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BRANCHING TIME AGENTS’ LOGIC, SATISFIABILITY
PROBLEM BY RULES IN REDUCED FORM

V.V. RYBAKOV

Abstract. This paper considers the branching time logic on non–
transitive intervals of agents’ accessibility relations. The agents’ accessibi-
lity relations are defined inside transitivity intervals and via neighboring
limit points, they may be not complete and lose some states — the
lacunas of forgotten time thought they may interfere. This approach
is used for modeling computational processes and analysis of incomplete
information for individual agents. A logical language for reasoning about
models’ properties which includes temporal and modal logical operations
is suggested. Illustrative examples are provided. Mathematical part of the
paper is devoted to the satisfiability and decidability problems for the
suggested logic. We use instruments of reduced normal forms for rules
and algorithms converting rules to such forms. We find algorithms solving
the satisfiability problem. Some open problems are suggested.

Keywords: temporal logic, branching time logic, multi–agent logic, com-
putability, information, satisfiability, decidability.

1. Introduction

Non-classical mathematical logic mostly deals with modal and constructive logic
(and its neighbors such as, e.g., Johnson logics and Superintuitionistic logics),
many valued logics such as  Lukasiewicz logics, etc. Temporal logic is, in a sense, a
natural generalization of modal logic when ‘possible’ is directed to the future and
to the past. Historically, multi–valued logics aimed at the representing of the truth
relations for the boolean logic, which is the basic logical language. That may be
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dated to  Lukasiewicz (1917) and his three–valued and many–valued propositional
calculi, as well as to Goedel (1932), who refuted the finite–validness of intuitionistic
logic. In their pioneering works, A. Tarski (1951) and S. Kripke (1960th) suggested
semantical models for the studies of modal and temporal logics such as topological
boolean algebras and relational models (Kripke–Hinttikka models); these models
are multi–valued by their nature. Since then non–classical mathematical logic had
a long and fruitful history.

We study here a sort of temporal logic. Temporal logic has many strong achieved
mathematical results and various applications in Information sciences and CS. In
a sense, in a definite form it was introduced by Arthur Prior in the late 1950s.
Nowadays, this logic is very popular, highly technical, and fruitful area (cf. e. g.
Gabbay and Hodkinson [8, 9, 10]) with various particular areas of applications in CS
and in the AI, as semantic web etc. This logic, modal logics, and close multi-agent
logics nowadays are used for the verification of correct behavior of computational
processes, the verification of correct representation of information and knowledge,
etc. (cf. for example Wooldridge et al [28, 29, 30], Lomuscio et al [12, 3], Balbiani
and Vakarelov [4], Vakarelov [27]). Concerning the multi–agency, the technique
of mathematical logic translated for description logics is useful for the study of
otologies, e. g., F. Baader et al [1], for that purpose — the study of otologies —
many techniques were applied – from modal–like logics to automatons (cf. eg. [31]).

Our own earlier works also considered some aspects of multi–agency, e.g. the
multi–agent logic with distances, the satisfiability problem for it (Rybakov et al
[19]), and the models for the conception of Chance Discovery in multi–agent environ-
ment (Rybakov [20, 22]). A logic modeling uncertainty via agents’ views was also
investigated (cf. McLean, Rybakov [14]); the study of the conception of knowledge
from the viewpoint of multi–agency based on temporal logic is contained in the
works by Rybakov [15, 17, 18]. From the technical point of view, perhaps the very
first approach to multi–valued modal logics (when different valuations are taken on
algebraic lattices) may be found in the works by M. Fitting [6, 7]; the multi–valued
approaches were also used in a such popular area as the model checking (cf. e. g.
G. Bruns, P. Godefroid [5]).

Recently we have turned to the case of non–transitive linear temporal logic
and its variations (in particular — to multi–agents’ versions, versions with multi–
valuations and with lacunas in agents’ accessibility relations), cf. Rybakov [23, 24,
25, 26].

