∆0-formulas has been extended with conditional terms
thus giving so called ∆∗

0-formulas. Both concepts are defined inductively as follows:

(1) each standard term is a conditional term of rank 0;

(2) a ∆∗
0-formula is a ∆0-formula, in which conditional terms can occur at the

places of standard terms, the rank of a ∆∗
0-formula is the maximum of the

ranks of the terms occurring in it;

(3) if t0, . . . , tn+1 are conditional terms and θ0, . . . , θn are ∆∗
0-formulas, where

n > 0, then the term t(v) of the form Cond(t0, . . . , tn+1, θ0, . . . , θn) is a
conditional term with the following interpretation:

t(v) =

t0(v) if θ0(v)

t1(v) if ¬θ0(v) ∧ θ1(v)
. . .

ti(v) if θi(v) ∧ ¬θ0(v) ∧ ¬θ1(v) ∧ . . . ∧ ¬θi−1(v)

. . .

tn(v) if θn(v) ∧ ¬θ0(v) ∧ ¬θ1(v) ∧ . . . ∧ ¬θn−1(v)

tn+1(v) if ¬θ0(v) ∧ ¬θ1(v) ∧ . . . ∧ ¬θn(v)
The rank of t(v) is the maximum rank of the terms occurring in t0, . . . , tn+1

and θ0, . . . , θn incremented by 1.

The formulas mentioned on the right-hand side of the definition of t(v) are called
conditions and the terms t0, . . . , tn+1 are called (possible) instances of t. Note that
a condition of rank 0 is a ∆0-formula.

990 S. OSPICHEV, D. PONOMAREV

If t is a standard term and φ(tc) is a ∆∗
0-formula, where tc is a conditional term

occurring in φ, then φ(tc/t) denotes the formula obtained by substituting tc with t.
Let M be a structure, C ∈ {P, PSPACE}, where k > 0, a complexity class. Let S be
the maximal C-computable set1 of ∆0-formulas true on HW (M). A ∆∗

0-formula φ
is called C-conditional if for any condition ψ(tc1, . . . , t

c
n) occurring in φ (where n > 0

and tc1, . . . , t
c
n are the conditional terms in ψ) and for any standard terms t1, . . . , tn

of size bounded by the size of φ, it holds that ψ(tc1/t1, . . . , t
c
n/tn) ∈ S. Note that

by this definition any ∆0-formula occurring as a condition in φ is contained in S.

It follows from the results in [8] that for any ∆∗
0-formula φ one can compute

an equivalent ∆0-formula ψ, whose size is exponential in the size of φ. When an
underlying structure M is fixed, testing the truth of a ∆∗

0-formula can be reduced
to that for a ∆0-formula constructed for φ with no exponential overhead, as the
next lemma states.

Lemma 1. Let M be a structure, C ∈ {P, PSPACE} a complexity class, and φ(tc1, . . . ,
tcn) a C-conditional ∆∗

0-formula, where tc1, . . . , t
c
n are the conditional terms in φ, n >

0. There is a C-computable function, which gives a ∆0-formula ψ = φ(tc1/t1, . . . ,
tcn/tn), where t1, . . . , tn are standard terms of size bounded by the size of φ, such
that HW (M) |= φ iff HW (M) |= ψ.

Proof. We use induction on the rank k of φ. The induction base k = 0 is trivial,
since in this case φ is a ∆0-formula. Let φ be of rank k + 1, where k > 0, and
let tc be a conditional term of rank k + 1 occurring in φ, which has the form
Cond(t′0, . . . , t

′
m+1, θ0, . . . , θm), m > 0. Since each condition θi, for 0 6 i 6 m, is

of rank 6 k, by the induction assumption it holds HW (M) |= θi iff HW (M) |=
θi(t

c
1/t1, . . . , t

c
n/tn)), where t

c
1, . . . , t

c
n are the conditional terms in θi and t1, . . . , tn

are some standard terms of size bounded by the size of φ. As φ is C-conditional,
there is a C-computable function, which gives a (unique) instance t′i of the term tc,
for which θi is true.

