ELEMENTARY FORMULAS FOR KIRCHHOFF INDEX OF
MÖBIUS LADDER AND PRISM GRAPHS

G.A. BAIGONAKOVA, A.D. MEDNYKH

Abstract. Let \(G \) be a finite connected graph on \(n \) vertices with Laplacian spectrum \(0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_n \). The Kirchhoff index of \(G \) is defined by the formula

\[
Kf(G) = n \sum_{j=2}^{n} \frac{1}{\lambda_j}
\]

The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Möbius ladder graph \(M_n = C_2 \times C_n \) and Prism graph \(Pr_n = C_n \times P_2 \). The obtained formulas provide a simple asymptotical behavior of both invariants as \(n \) is going to the infinity.

Keywords: Laplacian matrix, circulant graph, Kirchhoff index, Wiener index, Chebyshev polynomial.

1. Introduction

Let \(G \) be a finite connected graph on \(n \) vertices. Denote by \(D(G) \) the diagonal matrix formed by degrees of vertices and by \(A(G) \) the adjacency matrix of the graph \(G \). The matrix \(L(G) = D(G) - A(G) \) is called the Laplacian matrix of \(G \). It is well known [17] that \(L(G) \geq 0 \) and \(\det(L(G)) = 0 \). For a connected graph \(G \), all eigenvalues of \(L(G) \) except one are strictly positive. Hence, the Laplacian spectrum of \(G \) can be represented in the form \(0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_n \). The Kirchhoff index of \(G \) was originally defined by Klein and Randić [12] as a new distance function named resistance distance framed in terms of electrical network theory. More precisely, let vertices of the graph \(G \) are labeled by \(1, 2, \ldots, n \). Then...
the resistance distance between vertices \(i \) and \(j \), denoted by \(r_{ij} = r_{ij}(G) \) is defined to be the effective resistance between them when unit resistors are placed on every edge of \(G \). Following [12] define

\[
Kf(G) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij}
\]

to be the Kirchhoff index of \(G \). The motivation for such a definition was a famous Wiener index \(W(G) \), which counts the sum of distances between pairs of vertices in \(G \), that is

\[
W(G) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij},
\]

where \(d_{ij} \) is the distance between vertices \(i \) and \(j \). The Wiener index is named after Harry Wiener, who introduced it in [24]. See also [13] for more advance properties. Klein and Randić [12] proved that \(Kf(G) \leq W(G) \) with equality, if and only if \(G \) is a tree. Closed-form formulae for the Kirchhoff index have been given for some classes of graphs, such as cycles [12, 15], complete graphs [15], distance-transitive graphs [15], circulant graphs [25], ladder-like chains [4] and others [1, 14, 10, 18, 19]. Numerical values of the Kirchhoff index have been computed for platonic solids [15, 16] and some fullerene graphs [1, 2, 3, 8, 10]. In [26] the Kirchhoff index of join, corona and cluster of graphs have been investigated.

There is a nice relationship [9] between the Laplacian spectrum and the Kirchhoff index given by the formula

\[
(1) \quad Kf(G) = n \sum_{j=2}^{n} \frac{1}{\lambda_j}.
\]

2. **AN EXPLICIT FORMULA FOR THE KIRCHHOFF INDEX**

Consider the Möbius ladder \(M_n = C_{2n}(1, n) \) and the Prism graph \(Pr_n = C_n \times P_2 \). Here \(C_{2n}(1, n) \) is a 3-valent circulant graphs on \(2n \) vertices \(v_1, v_2, \ldots, v_{2n} \) with edges \(v_i v_{i+1} \) and \(v_i v_{i+n}, i \mod 2n \), \(C_n \) is the cycle graph on \(n \) vertices and \(P_2 \) is the path graph on two vertices. For \(n = 6 \) the graphs are shown in Fig. 1 and Fig. 2 respectively. The main results of this paper are the following two theorems.