Earlier, some extensions of the linear time logic LTL with abolishing linearity of
the time where investigated, in particular, the branching time (transitive) temporal
logic — the full branching time logic (CTL*) (with basic modalities consisting of a
path quantifier, either A (“for all paths”) of E (“for some path”) — was considered
in several papers (cf. for the origin, e.g. Emerson et al. [11])

This our paper studies the branching time logic on non–transitive intervals with
different agents’ accessibility relations. So, in a sense it is an interval logic where
the agents’ accessibility relations are defined inside transitivity intervals and via
neighboring limit points. The innovative points which distinguish this our research
from others are that (1) the time is not transitive and branching, (2) the agents’
accessibility relations (for distinct agents) and corresponding logical operations
are embedded, and (3) the agents accessibility relations may have lacunas, sets
of forgotten time. Illustrative examples are provided. We solve the satisfiability and
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decidability problems for the suggested logic. For this purpose we use instruments
of reduced normal forms for rules and algorithms converting rules to such forms.
We find algorithms solving the satisfiability problem and thus we prove that the
logic is decidable. In the final part of the paper, we formulate some interesting open
problems.

2. Syntax and Semantics

Here we start from a formal definition of models. They, in a sense, will extend
the models for the logic CTL — branching time logic. CTL models are the so called
transition systems whose models are pairs M := ⟨S,≺⟩ together with a labeling
function for letters. Here S are states and the binary relation ≺ on S is a transition,
which is assumed to be serial, i.e. every state has at least one successor (cf. for the
origin e.g. [11]).

Actually, we will replace states with finite intervals of states modeling computati-
onal runs, sequence of reasoning steps, etc. Besides, we assume our models to be
discrete and possessing various accessibility relations for agents (computational
agents). For the precise definition we prefer to constructively describe the models
starting from a representation of branching time.

Each our branching time model will start from a root — starting state. So, let
S1 := {a1,1}. Assume Sk to be already constructed and

Ad(Sk) := {ak,k1 , . . . , ak,km}
are all the states added to Sk−1 at the previous step. Let for any ak,m ∈ Ad(Sk),
S(ak,m) := {a, . . . , b} be new states. Let ak,m ≺ c for all c ∈ S(ak,m). So, all the
states from S(ak,m) are so to say all immediate tomorrow states for ak,m. Acting
similarly for any ak,m we obtain Sk+1. Let Sl(k + 1) :=

∪
ak,m

S(ak,m)) — this is
the k + 1–slay of Sk+1. Let

T (M) :=
∪
k∈N

Sk,

it is the specified time flow model. A path within T (M) is a finite sequence of
states by ≺. This definition reflects very exactly the idea of discrete branching time
(within a computation, many paths discussions, knowledge exchange, etc.).

We extend these models in several ways: (1) we consider the case when time is (a)
non–transitive (b) not potentially infinite to the future (reflecting always limited
resources, (c) not uniformly limited (may have arbitrary though bounded length
of possibly paths; (2) we use (a) multi–agent approach assuming that the agents
have their own accessibility relations which may differ to each other and differ the
general flow of time, and (b) the agents’ accessibility relations may have lacunas —
intervals of forgotten time.

To reflect these intensions, given an arbitrary model T (M) and all finite paths
— the set Path(T (M)) in this model — starting from the initial root state a1,1, we
chop the paths on finite accessibility intervals.

For this, we fix special states Up(s) in each path AP of T (M) and assume that
for any state s there is a state Up(s), where s ≺ Up(s). Let BM(T ) be the set of
all such Up(s)s.

Definition 1. For any two Up(s1), Up(s2) ∈ BM(T ) belonging to the same path,
Path(Up(s1), Up(s2) is the set of states leading by ≺ from Up(s1) to Up(s2).
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We will call these paths Path(Up(s1), Up(s2)) b–paths (bounded paths), for any
Path(Up(s1), Up(s2)), Up(s1) is its lower bound, Up(s2) is its upper bound.

Notice that for any upper bound state Up(s) there is only one path coming to
this Up(s); but it could be several paths leaving this Up(s). Thus all the states of
the model T (M) now are placed to paths leading from one upper limit Up(s1) to
another one Up(s2) or they belong to BM(T ). Thus

|T (M)| =
∪

(Up(s1),Up(s2))

Path(Up(s1), Up(s2)).

For any Path(Up(s1), Up(s2)), ≼∗ is a linear order within Path(Up(s1), Up(s2))
by reflexive order and concatenation of all ≺.