Let ψ be the formula obtained from φ by replacing every conditional term t of
rank k+ 1 with the corresponding instance. The total number of the conditions of
the terms occurring in φ is bounded by the size of φ, therefore this transformation
can be done by a C-computable function giving a formula ψ(tc1, . . . , t

c
m), where

tc1, . . . , t
c
m are the conditional terms in ψ (each of rank 6 k) and m 6 n. It

holds HW (M) |= φ iff HW (M) |= ψ and the formula ψ is of rank k. By the
induction assumption, there is a C-computable function, which gives a ∆0-formula
ψ′ = ψ(tc1/t1, . . . , t

c
n/tn), where t1, . . . , tn are standard terms of size bounded by

the size of φ, such that HW (M) |= ψ iff HW (M) |= ψ′, thus, ψ′ is the required
formula for φ and the lemma is proved. �

It is therefore important to describe the complexity of ∆∗
0-formulas in terms of

∆0-formulas and identify P-computable classes. We address this problem in Section
4 and begin with a crucial observation on computability of list structures.

3. P-computable List Structures

Theorem 1. For any P-computable structure M there exists a P-computable rep-
resentation of its superstructure of finite lists HW (M).

1It will be clear from the results in Section 4 that this set is non-empty.

ON THE COMPLEXITY OF FORMULAS IN SEMANTIC PROGRAMMING 991

Proof. Let M = ⟨Γ∗,M, σ⟩ be a P-computable structure of words over an alphabet
Γ. For convenience, we denote the elements m ∈M as numerals m. We show that
the domain of HW (M) and all of its functions and predicates are P-computable.

Consider the alphabet Σ = {⟨, ⟩, , , nil,#}
∪
Γ. For simplicity, we use the short-

cut ⟨i for a word of the form ⟨⟨⟨. . . ⟨, where ⟨ occurs i times. Similarly, we use
the shortcuts ⟩i and ,i. For a word w in the language Σ∗, let depth(w) denote the
length of the maximal initial subword consisting only of “⟨”. If there is no such
word, we let depth(w) = 0.

Let us define a representation ofHW (M) as a structure with the domain A ⊆ Σ∗

consisting of the words defined as follows:

(1) A contains #nil# and every word #m#, for m ∈M .

(2) If γ1, γ2, . . . ,γn are some words from A, then A contains a word of the form
γ = #⟨iγ1,i γ2, . . . , γn⟩i#, i = j + 1, where j is the maximal depth of the
words γk, for k = 1, . . . , n.

It is easy to see that deciding whether an element is contained in A reduces to
bracket parsing (brackets with a greater index must not occur between brackets
having a smaller index) and testing the containment of numerals (by the condition,
the characteristic function of M is P-computable).

We now show that all list functions are P-computable. Let γ be a word from A
and i = depth(γ).

(1) head(γ): Find the subword between“,i” (or “⟨i” if i = 1) and “⟩i” and
output it as the result. If i = 0 then output nil.

(2) tail(γ): delete head(γ) from γ. In new γ search all subwords “⟨j”, where
j < i and define new depth(γ) as maximum of j + 1. Again, if i = 0 then
the result is nil.

(3) cons(γ1, γ2): Add γ2 as the new last element to γ1; if depth(γ1) ≤ depth(γ2)
then set depth(γ) to depth(γ2) + 1.

(4) conc(γ1, γ2): merge lists and define the new depth as max(depth(γ1),
depth(γ2)).

(5) γ1 ∈ γ2: if depth(γ2) = j then γ1 is a subword of γ2 between ”⟨j” and
”⟩j” (if there are no ”,j”) or between ⟨j and ,j or between ”,j” and ”,j”, or
between ”,j” and ”⟩j”.

(6) γ1 ⊑ γ2: if j = depth(γ1) and k = depth(γ2) then replace all the subwords“⟨j”
and “,j” in γ1 with “⟨k” and“,k”, respectively, erase the subword ”⟩j”; the
predicate is true if the word obtained from γ1 is the initial subword in γ2.

