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A STATISTICAL TEST FOR THE ZIPF’S LAW BY DEVIATIONS
FROM THE HEAPS’ LAW

M.G. CHEBUNIN, A.P. KOVALEVSKII

Abstract. We explore a probabilistic model of an artistic text: words
of the text are chosen independently of each other in accordance with
a discrete probability distribution on an infinite dictionary. The words
are enumerated 1, 2, . . ., and the probability of appearing the i’th word
is asymptotically a power function. Bahadur proved that in this case
the number of different words as a function of the length of the text,
again, asymptotically behaves like a power function. On the other hand,
in the applied statistics community there are statements known as the
Zipf’s and Heaps’ laws that are supported by empirical observations. We
highlight the links between Bahadur results and Zipf’s/Heaps’ laws, and
introduce and analyse a corresponding statistical test.
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1. Introduction

There is a countably infinite dictionary where the words are numbered 1, 2, . . ..
Words are chosen one-by-one independently of each other and accordingly to a
discrete probability distribution on the positive integers that is equivalent to a
power law distribution

(1) pi ∼ ci−1/θ, 0 < θ < 1, c > 0.

We assume further that the sequence {pn} is decreasing, pn+1 ≤ pn for all
n. Hereinafter, for two positive sequences {an} and {bn}, we write an ∼ bn if
an/bn → 1, as n → ∞.
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Let Rn be the number of different words in the text of length n. It may be
represented as Rn =

∑
j≥1 Ij where Ij is the indicator function, corresponding to

the event where the j-th word of the dictionary is present in the text.
Bahadur (1960) proved that under (1) holds

(2) ERn ∼ C1n
θ,

where C1 = cθΓ(1 − θ) and Γ(x) =
∫∞
0

yx−1e−y dy is the Euler gamma function.
Bahadur also proved convergence in probability Rn/ERn

p→ 1.
Karlin (1967) made next important steps. He proved that Rn/ERn

a.s.→ 1, which,
combined with (2), is equivalent to

(3) Rn ∼ C1n
θ a.s.

In fact, Karlin studied a more general problem. He assumed that pi satisfy the
following regular variation property:

(4) α(x) = max{j| pj ≥ 1/x} = xθL(x), for θ ∈ [0, 1],

where L(x) is a function slowly varying at infinity. He considered texts of a random
length using an independent rate-1 Poisson process Π(t): the length of the text
grows in time and follows a Poisson distribution Π(t) at time t > 0. Let Rn,k be
the number of words with k occurrences. Using this Poissanization, Karlin proved
the Central Limit Theorems for Rn and Rn,k under condition (4) for θ > 0.

Within the last decades, the theory of infinite urn schemes has been developed
in several directions.

First, Key (1992, 1996) studied general properties of the number of words Rn,1

that appears only once in the text. Muratov and Zuyev (2016) studied properties
of Rn,1 using their Markov chain representation.

Secondly, Ben-Hamou, Boucheron and Ohannessian (2017) showed that Rn and
Rn,k satisfy Bernstein-type concentration inequalities, without assuming extra condition
(4). The variance factors in these concentration inequalities are shown to be tight
in the regular case. Decrouez, Grabchak and Paris (2018) gave upper and lower
bounds for the expected occupancy counts ERn,k in terms of the function α(x). If
α(x) is bounded above and below by regularly varying functions, then their general
results lead to an optimal-rate control of the expected occupancy counts.

Thirdly, the case θ = 0 was studied. Dutko (1989) proved the CLT for Rn under
condition VarRn → ∞, as n → ∞. This is always true for θ > 0 and may also hold
for θ = 0 in a particular case. Barbour and Gnedin (2009) proved the CLT for Rn,k

under condition VarRn,k → ∞, as n → ∞, and Hwang and Janson (2008) proved
the Local CLT.

Fourthly, in the regular case, there are known functional versions of the CLT.
Chebunin and Kovalevskii (2016) proved the Functional Central Limit Theorem for
Rn and Rn,k under condition (4) for θ ∈ (0, 1). So, the process

Zn = {(R[nt] −ER[nt])/
√
ERn, 0 ≤ t ≤ 1}

converges weakly to a centered Gaussian process Zθ with continuous a.s. sample
paths and covariance function of the form

K(s, t) = (s+ t)θ −max(sθ, tθ)

(note that VarRn ∼ (2θ − 1)ERn).
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In the case θ = 1, Chebunin and Kovalevskii (2016) and Chebunin (2017) proved
the FCLT for Rn and Rn,k, correspondingly. Durieu and Wang (2016) introduced a
natural randomization of Rn for parameter θ ∈ (0, 1), where each indicator function
is multiplied independently by a random variable taking values ±1 with equal
probabilities, and proved the FCLT for this case. Durieu, Samorodnitsky and Wang
(2019) investigated the odd-occupancy process for the randomized Karlin model
with parameter θ ∈ (0, 1), where each indicator function is multiplied independently
by a random variable with the heavy-tailed distribution. They proved that this
process converges to a stable process with stationary increments.