Definition 2. A BT–frame is a tuple F := ⟨T (M), Rj , j ∈ [1, n]⟩, where any Rj

is a liner reflexive and transitive relation on any path Path(Up(s1), Up(s2)), where
any Rj is a subset of ≼∗ and any separate Rj is the same on all common parts of
paths.

Definition 3. A model MBT is a pair ⟨F, V ⟩ where F is a BT-frame and V is a
valuation of the set P of propositional letters in this frame, that is, for any letter
p ∈ P , V (p) ⊆ |F |. Notation: (MBT, a) V p iff a ∈ V (p).

Now we introduce logical language for our interval temporal branching time
logic. It is an extension of linear temporal logic and standard CTL–logic. The
language contains the language of Boolean logics, so it has a potentially infinite
set of propositional letters P and Boolean logical operations ∧,∨,→,¬. It also has
binary temporal operations U j (“until” for each agent j, where j ∈ Ag and Ag is a
finite set of all agents), and one more unary operations “next”: N . Formation rules
for formulas are standard. More precisely:

Definition 4. for any p ∈ P , p is a formula; if φ and ψ are formulas then φ ∧ ψ,
φ ∨ ψ, φ→ ψ, ¬φ, Nφ, and φUjψ for all j ∈ Ag are formulas.

Thus, everything looks the same as for temporal logics with UNTIL and NEXT,
but the difference is that here we consider the temporal logical operations referred
to any individual agent and the logic assumes the time to be branching.

Given a model MBT we may extend the valuation V from letters to all formulas
as follows:

Definition 5. For any a ∈MBT :

MBT V ¬φ ⇔ (MBT, a) 1Vj φ;

(MBT, a) V (φ ∧ ψ) ⇔ (((MBT, a) V φ) ∧ (MBT (MBT, a) V ψ) ;

(MBT, a) V (φ ∨ ψ) ⇔ (((MBT, a) V φ) ∨ (MBT (MBT, a) V ψ) ;

(MBT, a) V (φ → ψ) ⇔ (((MBT, a) 1V φ) ∨ (MBT (MBT, a) V ψ) ;

For all formulas φUjψ we define the truth values as follows:

(MBT, a) V (φ Uj ψ) ⇔
((∃Path(Up(s1), Up(s2)), a ∈ Path(Up(s1), Up(s2)) &

∃b ∈ Path(Up(s1), Up(s2)) & (aRjb) ∧ ((MBT, b) V ψ) &

∀c(aRjcRjb, c ̸= b) ⇒ ((MBT, b) V φ)

(MBT, a) V Nφ ⇔
[
∃b (a ≺ b) & (MBT, b) V φ

]
.
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As usual, we may definite modal operations via the temporal ones. For example
"possibility" may be defined as follows:

♢jp := ⊤Ujp.

The operation "necessary" then has to be expressed as: �jp := ¬ Uj¬p, and

(MBT, a) V ♢jφ ⇔
[
∃b(aRjb) & (MBT, b) V φ

]
;

(MBT, a) V �jφ ⇔
[
∀b(aRjb) ⇒ (MBT, b) V φ

]
,

so the defined agents’ modal operations work as is expected, in accordance with
meaning of modal operations. Now we will give some examples illustrating how
the chosen framework may model agents’ relations including non–transitivity and
possible lacunas in agents’ accessibility relations.

EXAMPLES

(1) The formula N p∧¬♢1p∧NN♢1p says that the relation R1 has lacunas: the
next sate is not accessible by R1 but some next state after the next one is accessible.

(2) Consider the formula ♢1p∧¬♢2p that being true with respect to a valuation
V says that the accessibility relation for the agent 2 has a hole (lacuna) which
nonetheless has inside states accessible for agent 1.

(3) The formula ♢1♢1p ∧ ¬♢1p says that the relation R1 is not transitive for
a given state a. More exactly, the truth for p with respect to R1 is impossible in
the transitivity interval (b–path) where a is situated, but in the next b–path p is
possible with respect to R1.

(4) To illustrate the multi–agency, consider a formula φop := [�1p → �2¬p] ∧
[�2p → �1¬p]. It says that both these agents are totally opposite in their opinion
for stable facts at all states accessible for them.