The theorem is proved. �
An immediate corollary is the following lemma:

Lemma 2. There is P-computable function f such that for any (standard) list term
t and γ1, . . . γn ∈ A it holds f(t, γ) = t(γ).

Proof. The computation of a list term t can be represented as a tree, where:

(1) the computation is made level-wise, from leaf nodes to the root;

(2) the leaf nodes are nil, constants from M, or γi, for i ≤ n;

(3) every node has at most two child nodes (since all the list functions have at
most two arguments);

992 S. OSPICHEV, D. PONOMAREV

(4) by Theorem 1, any node can be computed in polynomial time based on the
computation results for the child nodes. The length of the result at a node
is at most 2a+c, where a is the maximum length of the results for the child
nodes and c is a constant;

The root node can be computed by a Turing machine in at most p(2k ∗ (|γ|))
steps, where p is some polynomial (for convenience, p can be defined as the sum
of all the polynomials required to compute the list functions, plus some constant),
|γ| = max|γi|, for i ≤ n, and k is the height of the tree.

Since 2k ≤ |t|, the root node can be computed in at most p(|t| ∗ (|γ|)) steps. The
number of nodes is bounded by |t|, thus, the value of the term t is computed in
|t| ∗ p(|t|, |γ|) steps. �

4. Deciding the Truth of ∆∗
0-formulas.

By using the reduction from Lemma 1 it suffices to prove the results in this
section only for ∆0-formulas. Some of these results are formulated using restrictions
on the quantifier prefix of ∆∗

0-formulas. Note that by Lemma 1, the prefix is
preserved under the reduction of ∆∗

0- to ∆0-formulas.

Theorem 2. For a given n > 0, the set of P-conditional ∆∗
0-formulas with at

most n bounded quantifiers, which are true in a P-computable structure HW (M),
is P-computable.

Proof. We assume that the formulas are given in the prenex normal form.
Consider a quantifier-free formula φ(γ), where γ = γ1, . . . , γm – is a m-tuple

of lists. Then deciding the truth of this formula can be reduced to at most |φ|
computations of formulas of the form t(γ) ∈ q(γ), where t, q are some list terms.
By Theorem 1 and Lemma 2, this can be verified in polynomial time.

From now on we consider formulas without free variables. For a given quantifier-
free ∆0-formula φ, consider the formulas ψ1, . . . , ψn+1 defined as follows:

(1) ψ1 = Q1(x1, t1)Q2(x2, t2) . . . Qn(xn, tn) φ(x1, x2, . . . , xn),

(2) ψ2 = Q2(x2, t2) . . . Qn(xn, tn) φ(γ1, x2, . . . , xn),

(3) ψi = Qi(xi, ti) . . . Qn(xn, tn) φ(γ1, γ2, . . . , γi−1, xi, xi+1, . . . , xn),

(4) ψn+1 = φ(γ1, γ2, . . . , γn),

where Qi(xi, ti) is ∃xi ∈ ti or ∀xi ∈ ti.

The formula ψ1 is equivalent to

ψ2(head(t1)) ∧ ψ2(head(tail(t1))) ∧ . . . ∧ ψ2(head(tail(. . . (tail(t1)) . . .)))

if Qi(xi, ti) is ∀xi ∈ ti and as

ψ2(head(t1)) ∨ ψ2(head(tail(t1))) ∨ . . . ∨ ψ2(head(tail(. . . (tail(t1)) . . .)))

if Qi(xi, ti) is ∃xi ∈ ti.

Therefore, the truth of ψ1 can be decided by at most |t1| truth tests for ψ2.
Similarly, the truth of ψ2 can be tested with at most |t1| ∗ |t2| computations of
ψ3 (we have the multiplier |t1|, since ψ2 depends on head(tail(. . . (tail(t1)) . . .))).
Finally, the truth of ψn can be verified with at most |t1|∗|t2|∗. . .∗|tn| computations
of ψn+1, which is a quantifier-free formula.