Gnedin, Hansen and Pitman (2007) analysed further properties of Rn, Rn,k and
of their Poissonizations. Barbour (2009) proposed approximations for Rn and Rn,k

within the family of translated Poisson distributions.
Various estimators of the parameter θ have been obtained and analysed by

Nicholls (1978), Zakrevskaya and Kovalevskii (2001, 2019), Guillou and Hall (2002),
Ohannessian and Dahleh (2012), Chebunin (2014), Chebunin and Kovalevskii (2018).

In the applied statistics, relations (1) and (3) were observed empirically in the
analysis of artistic texts. Linguists call them the Zipf’s law and the Heaps’ law
respectively. The Zipf’s law (Zipf, 1936) states the decrease in the frequencies of
words depending on the rank in accordance with a power function.

The content of the Heaps’ law was initially proposed by Herdan (1960). This
law was then popularized by Heaps (1978). The Heaps’ law states that dependence
of the number of different words from the text length is characterised by a power
function.

Links between the Heaps’ and the Zipf’s laws have been studied (empirically
and in other contexts) by van Leijenhorst and van der Weide (2005), Serrano et al.
(2009), Bernhardsson et al. (2009), Eliazar (2011), Baeza-Yates & Navarro (2013),
etc.

We could not find in the literature any mathematically correct statistical goodness-
of-fit test for the Zipf’s law. Altmann and Gerlach (2016) emphasize incorrectness
of a number of statistical tests proposed earlier.

Note that analysis of very long texts and text sequences shows significant deviations
of words frequencies from the Zipf model (see, for example, Petersen et al., (2012)).
Gerlach and Altmann (2013) proposed a modified model for explanations of these
deviations.

The present paper proposes a new theoretically supported test for the Zipf’s law.
We introduce a new class of estimates that is based on the sequence (R1, . . . , Rn).
We define an empirical process and prove its weak convergence to a centered
Gaussian process. We calculate the covariance function of this limiting process.
Then we construct a test of the omega-squared type. Calculation of the limiting
distribution of the test statistics is based on the corresponding classical result of
Smirnov (1937). One can calculate this distribution using the results of Deheuvels
and Martynov (1996).

The rest of the paper is organised as follows. We propose an estimator for
parameter θ and state its properties in Section 2. Then we propose a test for known
θ and state its properties in Section 3. Then a new test for unknown θ (that is, the
test for the Zipf’s law) follows in Section 4. The proofs of the formulated results
are given in Section 5.
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2. Parameter’s estimation

From (3), we have logRn ∼ θ log n a.s. Therefore, we may propose the following
estimator for parameter θ:

θ̂ =

∫ 1

0

log+ R[nt] dA(t),

here log+ x = max(log x, 0). Function A(·) has bounded variation and

(5) A(0) = A(1) = 0, lim
x↓0

log x

∫ x

0

|dA(t)| = 0,

∫ 1

0

log t dA(t) = 1.

Theorem 1. Let pi = i−1/θl(i, θ), θ ∈ [0, 1], and l(x, θ) is a slowly varying function
as x → ∞. Then the estimator θ̂ is strongly consistent.

We need extra conditions to obtain the asymptotic normality of θ̂.

Theorem 2. Let pi = ci−1/θ(1 + o(i−1/2)), θ ∈ (0, 1), and A(t) = 0, t ∈ [0, δ] for
some δ ∈ (0, 1). Then√

ERn(θ̂ − θ)−
∫ 1

0

t−θZn(t) dA(t) →p 0.

From Theorem 2, it follows that θ̂ converges to θ with rate (ERn)
−1/2, and√

ERn(θ̂ − θ) converges weakly to the normal random variable
∫ 1

0
t−θZθ(t) dA(t)

with variance
∫ 1

0

∫ 1

0
(st)−θK(s, t) dA(s) dA(t).

Example 1 Take

A(t) =

 0, 0 ≤ t ≤ 1/2;
−(log 2)−1, 1/2 < t < 1;
0, t = 1.

Then
θ̂ = log2(Rn/R[n/2]), n ≥ 2.

Note that, in this example, for any function g on [0, 1],∫ 1

0

g(t) dA(t) =
g(1)− g(1/2)

log 2
.