(5) The formula [(�1p→ �2p)∧(�2p→ �1p)]∧♢1Nφop says that the agents may
agree at all visible time but after this the agents may be in a complete opposition.

(6) Total recall: ♢1p∧�1(p→ ♢1[¬p∧♢1p])∧♢1♢1�1p. This formula says that
the agent 1 always swapping its opinion about the truth of p from true to false and
vise versa or lose p during the whole initial interval of time, but after some time it
decides p to be always true.

Definition 6. The logic BTA is the set of all formulas which are valid in any
model MBT for all states and valuations. If there is a model MBT and a state a
where a formula φ is true, we say φ is satisfiable in MBT .

Recall that for any logic L, the satisfiability problem is to determine by any
given formula φ if it is satisfiable in L: if there is a model and a state of this model
for which this formula is true. If there is an algorithm answering this question for
any given formula φ then the satisfiability problem is said to be decidable.

A logic is decidable if there is an algorithm answering questions “φ ∈ L?” for
any formula. It is clear that if φ ∈ L then ¬φ is not satisfiable; vise versa, if φ /∈ L
then ¬φ is satisfiable.
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3. Finite Clipped Models

To work with the satisfiability, we will need to define some special finite models.
A path Path(Up(s1), Up(s2)) in a model MBT is said to be of depth m if there
are exactly m different Up(s) ∈ BTTT (upper bounds) in the path leading from
the root to Up(s2).

Definition 7. For any model MBT and any m ∈ N , an m–clipped model MBT (m)
is the model based on the frame with the basic set |MBT | in which we have deleted
all states of all paths Path(Up(s1), Up(s2)) of depth strictly bigger than m except the
lower bounds of paths Path(Up(s1), Up(s2)) of depth m+ 1. For the upper bounds
Up(s2) of the remaining paths Path(Up(s1), Up(s2)) we define the next state to
Up(s2) by ≺ to be itself, otherwise we transfer the relations Rj and the valuation
from the original model MBT .

We may transfer the rules for computation of the truth values of formulas for any
clipped models without any amendments. For the formulas with bounded temporal
degree, these models will give us a useful tool for satisfiability problem.

Definition 8. For a formula φ, its temporal degree td(φ) is defined inductively as
follows. If φ is a propositional letter then td(φ) := 0. If φ = φ1 ◦ φ2 where ◦ is a
binary Boolean logical operation, then td(φ) := max{td(φ1), td(φ2)}; if φ = ¬φ1

then td(φ) := td(φ1). If φ = Nφ1 then td(φ) := td(φ1) + 1. If φ = φ1Ujφ2 then
td(φ) := max{td(φ1), td(φ2)} + 1.

Lemma 1. For any path Path(Up(si), Up(sj)) of depth k and any a ∈ Path(Up(si),
Up(sj)), where a ̸= Up(sj) for any formula α of temporal degree not bigger than m
holds

(1) (MBT, a) V α ⇔ (MBT (k +m, a) V α.

Proof. We show this by induction on m. Indeed, the case m = 0 is obvious. Assume
that the statement of our lemma is proven for all k and all n ≤ m and that we have
a formula β of temporal degree m+ 1.

Then the formula β is constructed by boolean operations from some formulas βi
with temporal degree at most m and some formulas γi with temporal degree m+ 1
where γi = N δi and td(δi) = m, or γi = ξ1Ujξ2 and max(td(ξ1), td(ξ2) = m. For
all formulas β with temporal degree at most m, for all paths Path(Up(si), Up(sj))
of depth k for all k we have for any a ∈ Path(Up(si), Up(sj)) \ {sj}

(2) (MBT, a) V β ⇔ (MBT (k +m, a) V β.

by the inductive assumption. So, to prove our lemma we need to consider the
formulas γi. Let first γi = N δi and td(δi) = m.

Assume that a ∈ Path(Up(si), Up(sj)) \ {Up(sj)} and

(MBT, a) V N δi.

Then for some b we have a ≺ b, where

(MBT, b) V δi.