ON THE COMPLEXITY OF FORMULAS IN SEMANTIC PROGRAMMING 993

Let t be the maximum of |ti|. Then the truth of ψ1 can be decided with at most

tn
2

computations of the quantifier-free formula ψn+1 = φ(γ1, γ2, . . . , γn). Since n
is fixed, this is a polytime procedure. �
Theorem 3. The set of ∆∗

0-formulas, which are true in a P-computable structure
HW (M), is PSPACE-complete.

Proof. For the lower complexity bound, we show that the set of true quantified
boolean formulas P-reduces to the set of true ∆0-formulas.

For consider φ = Q1X1...QkXk ψ, where ψ is a boolean formula over variables
X1, . . . , Xn and Qi ∈ {∃, ∀}. Let us define ∆0-formula φ′ = Q1

′x1Q2
′x2..Qn

′xnψ
′,

where Qi
′xi = Qixi ∈ ⟨nil, ⟨nil⟩⟩, and ψ′ is obtained from ψ by replacing every

positive literal Xi with xi = ⟨nil⟩ and each negative literal ¬Xi with xi = nil,
respectively. Then one can readily verify that φ is true iff φ′ is true.

Let us now demonstrate that the set of true ∆0-formulas is PSPACE-computable.
We use induction on the structural complexity of φ. By the condition thatHW (M)
is P-computable and by Lemma 2, the set of true atomic formulas is P-computable
(and thus, it is PSPACE-computable), then so are their boolean combinations (we
note that PSPACE is closed under complementation). If φ has the form ∃x ∈ t ψ(x, y)
where t is a finite list (e.g., obtained from a list term by Lemma 2) then we compute
the formula ψ(a, y) for every element a ∈ t by reusing space. This gives a PSPACE

procedure to compute φ: the formula is true iff there is a ∈ t such that ψ(a, y)
is true and by the induction assumption, the set of all such formulas is PSPACE-
computable. �
Theorem 4. The set of P-conditional ∆∗

0-formulas with k alternations of quanti-
fiers ∃x ∈ t and ∀x ∈ t, which are true in a P-computable structure HW (M), is
complete for the k-th level of the polynomial-time hierarchy.

Proof. The lower bound is proved identically to that in Theorem 3 for the case of
k alternating quantifiers and follows from the fact that the set of true quantified
boolean formulas with k quantifier alternations is complete for the k-th level of the
polynomial-time hierarchy. For the upper complexity bound we use the following
criterion [11].

For any k ≥ 1 and any set A, it holds A ∈ Σp
k iff there is polynomial p and a

P-computable set A′ such that x ∈ A iff ∃y1∀y2 . . . Qkyk[⟨x, y1, y2, . . . , yk⟩ ∈ A′].
Similarly, A ∈ Πp

k is equivalent to the condition that x ∈ A iff
∀y1∃y2..Q′

kyk[⟨x, y1, y2, .., yk⟩ ∈ A′].
In the formulas above, the ranges of y1, y2, . . . , yk are bounded by a polynomial

p(x) and the quantifiers alternate, i.e., Qk is ∃, if k is odd and Qk is ∀, if k is even.
Similarly, Qk

′ is ∃, if k is even and it is ∀, if k is odd.

Let us denote by Sk the set of all P-conditional ∆∗
0-formulas with k alternations

of quantifiers, which are true in HW (M). We use induction on k.
Case k = 0. By Lemma 2, the set of all true quantifier-free formulas S0 is

P-computable and hence, is in ∆p
0 = Σp

0 = Πp
0.

Case k+1. By the induction assumption, Sk is at the k-th level of the polynomial-
time hierarchy.

Consider a ∆0-formula φ = ∃x1 ∈ t1∃x2 ∈ t2 . . . ∃xn ∈ tnψ(x1, x2, . . . , xn),
where ψ is from Sk. Let φ′ = ψ(head(a), head(tail(a)), head(tail(tail(a))), . . .) ∧
head(a) ∈ t1∧head(tail(a)) ∈ t2(head(a)) The formula φ is true iff there exists

994 S. OSPICHEV, D. PONOMAREV

an a such that φ′(a) is true. By by the induction assumption and Lemma 2, the
set of all true formulas φ′ is Πp

k-computable and by Theorem 1, the length of a is
bounded by a polynomial p(|φ|). Then the set Sk+1 of all true formulas φ is Σp

k+1-
computable. The case with ∀x ∈ t as the last quantifier is proved similarly. �

5. Conclusions

We have shown that deciding the truth of ∆∗
0-formulas in a list superstructure has

the same complexity as deciding the truth of quantified boolean formulas, provided
the basic operations of the underlying structure are polynomially computable. If
this is the case, then there exists a polynomially computable representation of its
superstructure of finite lists. ∆∗

0-formulas are obtained as an extension of ∆0-
formulas with conditional terms, which employ an analog of the “if .. then .. else”
operator in their definition. As has been previously shown in the literature, the
extension of ∆0 formulas with conditional terms is conservative: for any ∆∗

0-formula
φ there is an equivalent ∆0-formula of size is exponential in the size of φ. We have
demonstrated however that this fact has no consequences for the complexity of
deciding the truth of a ∆∗

0-formula in a given structure, since computing the value of
a conditional term in a structure reduces to deciding the truth of polynomially many
∆0-formulas. The polynomial complexity of ∆0-formulas in hereditarily finite list
structures gives the possibility to implement the concept of semantic programming
as a language for applied problems, e.g., described by locally simple models [12].

References

[1] Ershov Yu. L., Definability and computability. Consultants Bureau, New York (1996).

MR1393198
[2] Barwise, J., Admissible sets and structures. Springer, Berlin (1975). MR54:12519
[3] Goncharov S. S. and Sviridenko D. I., Σ-programming, Transl. II. Ser., Amer. Math. Soc.,

no. 142, 101–121 (1989). MR835905
[4] Goncharov S. S. and Sviridenko D. I., Σ-programming and its Semantics, Vychisl. Systemy,

no. 120, 24–51 (1987) (in Russian). MR0995247
[5] Goncharov S. S. and Sviridenko D. I., Theoretical Aspects of Σ-programming, Lect. Notes

Comp. Sci., vol. 215, 169–179 (1986). Zbl 0621.68021
[6] Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., Semantic Programming, in: Informa-

tion processing 86: Proc. IFIP 10th World Comput. Congress. Vol. 10, Elsevier Sci., Dublin,
1093–1100 (1986). Zbl 0606.68011

[7] Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., Semantic Foundations of Program-
ming, in: Fundamentals of Computation Theory: Proc. Intern. Conf. FCT 87, Kazan, 116–122
(Lect. Notes Comp. Sci., vol. 278) (1987). Zbl 0642.68029

[8] Goncharov S. S., Conditional Terms in Semantic Programming, Siberian Mathematical Jour-

nal, vol. 58, no. 5, 794–800 (2017). MR3766340
[9] S. Arora and B. Barak, Computational Complexity: a Modern Approach, Cambridge Uni-

versity Press (2009). MR2500087
[10] C.H. Papadimitriou, Computational complexity, Addison-Wesley (1994). MR1251285

[11] L.J. Stockmeyer and A.R. Meyer, Word Problems Requiring Exponential Time, Proc. Fifth
Annual ACM Symposium on Theory of Computing, Austin, Texas, USA (1973), 1–9. MR
0418518

[12] A. A. Malykh, A. V. Mantsivoda, Document models, Vestnik of the Irkutsk State University,
Ser. Matematika, vol. 21, 89—107 (2017), in russian. Zbl 1390.68613

ON THE COMPLEXITY OF FORMULAS IN SEMANTIC PROGRAMMING 995

Sergey Ospichev

Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
Novosibirsk State University,

Pirogova, 2,
630090, Novosibirsk, Russia
E-mail address: ospichev@math.nsc.ru

Denis Ponomarev
Sobolev Institute of Mathematics,
pr. Koptyuga, 4,

630090, Novosibirsk, Russia
A.P. Ershov Institute of Informatics Systems,
pr. Lavrentyeva, 6,
630090, Novosibirsk, Russia

Novosibirsk State University,
Pirogova, 2,
630090, Novosibirsk, Russia
E-mail address: ponom@iis.nsk.su