3. Test for a known rate

Let 0 < θ < 1 be known. We introduce an empirical bridge Z0
n (Kovalevskii and

Shatalin, 2015, 2016) as follows.

Z0
n(k/n) =

(
Rk − (k/n)θRn

)
/
√
Rn,

0 ≤ k ≤ n, where R0 = 0. We construct a piecewise linear approximation: for any
0 ≤ u < 1/n and 0 ≤ k ≤ n− 1,

Z0
n

(
k

n
+ u

)
= Z0

n(k/n) + nu
(
Z0
n((k + 1)/n)− Z0

n(k/n)
)
.

Theorem 3. Under the assumptions of Theorem 2,

sup
0≤t≤1

|Z0
n(t)− (Zn(t)− tθZn(1))| → 0 a.s.
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Let C(0,1) be the set of all continious functions on [0, 1] with the uniform metric
ρ(x, y) = maxt∈[0,1] |x(t) − y(t)|. By the FCLT of Chebunin & Kovalevskii (2016),
we have

Corollary 1. Under the assumptions of Theorem 2, Z0
n converges weakly in C(0, 1)

to a Gaussian process Z0
θ that can be represented as Z0

θ (t) = Zθ(t) − tθZθ(1),
0 ≤ t ≤ 1. Its correlation function is given by

K0(s, t) = EZ0
θ (s)Z

0
θ (t) = K(s, t)− sθK(1, t)− tθK(s, 1) + sθtθK(1, 1).

Now we show how to implement the goodness-of-fit test in this case.

Let W 2
n =

1∫
0

(
Z0
n(t)

)2
dt. It is equal to

(6) W 2
n =

1

3n

n−1∑
k=1

Z0
n

(
k

n

)(
2Z0

n

(
k

n

)
+ Z0

n

(
k + 1

n

))
.

Then W 2
n converges weakly to W 2

θ =
1∫
0

(
Z0
θ (t)

)2
dt.

So the test rejects the basic hypothesis if W 2
n ≥ C. The p-value of the test is

1− Fθ(W
2
n,obs). Here Fθ is the cumulative distribution function of W 2

θ and W 2
n,obs

is a concrete value of W 2
n for observations under consideration.

One can estimate Fθ by simulations or find it explicitely using the Smirnov’s
formula (Smirnov, 1937): if W 2

θ =
∑∞

k=1
η2
k

λk
, η1, η2, . . . are independent and have

standard normal distribution, 0 < λ1 < λ2 < . . ., then

(7) Fθ(x) = 1 +
1

π

∞∑
k=1

(−1)k
∫ λ2k

λ2k−1

e−λx/2√
−D(λ)

· dλ
λ
, x > 0,

D(λ) =
∞∏
k=1

(
1− λ

λk

)
.

The integrals in the RHS of (7) must tend to 0 monotonically as k → ∞, and
λ−1
k are the eigenvalues of kernel K0 (see Martynov (1973), Chapter 3).

4. Test for an unknown rate

Let us introduce the process Ẑn:

Ẑn(k/n) =
(
Rk − (k/n)θ̂Rn

)
/
√

Rn,

0 ≤ k ≤ n. As for Z0
n, let for 0 ≤ u < 1/n and 0 ≤ k ≤ n− 1

Ẑn

(
k

n
+ u

)
= Ẑn(k/n) + nu

(
Ẑn((k + 1)/n)− Ẑn(k/n)

)
.

Theorem 4. Under assumptions of Theorem 2, Ẑn converges weakly to Ẑθ as
n → ∞, where

Ẑθ(t) = Z0
θ (t)− tθ log t

∫ 1

0

u−θZθ(u) dA(u).
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Corollary 2. Assume the conditions of Theorem 2 to hold. Let Ŵ 2
n =

1∫
0

(
Ẑn(t)

)2
dt.

Then Ŵ 2
n converges weakly to Ŵ 2

θ =
1∫
0

(
Ẑθ(t)

)2
dt.

Similarly to (6), Ŵ 2
n has the following representation

Ŵ 2
n =

1

3n

n−1∑
k=1

Ẑn

(
k

n

)(
2Ẑn

(
k

n

)
+ Ẑn

(
k + 1

n

))
.

The p-value of the goodness-of fit test is 1−F̂θ(Ŵ
2
n,obs). Here F̂θ is the cumulative

distribution function of Ŵ 2
θ , and Ŵ 2

n,obs is the observed value of Ŵ 2
n . Further, the

function F̂θ can be found using the approach from Section 3, with replacing λk by
λ̂k in the Smirnov’s formula, and λ̂k are the eigenvalues of the kernel
K̂(s, t) = EẐθ(s)Ẑθ(t).