If b ∈ Path(Up(si), Up(s)) \ {Up(sk)} for some s, we have (MBT, b) V δi and
using (2) we get MBT (k +m, b) V δi and hence MBT (k +m, a) V N δi.
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If b = Up(s) (for some Up(s)) we get (MBT,Up(s)) V δi and using (2) for
k+ 1 we obtain MBT (k+ 1 +m, b) V δi; and hence MBT (k+ 1 +m, a) V N δi

Vise versa, if MBT (k +m, a) V N δi then for some b, a ≺ b and in MBT (k +
m, a) holds MBT (k +m, b) V δi. If b ∈ Path(Up(si), Up(s)) \ {Up(s)}, for some
s, we obtain MBT (k+m, b) V δi and by (2) it follows that MBT (k+m, a) V δi
and (MBT (k + 1 +m, a) V δi.

If b /∈ Path(Up(si), Up(sj))\{Up(s)} for all s, then b = Up(s) for some s, and by
(2) for k+1 we have (MBT (k+1+m, b) V δi and hence (MBT (k+1+m, a)) V

N δi. So the case γi = N δi is proven.
Let now γi = ξ1Ujξ2 and max(td(ξ1), td(ξ2) = m. Assume first that a ∈

Path(Up(si), Up(sj)) \ {Ups} for some Up(sj) and

(MBT, a) V ξ1Ujξ2.

Then for some b ∈ Path(Up(si), Up(sj)) holds aRjb, where (MBT, b) V ξ2 and
for all c ∈ Path(Up(si), Up(sj) where aRjc and c ̸= b we have (MBT, c) V ξ1.

If b ̸= Up(sj) for that (and all possible) Up(sj) then we may apply (2) to all
the states within the path and then b ∈ Path(Up(si), Up(sj)), aRjb, (MBT (k +
m), b) V ξ2 and for all c ∈ Path(Up(si), Up(sj) where aRjc and c ̸= b, MBT (k+
m, c) V ξ1. Hence, MBT (k +m, a) V ξ1Uj and MBT (k + 1 +m, a) V ξ1Uj .

Assume now that b = Up(sj). Then again we can apply (2) to all the states
within the path and then ∀c ∈ Path(Up(si), Up(sj) where aRjc and c ̸= b holds
MBT (k+m, c) V ξ1. In addition we have that (MBT,Up(sj)) V ξ2; and by (2)
for k+ 1 then obtain (MBT (k+ 1 +m), Up(sj)) V ξ2. Summarizing the above we
obtain the following. For a being inside the set Path(Up(si), Up(sj)) \ {Up(sj)})
in the path of depth k we have

(MBT (k + 1 +m), a) V ξ1Ujξ2.

Suppose now that the previous holds. Then for some b ∈ Path(Up(si), Up(s)), for
some s aRjb where (MBT (k+1+m), b) V ξ2 and for all c ∈ Path(Up(si), Up(sj)
where aRjc and c ̸= b, (MBT (k + 1 +m), c) V ξ1.

If b ̸= Up(sj) then all the events hold within the same path of depth k and
applying (2) for k we get (MBT, b) V ξ2 and for all c ∈ Path(Up(si), Up(sj)
where aRjc and c ̸= b, (MBT, c) V ξ1. Hence, (MBT, a) V ξ1Uj .

If b = Up(sj) then we will need to apply the inductive hypothesis for states of
paths of different (though neighboring) depths. Then (MBT (k+1+m), Up(sj)) V

ξ2 and by (2) for k + 1 we have (MBT,Up(sj)) V ξ2. At the same time for all
c ∈ Path(Up(si), Up(sj) where aRjc and c ̸= b, (MBT (k + 1 + m), c) V ξ1 and
by (2) for all such c we obtain (MBT, c) V ξ1. So, we get (MBT, a) V ξ1Ujξ2.
That completes the proof of our lemma. �.

