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Abstract. Boundary value and extremum problems for a generalized
Oberbeck–Boussinesq model are considered under the assumption that
the reaction coefficient depends nonlinearly on the substance’s concentra-
tion. In the case when reaction coefficient and cost functionals are Fréchet
differentiable, an optimality system for the extremum problem is obtained.
For the quadratic reaction coefficient a local uniqueness of the optimal
solution is proved.
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1. Introduction

For a long time an interests for the studying of inverse problems for linear
and nonlinear models of heat-and-mass transfer does not fade. These mentioned
problems consist in recovering of unknown densities of boundary or distributed
sources of coefficients in differential equations of the model or in boundary conditions
with the help of additional information about the system’s state, which is described
by a model. One of such methods of considering inverse problems is the optimisation
method which implies the reduction of inverse or identification problems to extre-
mum problems (see more in [1]).
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The papers [2, 3] are dedicated to the study of the inverse problems for a
linear model of heat-and-mass transfer which consists of a convection-diffusion-
reaction equation with boundary conditions. Let us also further note the articles
[4, 5, 6, 7, 8, 9, 10], in which inverse problems for nonlinear heat-and-mass transfer
models in a classical approximation of Oberbeck–Boussinesq were considered. The
papers [12, 13, 14, 15, 16, 17] are focused on boundary value and extremum problems
for convection-diffusion-reaction equation, in which reaction coefficient depends
nonlinearly on substance’s concentration. In [18, 19] similar models of complex
heat transfer were considered. From a range of papers dedicated to the study
of boundary value and extremum problems for various models which generalise a
classical approximation of Oberbeck–Boussinesq let us note [20, 21, 22]. About the
research of more complicated rheological models and of models of multi-component
viscous compressible fluids see, respectively, [23, 24] and [25, 26].

2. Solvability of boundary value problem

In a bounded domain Ω ⊂ R3 with boundary Γ, the considered boundary value
problem is

(1) −ν∆u+ (u · ∇)u+∇p = f + βGφ, divu = 0 in Ω,

(2) −λ∆φ+ u · ∇φ+ k(φ,x)φ = f in Ω,

(3) u = 0, φ = 0 on Γ.

Here u is a velocity vector, function φ represents the concentration of the pollutant,
p = P/ρ, where P is pressure, ρ = const is the fluid density, ν = const > 0 is the
constant kinematic viscosity, λ = const > 0 is the constant diffusion coefficient, β
is the coefficient of mass expansion, G = −(0, 0, G) is the acceleration of gravity, f
and f are volume densities of external forces or external sources of the substance,
the function k = k(φ,x) is the reaction coefficient, where x ∈ Ω This problem
(1)–(3) for given functions f , f, β and k will be called Problem 1 below.

In this paper the global solvability of Problem 1 is proved, sufficient condition
for its solution’s uniqueness are stated, maximum principle is proved and the
correctness of the model (1)–(3) is discussed.

Furthermore, with the help of the optimisation approach the problem of restoration
of resources’ volume density f using the concentration φ, which was measured
in a subdomain Q ⊂ Ω, is reduced to the extremum problem. Its solvability is
proved in a general case. When the reaction coefficient and cost functionals are
Fréchet differentiable we get optimality systems for the extremum problem. For the
quadratic reaction coefficient which leads to the substance’s concentration being
of 3rd order nonlinearity in the equation (2) we state sufficient conditions of local
uniqueness of optimal solutions for particular extremum problems.

While studying the considered problems, we will use Sobolev functional spaces
Hs(D), s ∈ R. Here D means either the domain Ω or some subset Q ⊂ Ω, or the
boundary Γ. By ∥ · ∥s,Q, | · |s,Q and (·, ·)s,Q we will denote the norm, seminorm
and the scalar product in Hs(Q). The norms and scalar products in L2(Q) and
L2(Ω) will be denote corresponding by ∥ · ∥Q and (·, ·)Q, ∥ · ∥Ω and (·, ·)Ω. Let
Lp
+(Ω) = {k ∈ Lp(Ω) : k ≥ 0}, p ≥ 3/2, and by V = {v ∈ H1

0 (Ω)
3 : divv = 0 in Ω}

we introduce the main functional space for the velocity vector.
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Let us also present the product of spaces H = H1
0 (Ω)

3 ×H1
0 (Ω) and functional

space H∗ = H−1(Ω)3 ×H−1(Ω) dual to H.
Let the following conditions hold:
(i) Ω is a bounded domain in the space R3 with boundary Γ ∈ C0,1;
(ii) f ∈ L2(Ω)3, f ∈ L2(Ω), b = βG ∈ L2(Ω)3;
(iii) For any function w ∈ H1(Ω) the embedding k(w, ·) ∈ Lp

+(Ω) is true for
some p ≥ 3/2, which does not depend on w, and on any sphere Br = {w ∈ H1(Ω) :
∥w∥1,Ω ≤ r} of radius r the following inequality takes place:

∥k(w1, ·)− k(w2, ·)∥Lp(Ω) ≤ L∥w1 − w2∥L4(Ω) ∀w1, w2 ∈ Br.

Here L is the constant which depends on r, but does not depend on w1, w2 ∈ Br.
Let us note that the condition (iii) describes an operator, acting from H1(Ω) to

Lp(Ω), where p ≥ 3/2, which gives us an opportunity to take into consideration the
dependence of the reaction coefficient on either the component φ of solution the
(u, φ, p) of Problem 1 or on the spatial variable x ∈ Ω. For example, k̃1 = φ2 (or
k̃1 = φ2|φ|) in subdomain Q ⊂ Ω or k̃1 = k0(x) in Ω\Q, where k0(x) ∈ L

3/2
+ (Ω\Q).

From a physical point of view, the coefficient k̃1 corresponds to the situation,
when the substance’s decomposition rate is proportional to the square (or cube) of
substance’s concentration in a subdomain Q ⊂ Ω and outside Q, and the rate of
the chemical reaction depends only on a spatial variable [14, 16].

Let us also remind that on the strength of the Sobolev embedding theorem the
space H1(Ω) is embedded into the space Ls(Ω) continuously at s ≤ 6 and compactly
at s < 6, with some constant Cs which depends on s and on Ω, and besides the
following estimate is true:

(4) ∥φ∥Ls(Ω) ≤ Cs∥φ∥1,Ω ∀φ ∈ H1(Ω).

We will use the following technical lemma (see [1]).