5. The proofs of formulated results

Proof of Theorem 1
Since pii

1/θ is a slowly varying function as i → ∞, we have α(x) = xθL(x, θ),
L(x, θ) is a slowly varying function as x → ∞ (Karlin, 1967).

Let δn = 1/
√
n. Then∣∣∣∣∣
∫ δn

0

log+ R[nt] dA(t)

∣∣∣∣∣ ≤a.s.

∫ 1/
√
n

0

log+ nt |dA(t)|

=

∫ 1/
√
n

1/n

lognt |dA(t)| ≤
∫ 1/

√
n

1/n

log n |dA(t)|+
∫ 1/

√
n

1/n

log t |dA(t)|

= −2 log
1√
n

∫ 1/
√
n

1/n

|dA(t)|+ o(1).

As
∫ 1/

√
n

1/n
|dA(t)| ≤

∫ 1/
√
n

0
|dA(t)|, from (5) the RHS tends to 0.

The rest of the integral is∫ 1

δn

logR[nt] dA(t) =

∫ 1

δn

log
R[nt]

ER[nt]
dA(t) +

∫ 1

δn

logER[nt] dA(t).

We prove a.s. convergence to 0 of the first integral in RHS, and then a.s. convergence
to θ of the second one.

By the SLLN, log(Rj/ERj) → 0 a.s. as j → ∞. Therefore, for any ε > 0,

lim
n→∞

P

(
sup

j≥nδn

∣∣∣∣log( Rj

ERj

)∣∣∣∣ ≥ ε

)
= 0.

Therefore

P

(
sup
k≥n

∣∣∣∣∫ 1

δn

log
R[kt]

ER[kt]
dA(t)

∣∣∣∣ ≥ ε

)
≤ P

(∫ 1

δn

sup
k≥n

∣∣∣∣log R[kt]

ER[kt]

∣∣∣∣ |dA(t)| ≥ ε

)

= P

(
sup

k≥nδn

∣∣∣∣log Rk

ERk

∣∣∣∣ ≥ ε∫ 1

δn
|dA(t)|

)
→ 0 as n → ∞,
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that is,
∫ 1

δn
log

R[nt]

ER[nt]
dA(t) → 0 a.s.

We have ERj = jθL(j), where L(j) is a slowly varying function (Karlin, 1967).
So, uniformly in t ≥ δn > 0,

log
ER[nt]

(nt)θL(nt)
→ 0.

Therefore ∫ 1

δn

log
ER[nt]

(nt)θL(nt)
dA(t) → 0.

However, L(nt) = (nt)o(1) for t ≥ δn, so from (5) we have∫ 1

δn

log((nt)θL(nt)) dA(t) =

∫ 1

δn

log((nt)θ+o(1)) dA(t) = (θ + o(1))

∫ 1

δn

log(nt) dA(t)

= (θ + o(1))

∫ 1

0

log(nt) dA(t)− (θ + o(1))

∫ δn

0

log(nt) dA(t) = θ + o(1).

Then ∫ 1

δn

logER[nt] dA(t) → θ,

and θ̂ → θ a.s. The proof is complete.

Proof of Theorem 2
Since pi = ci−1/θ(1 + o(i−1/2)), we have

(8) ERn = C1n
θ + o(n

θ
2 )

(Chebunin and Kovalevskii, 2018, Lemma 1 and 2). Recall that

Zn(t) =
R[nt] −ER[nt]√

ERn

.

Let

Z∗
n(t) =

R[nt] −ER[nt]

ER[nt]
.

Then √
ERn

(∫ 1

0

logR[nt] dA(t)− θ

)
−
∫ 1

0

t−θZn(t) dA(t)

=
√
ERn

(∫ 1

0

(
logC1(nt)

θ + log
ER[nt]

C1(nt)θ
+ log(1 + Z∗

n(t))− t−θ Zn(t)√
ERn

)
dA(t)− θ

)
=
√
ERn

∫ 1

0

(
log

ER[nt]

C1(nt)θ
+ log(1 + Z∗

n(t))− Z∗
n(t) + Z∗

n(t)− t−θ Zn(t)√
ERn

)
dA(t).

For any t ∈ [δ, 1], Z∗
n(t) → 0 a.s. , so log(1 + Z∗

n(t)) − Z∗
n(t) ∼ −(Z∗

n(t))
2/2 a.s.

We have ERn = nθL(n), so, for any t ∈ [δ, 1],

(ERn)
3
2

(ER[nt])2
=

(nθL(n))
3
2

((nt)θL(nt))2
= O

(
1

n
θ
2

√
L(n)

)
,

tθERn

ER[nt]
=

L(n)

L(nt)
= 1 + o(1).