Using this lemma we immediately infer:
Lemma 2. Assume that a model MBT based on a frame F is given and a formula
α with temporal degree n is satisfied in this model at the root state a from F by a
valuation V . Then α is satisfied at the root of the clipped model MBT (n) by the
same valuation V .
Lemma 3. If a formula α with any temporal degree is satisfied at the root of some
clipped model MBT (k) for some k by the a valuation V , then α may be satisfied in
the root of the usual not–clipped model MBT obtained from MBT (k) by stretching
any final sate to infinite path by ≺ of p–paths of length 2.
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Proof. Just do with the clipped model the following: stretch any final sate s to
the infinite path by ≺ of p–paths of length 2 and define the valuation V on all such
states as on s and all the relations Rj on added states as it has been done for s. It
is easy to see that this model will satisfy α on the root. �

Using these two last lemmas we are getting closer to the solution of the satisfiabi-
lity problem. But the problem is that we are not yet able to computably restrict
the possible sizes of p–paths in our clipped models. We will resolve it in the next
section.

4. Rarefication Technique via Reduced Forms

As we have noticed above, we cannot use clipped models in present form to solve
the satisfiability problem. We need to reduce the sizes of b–paths. An immediate
work with formulas does not look promising, because, in particular, the non–
transitivity of agents’ accessibility relations hampers to convert formulas into more
suitable and simple forms, to some canonical or similar ones. There we will use
the technique of reduction of formulas to rules (which we have already used earlier
many times for different purposes (cf. e. g. [2, 18, 21, 23]) and transformation the
latter ones in the so–called reduced forms.

This approach efficiently simplifies all the proofs because it allows to consider
very simple and uniform formulas without nested temporal operations, so just
temporal degree one. We briefly recall this technique.

A rule is an expression r := φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) / ψ(x1, . . . , xn),
where all φk(x1, . . . , xn) and ψ(x1, . . . , xn) are formulas constructed from the letters
(variables) x1, . . . , xn.

Formulas φk(x1, . . . , xn) are called premises and ψ(x1, . . . , xn) is called the
conclusion. The rule r means that ψ(x1, . . . , xn) (conclusion) follows (logically
follows) from the assumptions φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) . The definition
of the validness of a rule is the same for any relational model. However we have
models with multi–valuations, so we need some modification.

Assume that a clipped model MBT (m) and a rule r are given.

Definition 9. The rule r := φ1(x1, . . . , xn), . . . , φs(x1, . . . , xn) / ψ(x1, . . . , xn), is
valid on the model MBT (m) iff[

∀a
(

(MBT (m), a) V

∧
1≤i≤s φi

)]
⇒ [∀a ((MBT (m), a) Vl

ψ)] .

If ∀a
(

(MBT (m), a) V

∧
1≤i≤s φi

)
but ∃a ((MBT (m), a) 1V ψ), then we say

that r is refuted in MBT (m) by V and we denote this fact as MBT 1V r.

Definition 10. A rule r is true (or valid) on a frame for MBT (m) iff r is true
on any model based on MBT (m).

Lemma 4. For a formula φ, φ is satisfiable iff the rule x→ x/¬φ may be refuted
in some model BMT iff x→ x/¬φ may be refuted in a clipped model MBT (n) for
some n.

Proof. The first IFF is evident. The second IFF follows from Lemmas 2 and 3.
�

Thus we have
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Lemma 5. If there is an algorithm verifying for any given rule r if this rule is
valid on all clipped models MBT (m) then there exists an algorithm verifying if any
given formula is satisfiable.

Now we need to have rules in some uniform simple form, in particular — without
nested temporal operations.

Definition 11. A rule r is said to be in reduced normal form if r = ε/x1, where

ε =
∨

1≤j≤m

[ ∧
1≤i≤n

x
t(j,i,0)
i ∧

∧
1≤i≤n

(Nxi)
t(j,i,1) ∧

∧
∧

l∈[1,k],1≤i,k1≤n

(xiUlxk1)
t(j,i,k1,l,2)

]
,

t(j, i, 0), t(j, i, l, 1), t(j, i, k1, l, 2) ∈ {0, 1} and, for any formula α above α0 := α,
α1 := ¬α.

Definition 12. For any given rule r, a rule rnf in the reduced normal form is said
to be a reduced normal form of r iff

(i) rnf contains all variable–letters from r and maybe some extra ones;
(ii) For any clipped model MBT (m), the rule r may be refuted in MBT (m) if

and only if the rule rnf may be refuted in this model.

Theorem 1. There exists an algorithm running in (single) exponential time which
given any rule r constructs some its reduced form rnf . The variables of rnf are all
variables of r together with the set of new variables denoting all subformulas of r.