Lemma 1. If conditions (i), (ii) hold then there are such positive constants C0, C1, δ0,
δ1, γ1, γ2, γp, β1, depending on Ω or on Ω and on p, respectively, and a positive
constant β0, depending on ∥b∥Ω that for any function k0 ∈ Lp

+(Ω), where p ≥ 3/2,
u ∈ V , b ∈ L2(Ω)3, the following relations are correct:

|(∇v,∇w)| ≤ C0∥v∥1,Ω∥w∥1,Ω ∀v,w ∈ H1(Ω)3,

|(bh,v)| ≤ β0∥h∥1,Ω∥v∥1,Ω ∀w,v ∈ H1(Ω)3, h ∈ H1(Ω),

|((w · ∇)v, z)| ≤ γ1∥w∥L4(Ω)3∥v∥1,Ω∥z∥1,Ω ∀w,v, z ∈ H1(Ω)3,

(5) ((u · ∇)v,w) = −((u · ∇)w,v), ((u · ∇)v,v) = 0 ∀v,w ∈ H1(Ω)3,

(6) (∇v,∇v) ≥ δ0∥v∥21,Ω ∀v ∈ H1
0 (Ω)

3,

(7) sup
v∈H1

0 (Ω)3,v ̸=0

−(divv, p)/∥v∥1,Ω ≥ β1∥p∥Ω ∀p ∈ L2
0(Ω),

(8) |(∇h,∇η)| ≤ C1∥h∥1,Ω∥η∥1,Ω, |(k0h, η)| ≤ γp∥k0∥Lp(Ω)∥h∥1,Ω∥η∥1,Ω,

|(w · ∇h, η)| ≤ γ2∥w∥L4(Ω)3∥h∥1,Ω∥η∥1,Ω ∀w ∈ H1(Ω)3, h, η ∈ H1(Ω);

(u · ∇h, h) = 0, (∇h,∇h) ≥ δ1∥h∥21,Ω,

λ(∇h,∇h) + (k0h, h) ≥ λ∗∥h∥21,Ω ∀h ∈ H1
0 (Ω), λ∗ ≡ δ1λ.
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From second estimate in (8) the inequality for the function k(φ) that satisfies
conditions (iii) follows:
(9)
|((k(φ1)− k(φ2))φ, η)| ≤ γpL∥φ1 − φ2∥L4(Ω)∥φ∥1,Ω∥η∥1,Ω ∀φ,φ1, φ2, η ∈ H1

0 (Ω).

Let us multiply the first equation in (1) by a function v ∈ H1
0 (Ω)

3 and the
equation (2) by a function h ∈ H1

0 (Ω) and integrate over Ω, using Green’s formulae,
we are obtaining the weak formulation of Problem 1.

(10) ν(∇u,∇v) + ((u · ∇)u,v)− (p,divv) = (f ,v) + (bφ,v) ∀v ∈ H1
0 (Ω)

3,

(11) λ(∇φ,∇h) + (k(φ)φ, h) + (u · ∇φ, h) = (f, h) ∀h ∈ H1
0 (Ω).

The triple (u, φ, p) ∈ V ×H1
0 (Ω)× L2

0(Ω) which satisfies (10), (11) will be called a
weak solution of Problem 1.

We consider the restriction of (10) on the space V :

(12) ν(∇u,∇v) + ((u · ∇)u,v) = (f ,v) + (bφ,v) ∀v ∈ V.

To prove the existence of the weak solution of Problem 1 it is enough to prove the
existence of the solution (u, φ) ∈ V ×H1

0 (Ω) of the problem (11), (12). About the
restoration of pressure see more in [1, p. 89]. In its turn the proof of the solvability of
the problem (11), (12) will be constructed with the help of the fixed-point Shauder
theorem (see [1]).

Let us set z = (w, τ) ∈ H and y = (u, φ) ∈ H and construct a mapping
F : H → H, acting by formula F (z) = y, where y = (u, φ) is the solution of the
linear problem

(13) a1(u,v) ≡ ν(∇u,∇v) + ((w · ∇)u,v) = (f ,v) + (bφ,v) ∀v ∈ V,

(14) a2(φ, h) ≡ λ(∇φ,∇h) + (k(τ)φ, h) + (w · ∇φ, h) = (f, h) ∀h ∈ H1
0 (Ω).

From the condition (iii) and lemma 1 it follows that the form a2 : H1
0 (Ω) ×

H1
0 (Ω) → R, is continuous and coercive with the constant λ∗ = δ1λ. Then for all

w ∈ H1
0 (Ω)

3 and τ ∈ H1
0 (Ω) there exists a unique solution φ ∈ H1

0 (Ω) of the
problem (14) for which the estimate holds

(15) ∥φ∥1,Ω ≤Mφ ≡ C∗∥f∥Ω, C∗ = λ−1
∗ .

By Lemma 1 the form a1 : H1
0 (Ω)

3 × H1
0 (Ω)

3 → R is continuous and coercive on
V × V with the constant ν∗ = δ0ν. Then for all w and τ there exists a unique
solution u ∈ V of the problem (13).

We set v = u in (13). From Lemma 1 the inequality follows

(16) ν∗∥u∥21,Ω ≤ ∥f∥Ω∥u∥1,Ω + β0∥φ∥1,Ω∥u∥1,Ω.

From the estimate (16) and taking into account (15) we can derive the following
estimate

(17) ∥u∥1,Ω ≤Mu = ν−1
∗ (∥f∥Ω + β0C∗∥f∥Ω).

Then there exists a solution y = (u, φ) ∈ H of the problem (13), (14), for which
the estimate takes place

(18) ∥y∥H ≤Mu +Mφ.

In the space H let us introduce a sphere Br = {y ∈ H : ∥y∥H ≤ r}, where
r = Mφ + Mu. from the construction of Br and from (18) it follows that the
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operator F which was defined above is mapping the sphere Br into itself with any
z = (w, τ) ∈ H.

Let us prove that F is continuous and compact on Br. Let zn = (wn, τn),
n = 1, 2, ... be an arbitrary sequence from Br.

Due to the reflexivity of the spaces H1
0 (Ω) and H1

0 (Ω)
3 and to the compactness

of the embeddings H1(Ω) ⊂ L4(Ω) and H1(Ω)3 ⊂ L4(Ω)3 there is a subsequence of
the sequence {zn} = {(wn, τn)}, which we will again denote by {zn}, and there is
a function z = (w, τ) ∈ Br such that wn → w weakly in H1(Ω)3 and strongly in
L4(Ω)3 at n→ ∞, τn → τ weakly in H1(Ω) and strongly in L4(Ω) at n→ ∞.

Let yn = F (zn), y = F (z). These equations mean that y = (u, φ) ∈ H is the
solution of the problem (13), (14) and yn = (un, φn) ∈ H is the solution of the
problem

(19) ν(∇un,∇v) + ((wn · ∇)un,v) = (f ,v) + (bφn,v) ∀v ∈ V,

(20) λ(∇φn,∇h) + (k(τn)φn, h) + (wn · ∇φn, h) = (f, h) ∀h ∈ H1
0 (Ω),

that can be obtained from (13), (14) by the substitution of z = (w, τ) by zn =
(wn, τn).

Let us show that yn → y strongly in H or, equivalently, that φn → φ strongly
in H1(Ω) and un → u strongly in H1(Ω)3 at n→ ∞.

For this let us subtract (13), (14) from (19), (20). Taking into account that

(k(τn)φn, h)− (k(τ)φ, h) = (k(τn)(φn − φ), h) + ((k(τn)− k(τ))φ, h),

we get

λ(∇(φn − φ),∇h) + (k(τn)(φn − φ), h) + (wn · ∇(φn − φ), h) =

(21) = −((wn −w) · ∇φ, h)− ((k(τn)− k(τ))φ, h) ∀h ∈ H1
0 (Ω),

ν(∇(un − u),∇v) + ((wn · ∇)(un − u),v) =

(22) = (((wn −w) · ∇)u,v) + (b(φn − φ),v) ∀v ∈ V.