Theorem 1. The Kirchhoff index of Möbius ladder \(M_n = C_{2n}(1, n) \) is given by the formula

\[
Kf(M_n) = \frac{n^3 - n}{6} + \frac{n^2 \tanh \left(\frac{n}{2} \arccosh 2 \right)}{\sqrt{3}}.
\]

Theorem 2. The Kirchhoff index of Prism graph \(Pr_n = C_n \times P_2 \) is given by the formula

\[
Kf(Pr_n) = \frac{n^3 - n}{6} + \frac{n^2 \coth \left(\frac{n}{2} \arccosh 2 \right)}{\sqrt{3}}.
\]
Remark. By Besot’s theorem, the Kirchhoff indices in Theorem 1 and Theorem 2 are rational numbers. Their explicit values up to \(n = 30 \) are given in Table 1.

Proof of Theorems 1 and 2. Consider an order \(n \) polynomial \(P(w) = \prod_{k=1}^{n} (w - w_k) \). Then we have

\[
\sum_{k=1}^{n} \frac{1}{w - w_k} = \frac{P'(w)}{P(w)},
\]

where the both sides of the equation are considered as meromorphic functions of \(w \).

Let \(T_n(w) \) and \(U_{n-1}(w) \) be the Chebyshev polynomials of the first and the second kind respectively. We take \(P(w) = T_n(w + a) - 1 \). Then \(P'(w) = n U_{n-1}(w + a) \). Since \(T_n(w) = \cos(n \arccos w) \), all the roots of \(P(w) \) are given by the formulas \(w_k = -a + \cos \frac{2k\pi}{n}, \ n = 1, 2, \ldots, n \). Hence

\[
\sum_{k=1}^{n} \frac{1}{w + a - \cos \frac{2k\pi}{n}} = \frac{n U_{n-1}(w + a)}{T_n(w + a) - 1}.
\]

Taking \(w = 0 \) in (3) and dividing by 2 we obtain
Indeed, by (17), Theorem 3.5) the Laplacian eigenvalues of Pr are given by the formulas $\mu_j = 3 - 2 \cos \frac{2k\pi}{n} = (-1)^j$, $j = 1, 2, \ldots, 2n - 1$. Hence, we have the following two elementary identities

\begin{equation}
\sum_{k=1}^{n} \frac{1}{2a - 2 \cos \frac{2k\pi}{n}} = \frac{n U_{n-1}(a)}{2(T_n(a) - 1)}.
\end{equation}

As a result, we have

\begin{equation}
\sum_{k=1}^{n} \frac{1}{4 - 2 \cos \frac{2k\pi}{n}} = \frac{n U_{n-1}(2)}{2(T_n(2) - 1)}
\end{equation}

and

\begin{equation}
\sum_{k=1}^{n-1} \frac{1}{2 - 2 \cos \frac{2k\pi}{n}} = \lim_{a \to 1} \left(\frac{n U_{n-1}(a)}{2(T_n(a) - 1)} - \frac{1}{2a - 2} \right) = \frac{n^2 - 1}{12}.
\end{equation}

Now, we are going to find the Kirchhoff index for Möbius ladder M_n. Recall that by ([7], p. 71) the non-zero Laplacian eigenvalues of M_n are given by the formulas $\mu_j = 3 - 2 \cos \frac{2k\pi}{n} = (-1)^j$, $j = 1, 2, \ldots, 2n - 1$. Hence, we have

\begin{equation}
Kf(M_n) = 2n \sum_{j=1}^{2n-1} \mu_j = 2n \left(\sum_{k=1}^{n} \frac{1}{4 - 2 \cos \frac{2k\pi}{n}} + \sum_{k=1}^{n-1} \frac{1}{2 - 2 \cos \frac{2k\pi}{n}} \right)
\end{equation}

By making use of identities (5) and (6) we get

\begin{equation}
Kf(M_n) = 2n \left(\frac{2n U_{2n-1}(2)}{2(T_{2n}(2) - 1)} - \frac{n U_{n-1}(2)}{2(T_n(2) - 1)} + \frac{n^2 - 1}{12} \right).
\end{equation}