Proof. The proofs of the similar statements for various relative relational models
and rules was suggested by us quite a while ago (e. g. cf. Lemma 5 in [2], or the
proofs of similar statements in [16]). Here, for completeness we give a sketch of the
proof. Let a rule r = α/β be given. Let Sub(r) the set of all subformulas of the rule
r. We fix a set of variable letters Z = {zγ | γ ∈ Sub(r)} not occurring in r and a
rule in an intermediate form:

rif = zα ∧
∧

γ∈Sub(r)\V ar(r)

(zγ ↔ γ♯)/zβ ,

where

γ♯ =

{
zδ ∗ zϵ, if γ = δ ∗ ϵ for ∗ ∈ {∧,∨,→,Uj}
∗zδ, if γ = ∗δ for ∗ ∈ {¬,N }.

The rules r and rif are true or refuted on the frame of any model simultaneously.
If BTM(m) is a model with a valuation V such that BTM(m) ̸V r then BTM(m)
V α and there exists an a ∈ |BTM(m)| such that (BTM(m), a) ̸V β. We then
choose the valuation V1 : Z → 2|BTM(m)| with V1(zγ) := V (γ). Then it is easy to see
(computing by induction of the length of formulas) that BTM(m) V1 zα∧

∧
{zγ ↔

γ♯ | γ ∈ Sub(r) \ V ar(r)} and (BTM(m), w) ̸V1 zβ .
From the other hand, let us assume that there is a model BTM(m) with a

valuation V1 such that V1 : Z → 2|BTM(m)| and BTM V1 zα ∧
∧
{zγ ↔ γ♯ | γ ∈

Sub(r) \ V ar(r)} and (BTM,w) ̸V1 zβ for some w.
Now define a valuation V as V : V ar(r) → 2|BTM(m)| and V (xi) = V1(zxi).

Then (computing by induction of the length of formulas) we obtain V (γ) = V1(zγ),
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for all γ ∈ Sub(r). Hence, BMT (m) V α, (BMT (m), w) ̸V β and consequently
BTM(m) ̸V r. Next, we transfer the premise of rif in perfect disjunctive normal
form constructed out of formulas of kind xi, Nxi and xiUjxj . As we know, the
latter transformation is single exponential on the number of all formulas of kind xi,
Nxi and xiUjxj , and hence on the number of all subformulas of the original rule,
and hence on its length. �

The reduced normal forms of rules constructed by the algorithm shown in the
proof of this theorem are defined uniquely.

Thus, if we are interested to investigate the problem of refutation for rules, we
may restrict ourselves with considerations of rules in the reduced form only. Recall
that now we consider truncated models.

Lemma 6. If a rule in a reduced normal form rnf is refuted in a clipped model
MBT (m) then rnf can be refuted in some such model of size computable from the
size of the rule.

Proof. Let rnf = ε/x1, where ε =
∨

1≤j≤m θj ,

θj =
[ ∧
1≤i≤n

x
t(j,i,0)
i ∧

∧
1≤i≤n

(Nxi)
t(j,i,1) ∧

∧
∧

l∈[1,k],1≤i,k1≤n

(xiUlxk)
t(j,i,k1,l,2)

]
,

and assume that rnf is refuted in a given model MBT (m). Then for a valuation V
the premise of the rule is true at any state but the conclusion of the rule is refuted
by V at the root; we may assume that the conclusion x1 is refuted at the root
Up(s0) of the frame.

Besides, we may assume that the model MBT (m) has a finite number (though
not commutable bounded yet) of paths leaving the root (at least as much as it is
necessary to make any required formula xiUjxk or Nxi from the premise of the rule
to be true (if required)).

At the first stage of the proof we will rarefy the frame and achieve that any
path Path(Up(si), Up(sj)) within the frame will have finite number of states with
certain computable upper bound. Let us start from all paths Path(Up(s0), Up(s1))
leaving from Up(s0). Consider some of them, Path(Up(s0), Up(s1)) and the next
state a for Up(s0).