Using the estimate (9) at φ1 = τn, φ2 = τ , φ = φn and the estimate ∥φn∥1,Ω ≤
Mφ for n = 1, 2... that follows from (15), we obtain
(23)
|((k(τn)− k(τ)φn, h)| ≤ γpLMφ∥τn − τ∥L4(Ω)∥h∥1,Ω → 0 at n→ ∞ ∀h ∈ H1

0 (Ω).

Substituting h = φ − φn in (21) and taking into account lemma 1 and (23) we
conclude that ∥φn − φ∥1,Ω → 0 at n → ∞. After denoting v = u − un in (22) we
can get from this and from lemma 1 that ∥u− un∥1,Ω → 0 at n→ ∞.

Then the operator F is continuous and compact and from the fixed-point Shauder
theorem it follows that F has a fixed point y = F (y) ∈ H which is the solution of
the system (11), (12).

Due to (7) for the pressure p and for any arbitrary (as much as necessary small)
number δ > 0 there exists such function v0 ∈ H1

0 (Ω)
3, v0 ̸= 0 that

−(divv0, p) ≥ β2∥v0∥1,Ω∥p∥Ω, β2 = (β1 − δ) > 0.

Let v = v0 in (10), then taking into account this inequality and lemma 1 we obtain

β2∥v0∥1,Ω∥p∥Ω ≤ νC0∥v0∥1,Ω∥u∥1,Ω + γ1∥v0∥1,Ω∥u∥21,Ω + β0∥φ∥∥v0∥1,Ω
Dividing by ∥v0∥1,Ω ̸= 0 and accounting for the estimates (15), (17), we derive that

(24) ∥p∥Ω ≤ Cp = β−1
2 [(ν + γ1Mu)Mu + ∥f∥Ω + β0Mφ].
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Let us state sufficient conditions for the uniqueness of the solution of the problem
(11), (12). Let (ui, φi) ∈ V ×H1

0 (Ω), i = 1, 2 be solutions of the problem (11), (12).
It is obvious that their differences φ = φ1−φ2 and u = u1−u2 satisfy the relations

λ(∇φ,∇h) + (k(φ1)(φ, h) + (u1 · ∇φ, h) =

(25) = −(k(φ1)− k(φ2), φ2h)− (u · ∇φ2, h) ∀h ∈ H1
0 (Ω),

(26) ν(∇u,∇v) + ((u1 · ∇)u,v) = (bφ,v)− ((u · ∇)u2,v) ∀v ∈ V.

Denoting h = φ in (25) and v = u in (26), we conduct from lemma 1 and from the
inequalities(9), (4) that

(27) λ∗∥φ∥1,Ω ≤ γpC4LMφ∥φ∥1,Ω + γ2Mφ∥u∥1,Ω,

(28) ν∗∥u∥1,Ω ≤ β0∥φ∥1,Ω + γ1Mu∥u∥1,Ω.
Let us introduce dimensionless counterparts of Reynolds number and diffusive

Rayleigh number [1]:

(29) Re = (γ1/δ0ν)Mu, Ra = (γ2/δ0ν)(β0/δ1λ)Mφ.

Let the condition γ1Mu ≤ ν∗/2 or Re ≤ 1/2 holds. Then from (28) we conduct
that

(30) ∥u∥1,Ω ≤ 2(β0/δ0ν)∥φ∥1,Ω.
Accounting (30), from (27) we derive the inequality

∥φ∥1,Ω ≤ γp(1/λδ1)C4LMφ∥φ∥1,Ω + 2(γ2/δ0ν)(β0/λδ1)Mφ =

(31) = (γp(δ0ν/β0γ2)C4L+ 2)Ra∥φ∥1,Ω
Let the following smallness conditions be satisfied:

(32) Re ≤ 1/2, (γp(δ0ν/β0γ2)C4L+ 2)Ra < 1.

Then from the estimates (31) and (30) it can be obtained consistently that ∥φ∥1,Ω =
0 and ∥u∥1,Ω = 0 or φ1 = φ2 and u1 = u2.

Subtracting (10) at (u2, φ2, p2) from (10) at (u1, φ1, p1) and taking into account
that u = 0 and φ = 0, we conclude that the difference p = p1 − p2 satisfies the
equation

(33) −(p,divv) = 0 ∀v ∈ H1
0 (Ω).

Then due to (7) we obtain that p = 0 or p1 = p2.
Let us formulate obtained results as a following theorem.

Theorem 1. If the conditions (i)–(iii) hold then there exists a weak solution
(u, φ, p) ∈ V ×H1

0 (Ω)×L2
0(Ω) of Problem 1 and the estimates (15), (17) and (24)

are true. If, besides, the condition (32) is met then the weak solution of Problem 1
is unique.

Arguing as [27], let us state additional properties of the solution of Problem 1.
Let, besides (i)-(iii), the following conditions be satisfied:
(iv) 0 ≤ f ≤ fmax a.e. in Ω, where fmax > 0;
(v) the nonlinearity k(φ)φ is monotonic in the following sense:

(k(φ1)φ1 − k(φ2)φ2, φ1 − φ2) ≥ 0 ∀φ1, φ2 ∈ H1(Ω).
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Lemma 2. When the conditions (iv), (v) hold, the component φ of the weak solution
(u, φ, p) of Problem 1 satisfies the inequality

0 ≤ φ ≤M a.e. in Ω,

where M is a positive number, with which the equality fmax = k(M)M holds.

Remark 1. It is not difficult to check that the monotone nonlinearily of k(φ)φ is
caused by the power reaction coefficients, for example k1(φ) = φ2 and k2(φ) = φ2|φ|
as in [16, 17, 18], for which the parameter M can be computed easily.

Proof. Let φ̃ = min{φ, 0}. It is clear that φ̃ ∈ H1
0 (Ω) and the following relations

hold:

(∇φ,∇φ̃) = (∇φ̃,∇φ̃), (k(φ)φ, φ̃) = (k(φ)φ̃, φ̃), (u · ∇φ, φ̃) = (u · ∇φ̃, φ̃) = 0.

Taking this into account and denoting h = φ̃ in (11), we obtain the relation

(34) λ(∇φ̃,∇φ̃) + (k(φ)φ̃, φ̃) = (f, φ̃).

As φ̃ ∈ H1
0 (Ω) then according to lemma 1 and to (34) we derive the inequality

(35) λ∗∥φ̃∥21,Ω ≤ (f, φ̃).

If f > 0 a.e. in Ω then (f, φ̃) < 0 and it follows from (35) that ∥φ̃∥1,Ω = 0. The latter
means that from the assumption that in some subdomain D ⊂ Ω concentration
φ < 0 a.e. in D one can conclude that φ = 0 a.e. in D.

Let us denote by M > 0 some positive number and introduce a function ψ =
max{φ−M, 0}. As it was done above, it is not hard to check that ψ ∈ H1

0 (Ω) and
when substituting h = ψ in (11) the equality is true

(36) λ(∇ψ,∇ψ) + (k(φ)φ,ψ) = (f, ψ).

By QM we denote a subdomain in Ω, in which φ > M . It clear, that

(k(φ)φ,ψ) = (k(φ)φ,ψ)QM
= (k(ψ +M)(ψ +M), ψ)QM

.

By condition (v) the functions φ1 = ψ +M and φ2 = M from H1(Ω) satisfy the
relation

(37) 0 ≤ (k(ψ+M)(ψ+M)−k(M)M,ψ) = (k(ψ+M)(ψ+M)−k(M)M,ψ)QM
.