We set $\theta = \text{arccosh} 2$ and note that $T_n(2) = \cosh(n\theta)$, $U_{n-1}(2) = \frac{\sinh(n\theta)}{\sinh(\theta)}$. Observing that $\coth(n\theta) - \frac{1}{2} \coth(\frac{\theta}{2}) = \frac{1}{2} \tanh(\frac{\theta}{2})$, we have

\begin{equation}
\frac{2n U_{2n-1}(2)}{2(T_{2n}(2) - 1)} - \frac{n U_{n-1}(2)}{2(T_n(2) - 1)} = \frac{n \tanh(\frac{\theta}{2})}{2 \sinh(\theta)} = \frac{n \tanh(\frac{n}{2} \text{arccosh} 2)}{2\sqrt{3}}.
\end{equation}

Putting the last equation (8) into (7), we obtain the statement of Theorem 1:

\begin{equation}
Kf(M_n) = \frac{n^3 - n}{6} + \frac{n^2 \tanh(\frac{n}{2} \text{arccosh} 2)}{\sqrt{3}}.
\end{equation}

The Kirchhoff index for prism graph Pr_n can be found by similar arguments. Indeed, by ([17], Theorem 3.5) the Laplacian eigenvalues of Pr_n are given by the following list $4 - 2 \cos \frac{2k\pi}{n}$, $2 - 2 \cos \frac{2k\pi}{n}$, $k = 1, 2, \ldots, n$. Hence,

\begin{equation}
Kf(Pr_n) = 2n \left(\sum_{k=1}^{n} \frac{1}{4 - 2 \cos \frac{2k\pi}{n}} + \sum_{k=1}^{n-1} \frac{1}{2 - 2 \cos \frac{2k\pi}{n}} \right).
\end{equation}

Again, by (5) and (6) we have

\begin{equation}
Kf(Pr_n) = 2n \left(\frac{n U_{n-1}(2)}{2(T_n(2) - 1)} + \frac{n^2 - 1}{12} \right).
\end{equation}
Since
\[\frac{U_{n-1}(2)}{2(T_n(2) - 1)} = \frac{\coth(\frac{\theta}{2})}{2\sinh(\theta)} = \frac{\coth(\frac{\theta}{2} \arccosh 2)}{2\sqrt{3}}, \]
the statement of Theorem 2 follows.

3. Asymptotical behavior and estimates

The asymptotic formulas for Kirchhoff index of the above graphs can be derived from the following theorem.

Theorem 3. Let \(K(n) = \frac{1}{6}(n^3 + 2\sqrt{3}n^2 - n) \). Then

(i) \(Kf(M_n) < K(n) < Kf(Pr_n) \);

(ii) \(0 < Kf(Pr_n) - Kf(M_n) \leq \frac{2n^2}{\sqrt{3}} \).

Proof. The first statement of the theorem is a consequence of Theorems 1 and 2 and elementary inequalities \(\tanh(\frac{\theta}{2}) < 1 < \coth(\frac{\theta}{2}) \), where \(\theta = \arccosh 2 \). To prove the second statement we note that by virtue of Theorems 1 and 2,

\[Kf(Pr_n) - Kf(M_n) = \frac{n^2(\coth(\frac{\theta}{2}) - \tanh(\frac{\theta}{2}))}{\sqrt{3}} = \frac{2n^2}{\sqrt{3}\sinh(n\theta)} \leq \frac{2n^2}{3^n}. \]

The latter inequality follows from the observation
\[\sqrt{3}\sinh(n\theta) = \frac{\sqrt{3}}{2}((2 + \sqrt{3})^n - (2 - \sqrt{3})^n) \geq 3^n \text{ for } n \geq 1. \]

One can easily check from Theorem 3 that for \(n \geq 16 \) the values \(Kf(M_n), Kf(Pr_n) \) and \(K(n) \) are accurate to within \(10^{-5} \). The respective values are given in Table 2.