Since the premise of the rule is true at the frame w.r.t. V , at any state b of the
frame, there is a unique disjunct θj of the premise of the rule which is true at b.
Denote it by θ(b). We have:

(MBT (m), b) V θ(b),

so (MBT (m), Up(s0)) V θ(Up(s0)) and (MBT (m), a) V θ(a). Consider the
state Cp(a) from the b–path Path(Up(s0), Up(s1)) closest to the state Up(s1) such
that

(MBT (m), Cp(a)) V θ(a),

(if exists). Now we delete all intermediate states between Up(s0) and Cp(a) together
with all paths (and b–paths inside them, completely) erasing from deleted states,
and then we define the next state above Up(s0) to be Cp(a): Up(s0) ≺ Cp(a).
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Concerting accessibility relations Rj on Path(Up(s0), Up(s1)), recall that any
of them is a reflexive linear transitive relation on Path(Up(s0), Up(s1)) which is a
subset of ≺∗; besidesRj may have some lacunas — states from Path(Up(s0), Up(s1))
which are not accessible by Rj even from Up(s0). Now we just transfer any Rj to
the remaining part of Path(Up(s0), Up(s1)). This transformation does not change
the previously existed Rj on the states of the remaining part. Denote the obtained
model as TM . For any b ∈ Path(Up(s0), Up(s1)) ∩ |TM | the following holds:

Lemma 7. If b ∈ Path(Up(s0), Up(s1)) ∩ |TM| then for any θj
(TM, b) V θj ⇔ (MBT, b) V θj .

Proof. Indeed, the truth of letters xi is the same, the truth of Nxi is again
the same since (MBT (m), Cp(a)) V θ(a). The truth of formulas xiUjxk again
remains to be the same as it was before, since by our choice of the state Cp(a) it
was (MBT (m), Cp(a)) V θ(a). �

From this point, we consider the state next to Cp(a) in TM within that path and
after mowing to Up(s1) we continue the same transformation; it will preserve the
truth values of formulas θj . So, this transformation will reduce the size of the path
Path(Up(s0), Up(s1)) ∩ |TM| to the one whose number of states does not exceed
the number of distinct θjs.

Now we apply the same transformation to all other b–paths coming out of Up(s0)
(Path(Up(s0), Up(s1)) ) one by one. The resulting model will again preserve the
truth values of formulas θj . Next, we keep only different b–paths coming out of
Up(s0) and keep the paths leaving from the internal states of these b–paths and
leaving from upper limits (Up(s1)) of such b–paths.

After this we execute similar transformations staring from upper limits of all the
b–paths leaving from Up(0) and so on. As a result, we will obtain the finite model
preserving truth values of formulas θj such that all b–paths Path(Up(si), Up(si+1))
will contain at most n1 states, where n1 is the number of disjuncts θj .

Now we will pull down the b–paths Path(Up(si), Up(si+1)) moving from the top
of the model to the bottom by replacing all lowermost (belonging to the same path)
identical to Path(Up(si), Up(si+1)) b–paths and all paths leaving from its states by
the upper p–path Path(Up(si), Up(si+1)) and paths leaving from it. The resulting
model again preserves truth values of formulas θj . Now, any complete path of the
model consists of different b–paths and the number of states in each path does not
exceed the number of distinct θjs. Hence, the obtained model is finite and its size
is computable from the size of the rule. �

Combining Lemmas 5, 6 and Theorem 1 we obtain

Theorem 2. The satisfiability problem for the logic BTA is decidable. The logic
BTA itself is decidable.

5. Open problems

Many problems from the framework of this paper are still open; actually, among
them is a good set of problems which are actual for any logic, e.g. axiomatization,
unifiability problem, decidability with respect to admissible inference rules. We did
not yet study the extended versions of our logic for the case with the future and
the past. The next open avenue for research is the embedding fuzzy logics in this
framework in the case when truth values of formulas at any state are not binary but
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multi–valued. Here some tools borrowed from  Lukasiewicz logic or modern fuzzy–
logic with continuous intervals of truth values may be used. In this case it is very
interesting to formalize, how different agents interact and, in particular, when, each
agent has its own valuation of the basic propositions — propositional letters (but
the temporal operations for different agents might be nested in formulas and hence
they might interfere). An interesting open problem is the case when the transitivity
intervals may have a common overlap, not only chopping boundary states as in this
paper.
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