Substracting (k(M)M,ψ) from the both sides of (36) and due to lemma 1 and
(37) we deduct

(38) λ∗∥ψ∥21,Ω ≤ (f − k(M)M,ψ)QM
.

If fmax ≤ k(M)M then ψ = 0 a.e. in Ω.
Remark 2. From the proof of lemma 2 it is not difficult to notice that as an

alternative for the condition (v) we can use the boundedness of k(φ, ·) from below,
i.e. k(φ, ·) ≥ k0 > 0 a.e. in Ω. From the one side power reaction coefficients don’t
satisfy this condition but the conditions (iii) give an opportunity to consider, for
example, k(φ,x) = φ2 + β(x), where β(x) ∈ L2(Ω): β(x) ≥ c0 > 0.

Let us also note the papers [18, 19] that contain similar results for related models.
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3. Optimal control problem

In the framework of the optimisation approach the problem of the restoration
of the sources’ density f using an additional information about the solution of the
Problem 1 can be reduced to the problem of distributed control (see for example
[11, 17]).

To state the control problem let us divide the whole set of initial data of the
Problem 1 into two groups: group of fixed data which includes functions f ,b and
k(φ), and group of controls consisting of function f . Here we assume that it can be
changed in some set K.

We set X = H1
0 (Ω)

3 ×H1
0 (Ω) × L2

0(Ω), Y = H−1(Ω)3 ×H−1(Ω) × L2
0(Ω), x =

(u, φ, p) ∈ X and introduce an operator F = (F1, F2) by formula

⟨F1(x, f), (v, h)⟩ = ν(∇u,∇v) + λ(∇φ,∇h) + ((u · ∇)u,v)− (p,divv)+

+(k(φ)φ, h) + (u · ∇φ, h)− (f ,v)− (bφ,v)− (f, h),

⟨F2(x, f), r⟩ = −(divu, r)

and rewrite (11) in the form F (x, f) = 0.
Let I : X → R be a weakly semicontinuous below cost functional. We consider

the following conditional minimization problem:

(39) J(x, f) ≡ (µ0/2)I(x) + (µ1/2)∥f∥2Ω → inf, F (x, f) = 0, (x, f) ∈ X ×K.

Denote by Zad = {(x, f) ∈ X ×K : F (x, f) = 0, J(x, f) <∞} the set of feasible
pairs for the problem (39) and assume that the following conditions hold:

(j) K ⊂ L2(Ω) is nonempty convex closed set,
(jj) µ0 > 0, µ1 ≥ 0 and K is a bounded set, or µ0 > 0, µ1 > 0 and the functional

I is bounded below.
The following cost functionals can be used in the capacity of the possible ones:

I1(φ) = ∥φ− φd∥2Q =

∫
Ω

|φ− φd|2dx, I2(φ) = ∥φ− φd∥21,Q,

(40) I3(u) = ∥u− ud∥2Q, I4(p) = ∥p− pd∥2Q.

Here function φd ∈ L2(Q) denotes some desired concentration field given in a
subdomain Q ⊂ Ω. Functions ud and pd have similar sense for the velocity field or
pressure.

Theorem 2. Let the conditions (i)–(iii) and (j), (jj) hold and I : X → R is a
weakly semicontinuous below functional and let Zad ̸= ∅. Then there is at least one
solution (x, f) ∈ X ×K of the control problem (39).

Proof. Let (xm, fm) = (um, φm, pm, fm) ∈ Zad be a minimizing sequence for
which the following is true:

lim
m→∞

J(xm, fm) = inf
(x,f)∈Zad

J(x, f) ≡ J∗.

This and the condition of the theorem imply the estimate ∥fm∥Ω ≤ c1. From
Theorem 1 it follows directly that ∥um∥1,Ω ≤ c2, ∥φm∥1,Ω ≤ c3 and ∥pm∥Ω ≤ c4,
where the constants c1, c2, ... do not depend on m.

Then u∗ ∈ V , φ∗ ∈ H1
0 (Ω), p∗ ∈ L2

0(Ω) and f∗ ∈ K are the weak limits
of some subsequences of sequences {um}, {φm}, {pm} and {fm}. Corresponding
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subsequences will be also denoted by {um}, {φm}, {pm} and {fm}, respectively.
With this in mind, it can be considered that

(41) um → u∗ ∈ V weakly in H1(Ω)3 and strongly in Ls(Ω)3, s < 6,

(42) φm → φ∗ ∈ H1
0 (Ω) weakly in H1(Ω) and strongly in Ls(Ω), s < 6,

(43) pm → p∗ ∈ L2
0(Ω), fm → f∗ ∈ K weakly in L2(Ω) at m→ ∞.

The relation F2(x
∗, f∗) = 0 is obvious. Let us show that F1(x

∗, f∗) = 0, i.e.

ν(∇u∗,∇v) + λ(∇φ∗,∇h) + ((u∗ · ∇)u∗,v)− (p∗, divv) + (k(φ∗)φ∗, h)+

(44) +(u∗ · ∇φ∗, h) = (f ,v) + (bφ∗,v) + (f∗, h) ∀(v, h) ∈ H1
0 (Ω)

3 ×H1
0 (Ω).

We note that for all m = 1, 2, ... the pair (xm, fm) satisfies to relation

ν(∇um,∇v) + λ(∇φm,∇h) + ((um · ∇)um,v)− (pm, divv) + (k(φm)φm, h)+

(45) +(um · ∇φm, h) = (f ,v) + (bφm,v) + (fm, h) ∀(v, h) ∈ H1
0 (Ω)

3 ×H1
0 (Ω).

Let us pass to the limit in (45) at m → ∞. All linear summands in (45) turn into
the corresponding ones in (66).

Let us consider separately the nonlinear summand (k(φm)φm, h). From the
condition (iii) it follows that k(φm) → k(φ∗) strongly in L3/2(Ω) at m → ∞.
With the help of (42) it is not difficult to show that φmh → φ∗h weakly in
L3(Ω) for all h ∈ H1

0 (Ω). Then k(φm)φmh → k(φ∗)φ∗h strongly in L1(Ω) or
(k(φm)φm, h) → (k(φ∗)φ∗, h) at m→ ∞ for all h ∈ H1

0 (Ω).
The following equality holds:

((um ·∇)um,v)− ((u∗ ·∇)u∗,v) = (((um−u∗) ·∇)um,v)+ ((u∗ ·∇)(um−u∗),v)

From Lemma 1, (41) and due to the uniform boundedness of ∥um∥1,Ω over m we
obtain that

|(((um − u∗) · ∇)um,v)| ≤ γ1∥um − u∗∥L4(Ω)3∥um∥1,Ω∥v∥1,Ω → 0 at m→ ∞.

From (14) it follows that ((u∗ · ∇)(um − u∗),v) = −((u∗ · ∇)v,um − u∗). Arguing
as above we obtain that

|((u∗ · ∇)v,um − u∗)| ≤ γ1∥u∗∥1,Ω∥v∥1,Ω∥um − u∗∥L4(Ω)3 → 0 at m→ ∞.

For the nonlinear summand (um · ∇φm, h) the following relation is satisfied:

(um · ∇φm, h)− (u∗ · ∇φ∗, h) = ((um − u∗) · ∇φm, h) + (u∗ · ∇(φm − φ∗), h).