Note that √
ERn

∫ 1

0

(Z∗
n(t))

2 dA(t) =

∫ 1

0

(ERn)
3
2

(ER[nt])2
(Zn(t))

2 dA(t)
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= o(n−θ/4)

∫ 1

0

(Zn(t))
2 dA(t) →p 0,

so √
ERn

∫ 1

0

(
Z∗
n(t)− t−θ Zn(t)√

ERn

)
dA(t) =

∫ 1

0

(
tθERn

ER[nt]
− 1

)
t−θZn(t) dA(t)

= o(1)

∫ 1

0

t−θZn(t) dA(t) → 0.

Since (8), we have√
ERn

∫ 1

0

log
ER[nt]

C1(nt)θ
dA(t) =

√
ERn

∫ 1

0

log(1+o(n− θ
2 )) dA(t) =

∫ 1

0

o(1) dA(t) → 0.

The proof is complete.

Proof of Theorem 3
Let t ∈ [0, 1), k = [nt], then t = k/n+ u, 0 ≤ k ≤ n− 1, u ∈ [0, 1/n).
Let fθ(x) = (1 + x)θ − xθ. So 0 ≤ fθ(x) ≤ fθ(0) = 1 for x ≥ 0.
By the definition of Z0

n(t),

Rk −
(
k+1
n

)θ
Rn√

Rn

≤ Z0
n(t) ≤

Rk+1 −
(
k
n

)θ
Rn√

Rn

,

so ∣∣∣∣∣Z0
n(t)−

R[nt] − tθRn√
Rn

∣∣∣∣∣ ≤ Rk+1 −Rk + 1
nθ fθ(k)Rn√

Rn

≤ 1√
Rn

+

√
Rn

nθ
→ 0

a.s. unformly on t ∈ [0, 1].
The proof is complete.

Proof of Theorem 4
Let t ∈ [0, 1), k = [nt], u = t − k/n, fθ(x) = (1 + x)θ − xθ as in the proof of

Theorem 3.
By the definition,

Ẑn(k/n) = Z0
n(k/n) +

√
Rn

(
(k/n)θ − (k/n)θ̂

)
,

Ẑn(t) = Z0
n(t) +

√
Rn

(
(k/n)θ − (k/n)θ̂

)
+nu

√
Rn

((
k + 1

n

)θ

−
(
k + 1

n

)θ̂

−
(
k

n

)θ

+

(
k

n

)θ̂
)
.

We have(
k + 1

n

)θ

−
(
k

n

)θ

= fθ(k)/n
θ,

(
k + 1

n

)θ̂

−
(
k

n

)θ̂

= fθ̂(k)/n
θ̂,

so ∣∣∣Ẑn(t)− Z0
n(t) +

√
Rn

(
tθ̂ − tθ

)∣∣∣
=

∣∣∣∣∣Ẑn(t)− Z0
n(t) +

√
Rn

((
k

n
+ u

)θ̂

−
(
k

n
+ u

)θ
)∣∣∣∣∣
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≤ 2
√
Rn

(
fθ(k)/n

θ + fθ̂(k)/n
θ̂
)
≤ 2
√

Rn

(
1/nθ + 1/nθ̂

)
→ 0

a.s. unformly on t ∈ [0, 1].
Note that one can change tθ̂ − tθ by (θ̂ − θ)tθ log t. Really,

tθ̂ − tθ = tθ
(
e(θ̂−θ) log t − 1

)
= (θ̂ − θ)tθ log t+ tθ

∑
k≥2

((θ̂ − θ) log t)k

k!

= (θ̂ − θ)tθ log t+ tθ(θ̂ − θ)2(1 + o(1))
∑
k≥2

logk t

k!

= (θ̂ − θ)tθ log t

(
1 + (θ̂ − θ)(1 + o(1))

elog t − 1− log t

log t

)
= (θ̂ − θ)tθ log t(1 + o(1))

a.s. unformly on t ∈ [0, 1]. So

sup
t∈[0,1]

∣∣∣Ẑn(t)− (Z0
n(t)−

√
Rn(θ̂ − θ)tθ log t)

∣∣∣→p 0.

From Theorems 2 and 3, we have joint weak convergence of (Z0
n,

√
Rn(θ̂ − θ))

to (Z0
θ ,
∫ 1

0
u−θZθ(u) dA(u)). So, Ẑn converges weakly to Ẑθ,

Ẑθ(t) = Z0
θ (t)− tθ log t

∫ 1

0

u−θZθ(u) dA(u).

The proof is complete.
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