As an immediate consequence of the above theorem we have the following result.

Theorem 4. Let \(K(n) = \frac{1}{6}(n^3 + 2\sqrt{3}n^2 - n) \). Then

\[Kf(M_n) = K(n) + O\left(\frac{n^2}{3^n}\right), \quad n \to \infty, \]

and

\[Kf(Pr_n) = K(n) + O\left(\frac{n^2}{3^n}\right), \quad n \to \infty. \]

Remark. When the paper was already prepared for publication, we discovered that the results equivalent to Theorems 1 and 2 were obtained by completely different methods in [5] and [6] respectively. A weak form of the asymptotics for Kirchhoff index in the Möbius ladder was done in [25].
Elementary Formulas for Kirchhoff Index 1659

4. The table of Kirchhoff indices for graphs M_n and Pr_n

Table 1. Kirchhoff indices for graphs M_n and Pr_n

<table>
<thead>
<tr>
<th>n</th>
<th>$Kf(M_n)$</th>
<th>$Kf(Pr_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>47/5</td>
</tr>
<tr>
<td>4</td>
<td>134/7</td>
<td>58/3</td>
</tr>
<tr>
<td>5</td>
<td>1135/33</td>
<td>655/19</td>
</tr>
<tr>
<td>6</td>
<td>725/13</td>
<td>279/5</td>
</tr>
<tr>
<td>7</td>
<td>10367/123</td>
<td>5985/71</td>
</tr>
<tr>
<td>8</td>
<td>11732/97</td>
<td>2540/21</td>
</tr>
<tr>
<td>9</td>
<td>2835/17</td>
<td>44193/265</td>
</tr>
<tr>
<td>10</td>
<td>40315/181</td>
<td>139655/627</td>
</tr>
<tr>
<td>11</td>
<td>496529/1713</td>
<td>286671/989</td>
</tr>
<tr>
<td>12</td>
<td>498706/1351</td>
<td>23994/65</td>
</tr>
<tr>
<td>13</td>
<td>2950831/6393</td>
<td>1703663/3691</td>
</tr>
<tr>
<td>14</td>
<td>1432333/2521</td>
<td>4961747/8733</td>
</tr>
<tr>
<td>15</td>
<td>1828935/2651</td>
<td>380137/551</td>
</tr>
<tr>
<td>16</td>
<td>15576744/18817</td>
<td>1686232/2037</td>
</tr>
<tr>
<td>17</td>
<td>87516289/89043</td>
<td>50527553/51409</td>
</tr>
<tr>
<td>18</td>
<td>40592787/35113</td>
<td>5208057/4505</td>
</tr>
<tr>
<td>19</td>
<td>448098641/332313</td>
<td>258709871/191861</td>
</tr>
<tr>
<td>20</td>
<td>409102110/262087</td>
<td>17146410/113487</td>
</tr>
<tr>
<td>21</td>
<td>247299255/137801</td>
<td>1285004623/716035</td>
</tr>
<tr>
<td>22</td>
<td>1002789029/489061</td>
<td>3473763095/1694157</td>
</tr>
<tr>
<td>23</td>
<td>10781766143/4628523</td>
<td>6224855855/2672279</td>
</tr>
<tr>
<td>24</td>
<td>9609876860/3650401</td>
<td>231177708/87815</td>
</tr>
<tr>
<td>25</td>
<td>51145271425/17273883</td>
<td>29528736225/9973081</td>
</tr>
<tr>
<td>26</td>
<td>22582888523/6811741</td>
<td>78229420607/23596563</td>
</tr>
<tr>
<td>27</td>
<td>2942312769/795889</td>
<td>137598350607/37220045</td>
</tr>
<tr>
<td>28</td>
<td>4261146826/1037623</td>
<td>90411404314/22015893</td>
</tr>
<tr>
<td>29</td>
<td>1093633131439/240594153</td>
<td>631409382831/138907099</td>
</tr>
<tr>
<td>30</td>
<td>475763190685/94875313</td>
<td>7324853499/1460701</td>
</tr>
</tbody>
</table>
Table 2. Numerical values of $Kf(M_n)$, $K(n)$ and $Kf(Pr_n)$