From Lemma 1, (41) and the estimate ∥φm∥1,Ω ≤ c4 we derive the following

|((um − u∗) · ∇φm, h)| ≤ γ2∥um − u∗∥L4(Ω)3∥φm∥1,Ω∥h∥1,Ω → 0 at m→ ∞.

Due to the weak convergence φm → φ∗ in H1(Ω) (see (42)) we have

(u∗ · ∇(φm − φ∗), h) = (∇(φm − φ∗), hu∗) → 0 at m→ ∞ ∀h ∈ H1
0 (Ω).

As the functional J is weakly semicontinuous on X × L2(Ω) then from the
aforesaid it follows that J(x∗, f∗) = J∗.

Remark 3. It is clear, that the functionals Ii, i = 1, ..., 4 from (40) satisfy the
conditions of the Theorem 2.
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4. Optimality system

Let additionally to (i)–(iii) the following conditions hold:
(iv) k(φ) be continuously Fréchet differentiable function and
(k(φ)φ)′ = β(φ)τ for all τ ∈ H1

0 (Ω) and β(φ) ∈ L2
+(Ω).

With the help of the Lagrange principle (see [29]), let us derive necessary optimality
conditions for the problem (39). For this purpose let us denote by X∗ = V ∗ ×
H−1(Ω)× L2

0(Ω) and by Y ∗ = H × L2
0(Ω) spaces dual to X and Y .

It is not hard to show that if the condition (iv) is satisfied then the partial Fréshet
derivative with the respect to x of the operator F : X → Y at any point (x̂, f̂) =

(û, φ̂, p̂, f̂) is a linear continuous operator F ′
x(x̂, f̂) : X → Y , which brings in the

correspondence with every element (w, h, r) ∈ X an element F ′
x(x̂, f̂)(w, h, r) =

(ŷ1, ŷ2) ∈ Y . Here the elements ŷ1 ∈ H∗, ŷ2 ∈ L2
0(Ω), are defined by triples (û, φ̂, p̂)

and (w, τ, r) from relations

⟨ŷ1, (v, τ)⟩ = ν(∇w,∇v) + λ(∇τ,∇h) + ((w · ∇)û,v) + ((û · ∇)w,v)+

+(β(φ̂)τ, h) + (w · ∇φ̂, h) + (û · ∇τ, h)− (divv, r)− (bτ,v) ∀(v, τ) ∈ H,

(46) ⟨ŷ2, r⟩ = −(divw, r) ∀r ∈ L2
0(Ω).

By F ′
x(x̂, f̂)

∗ : Y ∗ → X∗ we denote an operator which is adjoint to F ′
x(x̂, f̂).

According the general theory of smooth-convex extremum problems [29], we
introduce an element y∗ = ((ξ, θ), σ) ∈ Y ∗ = H × L2

0(Ω), to which we will refer as
to an adjoint state and define the Lagrangian L : X × K × R × Y ∗ → R by the
formula

L(x, f, λ0,y∗) = λ0J(x, f) + ⟨y∗, F (x, f)⟩Y ∗×Y ≡ λ0J(x, f)+

(47) +⟨F1(x, f), (ξ, θ)⟩H∗×H + (F2(x, f), s).

The proof of the following theorem will be conducted according to the scheme
from [1].

Theorem 3. Under the assumptions (i)–(iv) and (j), (jj) let the element (x̂, f̂) ∈
X × K be a local minimizer for the problem (39) and let the cost functional I be
continuously Fréchet differentiable with respect to the state x at point x̂. Then there
exists a nonzero Lagrange multiplier (λ0,y

∗) = (λ0, ξ, θ, σ) ∈ R+ × Y ∗ such that
the Euler–Lagrange equation takes place

F ′
x(x̂, f̂)

∗y∗ = −λ0J ′
x(x̂, f̂) in X∗,

which is equivalent to the relations

ν(∇w,∇ξ) + λ(∇τ,∇θ) + ((û · ∇)w, ξ) + ((w · ∇)û, ξ) + (β(φ̂)τ, θ)− (divw, σ)+

(48)
+(w·∇φ̂, θ)+(û·∇τ, θ)−(bτ, ξ) = −λ0(µ0/2)(⟨I ′u(x̂),w⟩+⟨I ′φ(x̂), τ⟩) ∀(w, τ) ∈ H,

(49) (div ξ, r) = λ0(µ0/2)(I
′
p(x̂), r) ∀r ∈ L2

0(Ω),

and the minimum principle L(x̂, f̂ , λ0,y∗) ≤ L(x̂, f, λ0,y∗) for all f ∈ K holds,
which is equivalent to the inequality

(50) λ0µ1(f̂ , f − f̂)− (f − f̂ , θ) ≥ 0 ∀f ∈ K.



BOUNDARY VALUE AND EXTREMUM PROBLEMS 1225

If, besides, (32) holds for all f ∈ K, then any nontrivial Lagrange multiplier
(λ0,y

∗), satisfying (48)–(50) is regular, i.e. it has the form (1,y∗) and is determined
uniquely for a given pair (x̂, f̂).

Proof. According to [29], for the proof of the theorem 3 it’s enough to show that
the operator F ′

x(x̂, f̂) : X → Y is a Fredholm operator. Due to (46), the operator
F ′
x(x̂, f̂) : X → Y can be introduced in the form F ′

x = Φ+ Φ̂ ≡ (Φ1,Φ2) + (Φ̂1, 0).
Here Φ2(x) = divw, and operators Φ1 and Φ̂1 : X → H∗ act by formulae

⟨Φ1(w, τ, r), (v, h)⟩=ν(∇w,∇v) + λ(∇τ,∇h) + ((û · ∇)w,v)+

+(β(φ̂)τ, h) + (û · ∇τ, h)− (divv, r)− (bτ,v),

⟨Φ̂1(w, τ, r), (v, h)⟩ = ((w · ∇)û,v) + (w · ∇φ̂, h).
Let us show that the operator Φ : X → Y is an isomorphism. For this purpose

it is enough to prove that for any pair (F, s) ∈ H∗ × L2
0(Ω) there exists a unique

solution (w, τ, r) ∈ X of the linear problem

ν(∇w,∇v) + λ(∇τ,∇h) + ((û · ∇)w,v) + (β(φ̂)τ, h)+

(51) +(û · ∇τ, h)− (divv, r)− (bτ,v) = ⟨F, (v, h)⟩ ∀(v, h) ∈ H,

(52) divw = s in Ω.

It is not hard to check that the problem (51), (52) is equivalent to the problem

ν(∇w,∇v) + ((û · ∇)w,v)− (divv, r)− (bτ,v) =

(53) = ⟨f ,v⟩−1,Ω ∀v ∈ H1
0 (Ω), divw = s in Ω,

(54) λ(∇τ,∇h) + (β(φ̂)τ, h) + (û · ∇τ, h) = ⟨f, h⟩−1,Ω ∀h ∈ H1
0 (Ω),

where ⟨F, (v, h)⟩H∗×H = ⟨f ,v⟩−1,Ω + ⟨f, h⟩−1,Ω.
Let us denote by V ⊥ the orthogonal complement of V with respect to the inner

product (∇·,∇·). Since s ∈ L2
0(Ω), there is a unique function w0 ∈ V ⊥ (see [28])

such that divw0 = s and ∥w0∥1,Ω ≤ β−1∥s∥Ω, where β is a constant from (7).
We consider a restriction of (53) on the space V :

(55) ν(∇w,∇v)+((û·∇)w,v)−(bτ,v) = ⟨f ,v⟩−1,Ω ∀v ∈ H1
0 (Ω), divw = s in Ω.

We are looking for the function w in the form of w = w0 + w̃, where w̃ ∈ V is an
unknown function. Inserting w = w0 + w̃ in (55) we obtain

ν(∇w̃,∇v) + ((û · ∇)w̃,v)− (bτ,v) =

(56) = ⟨f ,v⟩−1,Ω − ν(∇w0,∇v)− ((û · ∇)w0,v) ∀v ∈ H1
0 (Ω), div w̃ = 0 in Ω,

The existence of the unique solution τ ∈ H1
0 (Ω) of the problem (54) follows from

the lemma 1, besides the following estimate holds

(57) ∥τ∥1,Ω ≤ C∗∥f∥Ω.

Also due to the lemma 1 we can conclude that for any τ ∈ H1
0 (Ω) there is a unique

solution w̃ ∈ V of the problem (56) and

∥w̃∥1,Ω ≤ 1/(δ0ν)(∥f∥Ω + β0C∗∥f∥Ω + β−1(C0ν + γ0Mu)∥s∥Ω).
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Then the function w = w0+w̃ is the solution of problem (55) for which the estimate
holds
(58)
∥w∥1,Ω ≤Mw := 1/(δ0ν)(∥f∥Ω + β0C∗∥f∥Ω + β−1(C0ν + γ0Mu)∥s∥Ω) + β−1∥s∥Ω.

Arguing as in [1] hence we conclude that the triple (w, τ, r) is the solution of the
problem (51). Analogously, due to (24) from (53) using (57) and (58) we derive the
following estimate for r

(59) ∥r∥Ω ≤ β−1
2 (νC0 + γ0Mu)Mw + β−1

2 (β0C∗∥f∥Ω + ∥f∥Ω).

Let (w1, τ1, r1) and (w2, τ2, r2) be solutions of the problem (51), (52). Then the
differences w = w1 −w2, τ = τ1 − τ2 and r = r1 − r2 satisfy the relations

ν(∇w,∇v) + λ(∇τ,∇h) + ((û · ∇)w,v) + (β(φ̂)h, τ)+

(60) +(û · ∇τ, h)− (divv, r)− (bτ,v) = 0 ∀(v, h) ∈ H,

(61) divw = 0 in Ω.

Denoting in (60) v = 0, h = τ , we are concluding the relation

λ(∇τ,∇τ) + (β(φ̂)τ, τ) = 0,

from which on the strength of lemma 1 it follows that τ = 0 or τ1 = τ2 in Ω. Taking
into account all of this and lemma 1 and letting h = 0 in (60), we similarly obtain
that w1 = w2 in Ω. Then from (60) and (7) it follows that r1 = r2 in Ω.

In this case the operator Φ : X → Y is surjective and invertible, so according to
the Banach theorem Φ is an isomorphism.

As H1(Ω)3 is compactly embedded in L4(Ω)3, from the estimates

|(w·∇φ̂, h)| ≤ γ2∥w∥L4(Ω)3∥φ∥1,Ω∥h∥1,Ω, |((w · ∇)û,v)| ≤ γ1∥w∥L4(Ω)3∥û∥1,Ω∥v∥1,Ω,

that follow from the lemma 1 we can conclude the operator Φ̂ is continuous and
compact. Then the operator F ′

x is a Fredholm operator as the sum of the isomorphism
and the compact operator.

Let us show further that if the conditions (32) hold for all f ∈ K, then any
nontrivial Lagrange multiplier which satisfy (48)–(50) is regular, i.e. has a form
of (1,y∗). This is equivalent to the nonexistence of nontrivial solutions of the
homogeneous Euler-Lagrange equation or of the system (48)–(50) at λ0 = 0.

Let there be at least one nontrivial solution y∗ = (ξ, θ, σ) ∈ Y ∗ of the system
(48)–(50) at λ0 = 0, where the elements x̂ = (û, φ̂, p̂) and f̂ are connected by the
relation F (x̂, f̂) = 0. Setting τ = 0, w = ξ and r = σ in this system, we are
obtaining the equality

ν(∇ξ,∇ξ) + ((ξ · ∇)û, ξ) = −(ξ · ∇φ̂, θ),

from which while the condition Re < 1/2 is holding, we can conclude the estimate

(62) ∥ξ∥1,Ω ≤ 2(γ2/δ0ν)Mφ∥θ∥1,Ω.

After letting w = 0, τ = θ in (48) , we obtain

λ(∇θ,∇θ) + (β(φ̂)θ, θ) = −(bθ, ξ).

From this with the help of (62) and of the estimates of lemma 1 we conduct

(63) ∥θ∥1,Ω ≤ 2(β0/δ1λ)(γ2/δ0ν)Mφ∥θ∥1,Ω = 2Ra∥θ∥1,Ω.
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From (63), (62) it follows that when the conditions Re < 1/2 and Ra < 1/2 are
satisfied, which are less strict than (32), θ = 0 and ξ = 0 a.e. in Ω and (48) takes
the form (divw, σ) = 0 for all w ∈ H1

0 (Ω)
3. Then from (7) we obtain that σ = 0

a.e. in Ω. The latter contradicts the supposed nontriviality of (ξ, θ, σ).
The uniqueness of the regular Lagrange multiplier (1,y∗) at conditions (32)

follows from the operator F ′
x(x̂, f̂) being Fredholm.

The boundary value problem (10), (11), the conjugated problem (48), (49) and
the inequality (50) form an optimality system which describes necessary conditions
for the minimum for the problem (39). In the next section basing on the analysis
of the constructed system we will state sufficient conditions for initial data of the
particular extremum problems which will provide the uniqueness of their solutions.

5. Uniqueness of the solution of extremum problem

Let us denote by (ui, φi, pi, fi) ∈ X ×K, i = 1, 2 two arbitrary solutions of the
extremum problem (39). Let us also suppose the set K to bounded and obtain the
inequality for the difference of solutions of the problem (39), which be useful for the
further analysis. Let us remind that due to the theorem 1 the following estimates
are true:

∥φi∥1,Ω ≤Mφ = C∗ sup
f∈K

∥f∥Ω, ∥ui∥1,Ω ≤Mu = (νδ0)
−1 sup

f∈K
(∥f∥Ω + β0C∗∥f∥Ω),

(64) ∥pi∥Ω ≤Mp = β−1
2 sup

f∈K
[(ν + γ2Mu)Mu + ∥f∥Ω + β0Mφ], i = 1, 2, C∗ ≡ λ−1

∗ .