<table>
<thead>
<tr>
<th>n</th>
<th>$Kf(M_n)$</th>
<th>$K(n)$</th>
<th>$Kf(Pr_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9.0000000000</td>
<td>9.196152423</td>
<td>9.400000000</td>
</tr>
<tr>
<td>4</td>
<td>19.14285714</td>
<td>19.23760431</td>
<td>19.33333333</td>
</tr>
<tr>
<td>5</td>
<td>34.30939393</td>
<td>34.43375673</td>
<td>34.47368421</td>
</tr>
<tr>
<td>6</td>
<td>55.76923077</td>
<td>55.78460969</td>
<td>55.80000000</td>
</tr>
<tr>
<td>7</td>
<td>84.2855285</td>
<td>84.29016319</td>
<td>84.29577465</td>
</tr>
<tr>
<td>8</td>
<td>120.948536</td>
<td>120.9504172</td>
<td>120.9523810</td>
</tr>
<tr>
<td>9</td>
<td>166.7647059</td>
<td>166.7653718</td>
<td>166.7663077</td>
</tr>
<tr>
<td>10</td>
<td>222.7348066</td>
<td>222.7350269</td>
<td>222.7352472</td>
</tr>
<tr>
<td>11</td>
<td>289.8539112</td>
<td>289.8593826</td>
<td>289.8594540</td>
</tr>
<tr>
<td>12</td>
<td>369.1384160</td>
<td>369.1384388</td>
<td>369.1384615</td>
</tr>
<tr>
<td>13</td>
<td>461.5711883</td>
<td>461.5721955</td>
<td>461.5722027</td>
</tr>
<tr>
<td>14</td>
<td>568.1606505</td>
<td>568.1606528</td>
<td>568.1606550</td>
</tr>
<tr>
<td>15</td>
<td>689.9038099</td>
<td>689.9038106</td>
<td>689.9038113</td>
</tr>
<tr>
<td>16</td>
<td>827.8016687</td>
<td>827.8016689</td>
<td>827.8016691</td>
</tr>
<tr>
<td>17</td>
<td>982.8542277</td>
<td>982.8542278</td>
<td>982.8542279</td>
</tr>
<tr>
<td>18</td>
<td>1156.061487</td>
<td>1156.061487</td>
<td>1156.061487</td>
</tr>
<tr>
<td>19</td>
<td>1348.423447</td>
<td>1348.423447</td>
<td>1348.423447</td>
</tr>
<tr>
<td>20</td>
<td>1560.94108</td>
<td>1560.94108</td>
<td>1560.94108</td>
</tr>
<tr>
<td>21</td>
<td>1794.61469</td>
<td>1794.61469</td>
<td>1794.61469</td>
</tr>
<tr>
<td>22</td>
<td>2050.437530</td>
<td>2050.437530</td>
<td>2050.437530</td>
</tr>
<tr>
<td>23</td>
<td>2329.418292</td>
<td>2329.418292</td>
<td>2329.418292</td>
</tr>
<tr>
<td>24</td>
<td>2632.533755</td>
<td>2632.533755</td>
<td>2632.533755</td>
</tr>
</tbody>
</table>

Acknowledgements

The authors are grateful to an anonymous referee for helpful remarks and suggestions.

References

ELEMENTARY FORMULAS FOR KIRCHHOFF INDEX

Galya Amanboldynova Baigonakova
Gorno-Altaysk State University,
34, Socialisticheskaya str.,
Gorno-Altaysk, 639000, Russia
E-mail address: galyaab@mail.ru

Aleksandr Dmitrievich Mednykh
 Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Novosibirsk State University,
1, Pirogova str.,
Novosibirsk, 630090, Russia
E-mail address: ilyamednykh@mail.ru