It is clear that Mu, Mφ and Mp are bounded when K is bounded.
Denote by (1,y∗

i ) ≡ (1, ξi, θi, σi), i = 1, 2 nontrivial Lagrange multipliers, which
correspond to the solutions (xi, fi) and defined uniquely when (32) holds. They
satisfy the following relations:

ν(∇w,∇ξi)+λ(∇τ,∇θi)+((ui ·∇)w, ξi)+((w·∇)ui, ξi)+3æ(φ2
i τ, θi)−(divw, σi)+

(65)
+(w·∇φi, θi)+(ui·∇τ, θi)−(bτ, ξi) = −(µ0/2)(⟨I ′u(xi),w⟩+⟨I ′φ(xi), τ⟩) ∀(w, τ) ∈ H,

(66) (div ξi, r) = λ0(µ0/2)(I
′
p(xi), r) ∀r ∈ L2

0(Ω),

Let
u = u1 − u2, φ = φ1 − φ2, p = p1 − p2,

(67) f = f1 − f2, ξ = ξ1 − ξ2, θ = θ1 − θ2, σ = σ1 − σ2.

Subtract (11), (12) at (x2, f2) from (11), (12) at (x1, f1). Taking into account that

(u1 · ∇φ1, h)− (u2 · ∇φ2, h) = (u1 · ∇φ, h) + (u · ∇φ2, h),

φ3
1 − φ3

2 = (φ1 − φ2)(φ
2
1 + φ1φ2 + φ2

2) ≡ k0φ, k0 = φ2
1 + φ1φ2 + φ2

2 ≥ 0,

in terms of (67) we obtain

(68) λ(∇φ,∇h) + æ(k0φ, h) + (u1 · ∇φ, h) = (f, h)− (u · ∇φ2, h) ∀h ∈ H1
0 (Ω),

(69) ν(∇u,∇v) + ((u1 · ∇)u,v) = (bφ,v)− ((u · ∇)u2,v) ∀v ∈ V.

As k0 ∈ Lp
+(Ω), p ≥ 3/2 then after using lemma 1 and accounting to (64) we

get the following estimate from (68):

(70) ∥φ∥1,Ω ≤ C∗(∥f∥Ω + γ2Mφ∥u∥1,Ω).
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Also after applying lemma 1 to (69) and taking into account (64) we derive an
inequality

(71) ν∗∥u∥1,Ω ≤ β0∥φ∥1,Ω + γ1Mu∥u∥1,Ω.
Similarly to the section 1 at the condition Re < 1/2 we obtain the estimate from
(71) ∥u∥1,Ω ≤ 2(β0/δ0ν)∥φ∥1,Ω, which coincides with (30). Putting this estimate in
(70) one can get an inequality

∥φ∥1,Ω ≤ C∗(∥f∥Ω + 2γ2Mφ(β0/δ0ν)∥φ∥1,Ω) = C∗∥f∥Ω + 2Ra∥φ∥1,Ω,
from which at the condition Ra < 1/4 the estimate follows

(72) ∥φ∥1,Ω ≤ 2C∗∥f∥Ω.
Substituting (72) in (30), derive the estimate of the difference u via the difference
of the controls f :

(73) ∥u∥1,Ω ≤ 4C∗(β0/δ0ν)∥f∥Ω.

Let f = f2 in the inequality (50) written at f̂ = f1, θ = θ1 and let f = f1 in the
inequality (50) at f̂ = f2, θ = θ2. We obtain

µ1(f1, f2 − f1)− (f2 − f1, θ1) ≥ 0, µ1(f2, f1 − f2)− (f1 − f2, θ2) ≥ 0.

Add these inequalities and derive the estimate

(74) −(f, θ) ≤ −µ1∥f∥2Ω.
Subtract (65), (66) at i = 2 from (65), (66) at i = 1. Taking into account that

(φ2
1τ, θ1)− (φ2

2τ, θ2) = (φ2
1τ, θ) + ((φ2

1 − φ2
2)τ, θ2) = (φ2

1τ, θ) + ((φ1 + φ2)φτ, θ2),

we will have

ν(∇w,∇ξ)+λ(∇τ,∇θ)+((u1·∇)w, ξ)+((w·∇)u1, ξ)+3æ(φ2
1τ, θ)+3æ((φ2

1−φ2
2)τ, θ2)+

+(u1 · ∇φ, θ)− (divw, σ)− (bτ, ξ)− ((u · ∇)w, ξ2)− (u · ∇τ, θ2)− ((w · ∇)u, ξ2)−

(75) = −(µ0/2)(⟨I ′u(x1)− I ′u(x2),w⟩+ ⟨I ′φ(x1)− I ′φ(x2), τ⟩) ∀(w, τ) ∈ H,

(76) (div ξ, r) = λ0(µ0/2)(I
′
p(x1)− I ′p(x2), r) ∀r ∈ L2

0(Ω),

After letting w = u, τ = φ and r = σ in (75), (76) we derive

ν(∇u,∇ξ)+λ(∇φ,∇θ)+((u1·∇)u, ξ)+((u·∇)u1, ξ)+3æ(φ2
1φ, θ)+3æ((φ2

1−φ2
2)φ, θ2)+

+(u1 · ∇φ, θ)− (bφ, ξ) = −((u · ∇)u, ξ2)− (u · ∇φ, θ2)− ((u · ∇)u, ξ2)−

(77) −(µ0/2)(⟨I ′u(x1)− I ′u(x2),u⟩+ ⟨I ′φ(x1)− I ′φ(x2), φ⟩),

(78) (div ξ, σ) = λ0(µ0/2)(I
′
p(x1)− I ′p(x2), σ).

Let us suppose further v = ξ, h = θ in (68), (69) and add obtained relations

ν(∇u,∇ξ) + λ(∇φ,∇θ) + ((u1 · ∇)u, ξ) + æ(k0φ, θ) + (u1 · ∇φ, θ) =

(79) = (bφ, ξ) + (f, θ)− ((u · ∇)u2, ξ)− (u · ∇φ2, θ)

Subtract (79) from (77) and add with (74). Accounting that

2((u · ∇)u, ξ2) + ((u1 · ∇)u, ξ)− ((u2 · ∇)u, ξ) = ((u · ∇)u, ξ1 + ξ2),

2(u · ∇φ, θ2) + (u1 · ∇φ, θ)− (u2 · ∇φ, θ) = (u · ∇φ, θ1 + θ2),

3(φ2
1φ, θ) + 3((φ2

1 − φ2
2)φ, θ2)− ((φ2

1 + φ1φ2 + φ2
2)φ, θ) =
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= ((2φ2
1 − φ2

2 − φ1φ2)φ, θ) + 3((φ1 + φ2)φ
2, θ1),

we are deriving the relation

((u·∇)u, ξ1+ξ2)+(u·∇φ, θ1+θ2)+æ[((2φ2
1−φ2

2−φ1φ2)φ, θ)+3((φ1+φ2)φ
2, θ1)] ≤

(80)
−(µ0/2)(⟨I ′u(x1)−I ′u(x2),u⟩+⟨I ′φ(x1)−I ′φ(x2), φ⟩+⟨I ′p(x1)−I ′p(x2), p⟩)−µ1∥f∥2Ω.

Inequality (80) plays a key role when deriving sufficient conditions for the uniqueness
of optimal problems’ solutions. Let us begin with the analysis of the extremum
problem that corresponds to the cost functional I1(φ) = ∥φ− φd∥2Q:

(81) J(φ, f) = (µ0/2)I1(φ) + (µ1/2)∥f∥2Ω → inf, F (x, f) = 0, (x, f) ∈ X ×K.

Denote by (x1, f1) and (x2, f2) two solutions of problem (81). For the functional
I1(φ) these relations ⟨I ′1(φi), τ⟩ = 2(φi − φd, τ)Q, ⟨I ′1(φ1) − I ′1(φ2), τ⟩ = 2(φ, τ)Q,
i = 1, 2 are true. Due to them the inequality (80) takes the form

((u·∇)u, ξ1+ξ2)+(u·∇φ, θ1+θ2)+æ[((2φ2
1−φ2

2−φ1φ2)φ, θ)+3((φ1+φ2)φ
2, θ1)] ≤

(82) ≤ −µ0∥φ∥2Q − µ1∥f∥2Ω.

Let us estimate the Lagrange multiplier (1,y∗
i ) ≡ (1, ξi, θi, σi), i = 1, 2 from the

relations (65), (66), which at I = I1(φ) look like

ν(∇w,∇ξi) + λ(∇τ,∇θi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + 3æ(φ2
i τ, θi)+

(83)
+(w ·∇φi, θi)+(ui ·∇τ, θi)−(divw, σi)−(bτ, ξi) = −µ0(φi−φd, τ)Q ∀(w, τ) ∈ H,

(84) (div ξi, r) = 0 ∀r ∈ L2
0(Ω),

Let w = ξi, τ = 0 in (83) and due to (84) we obtain

(85) ν(∇ξi,∇ξi) + ((ξi · ∇)ui, ξi) = −(ξi · ∇φi, θi).

On the strength of lemma 1 the following estimates are satisfied

|((ξi · ∇)ui, ξi)| ≤ γ1Mu∥ξi∥21,Ω, |(ξi · ∇φi, θi)| ≤ γ2Mφ∥ξi∥1,Ω∥θi∥1,Ω.

At Re < 1/2 with respect to the estimates from (85) we deduct

(86) ∥ξi∥1,Ω ≤ 2(γ2/δ0ν)Mφ∥θi∥1,Ω.

Let w = 0, τ = θi in (83) then

(87) λ(∇θi,∇θi) + 3æ(φ2
i θi, θi) = (bθi, ξi)− µ0(φi − φd, θi)Q.

From (87) with respect to (86) we obtain the inequality

(δ1λ)∥θi∥21,Ω ≤ 2β0(γ2/δ0ν)Mφ∥θi∥21,Ω + µ0M
0
φ∥θi∥1,Ω, M0

φ =Mφ + ∥φd∥Q,

from which due to Ra < 1/4 we get an estimate for the multiplier θi

(88) ∥θi∥1,Ω ≤ µ0(2/δ1λ)M
0
φ, i = 1, 2.

Finally, with the help of (88), from (86) we conclude the estimate for ξi:

(89) ∥ξi∥1,Ω ≤ 4µ0(γ2/δ0νδ1λ)MφM
0
φ = 4(µ0/β0)RaM

0
φ, i = 1, 2.
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Obtained estimates for Lagrange multipliers ξi and ηi together with the inequalities
(72), (73) give an opportunity to estimate the first and the second summands in
left part of (82) via the L2-norm of the difference f = f1 − f2:

|(u · ∇φ, θ1 + θ2)| ≤ 32µ0C
2
∗(γ2β0/(δ1λδ0ν))M

0
φ∥f∥2Ω = 32µ0C

2
∗Ra

0∥f∥2Ω,

Ra0 = (M0
φ/Mφ)Ra,

(90) |((u · ∇)u, ξ1 + ξ2)| ≤ 128µ0γ1C
2
∗(1/νδ0)

2Ra∥f∥2Ω.
The ratio (75) for the functional I1(φ) at w = 0 takes the form

(91)
λ(∇τ,∇θ)+3æ(φ2

1τ, θ)+(u1·∇τ, θ) = −3æ((φ1+φ2)φτ, θ2)−(u·∇τ, θ2)−µ0(φ, τ)Q.

From (91) we will get an estimate for the difference θ = θ1 − θ2 via the L2-norm
of the controls’ difference. That will allow to estimate the third and the fourth
summands in (82) via ∥f∥2Ω.

With the help of the estimates (72), (73), (88) we obtain the inequalities for the
summands from the right part of (91):

|(u · ∇τ, θ2)| ≤ γ2∥u∥1,Ω∥θ2∥1,Ω∥τ∥1,Ω ≤ 2µ0C∗Ra
0∥f∥Ω∥τ∥1,Ω,

|(φ, τ)Q| ≤ ∥φ∥1,Ω∥τ∥1,Ω ≤ 2C∗∥f∥Ω∥τ∥1,Ω,
|((φ1 + φ2)φτ, θ2)| ≤ ∥φ1 + φ2∥L4(Ω)∥φ∥L4(Ω)∥θ2∥L4(Ω)∥τ∥L4(Ω) ≤

≤ C4
4∥φ1 + φ2∥1,Ω∥θ2∥1,Ω∥φ∥1,Ω∥τ∥1,Ω ≤ 8µ0C

4
4C∗(1/δ1λ)MφM

0
φ∥f∥Ω∥τ∥1,Ω.

Setting τ = θ in (91) leads to the following inequality for the difference θ:

(92) ∥θ∥1,Ω ≤ µ0α∥f∥Ω, α = 2C∗(4Ra
0 + 12C4

4 (1/δ1λ)MφM
0
φ + 1).

It allows to get the following estimates for the mentioned summands from (82):

|((2φ2
1 − φ2

2 − φ1φ2)φ, θ)| ≤ 8µ0M
2
φC

4
4C∗α∥f∥2Ω,

(93) 3|((φ1 + φ2)φ
2, θ1)| ≤ 48µ0C

4
4C

2
∗(1/δ1λ)MφM

0
φ∥f∥2Ω.

Denote by A the sum of the first four summands in (82), and then obtain from
(90), (93)

(94) |A| ≤ µ0ω
2∥f∥2Ω,

(95) ω2 = 32C2
∗(Ra

0 + 4(γ1/νδ0)
2Ra) + 8MφC

4
4C∗(Mφα+ 6C∗(1/δ1λ)M

0
φ),

where the constant α is defined in (92).
Let the input data of the problem (81) be such that the condition

(96) µ0ω
2 < µ1(1− ε).

is satisfied, where ε ∈ (0, 1) is an arbitrary number. If the condition (96) is met,
the estimate (82) takes the form

ε∥f∥2Ω + µ0∥φ∥2Q ≤ 0.

From the last inequality it follows that f = 0 or f1 = f2 a.e. in Ω. Then from the
estimates (73) and (72) we obtain that u = 0 and φ = 0 or u1 = u2 and φ1 = φ2

a.e. in Ω. Subtracting (10) at (x2, f2) from (10) at (x1, f1) and taking into account
that u = 0 and φ = 0 we obtain that the difference p = p1−p2 satisfies the equation
(33). From (33) we arrive to p = 0 due to (7).

The following theorem holds.
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Theorem 4. In addition to the conditions (i) and (j), let K be a bounded set,
Re < 1/2 and Ra < 1/4 and the condition (96) are satisfied, where ω is defined in
(95). Then there exists a unique solution (x, f) ∈ X ×K of the problem (81).

With minor changes in the technique of the proving sufficient conditions for the
uniqueness of the optimal solutions for the “hydrodynamic” cost functionals from
(40) can be stated.
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