$\mathbf{S}\mathbf{e}\mathbf{M}\mathbf{R}$ ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 16, стр. 1916–1926 (2019) DOI 10.33048/semi.2019.16.137 УДК 519.6 MSC 65F15, 41A30

О СХОДИМОСТИ АЛГОРИТМОВ М. ОСБОРНА С ОБРАТНЫМИ ИТЕРАЦИЯМИ В МОДИФИЦИРОВАННОМ МЕТОДЕ ПРОНИ

А.А. ЛОМОВ

Abstract. A convergence of two inverse iteration algorithms of M. Osborne in the nonlinear eigenvalue problem of modified Prony method under small perturbations is investigated.

Keywords: difference equations, parameter identification, modified Prony method, nonlinear eigenvalue problem, inverse iteration, semilocal convergence.

1. Введение

В настоящей статье исследуется сходимость вычислительных алгоритмов модифицированного метода Прони $[1,\,2]$ для извлечения синусоид и экспонент из наблюдений экспериментальных зависимостей [3]. Краткая предыстория вопроса изложена в [4]. По существу речь идет о задаче аппроксимации сеточной функции $x \in \mathbb{R}^N$ решениями $z \doteq [z[1];\ldots;z[N]] \in \mathbb{R}^N$ однородного разностного уравнения с вещественными коэффициентами

(1)
$$\gamma_0 z[k] + \gamma_1 z[k+1] + \ldots + \gamma_n z[k+n] = 0, \quad k \in \overline{1, N-n}.$$

Требуется подобрать начальные условия $z[1],\ldots,z[n]$ и коэффициенты $\gamma_0,\ldots,\gamma_{n-1}$ с целью минимизации целевой функции

(2)
$$J = ||x - z||^2 = (x - z)^{\mathrm{T}} (x - z) \to \min$$

при условии (1). Известно, что данная задача плохо обусловлена [5, 6], и для применения универсальных градиентных или квазиньютоновских алгоритмов

Работа поддержана РФФИ (грант 19-01-00754).

Поступила 8 июля 2019 г., опубликована 17 декабря 2019 г.

Lomov, A.A., On convergence of M. Osborne' inverse iteration algorithms for modified Prony method.

^{© 2019} Ломов А.А.

требуется знание хорошего начального приближения по γ_i . Вычислительные решения с большими радиусами и скоростью сходимости [1, 6, 7] впервые были найдены М. Осборном [8, 9] и А. О. Егоршиным [10, 11] с применением обратных итераций для нахождения собственного вектора с минимальным по модулю собственным значением специальной матрицы в выражении для целевой функции J или для градиента J'_{γ} (раздел 2). Данный подход получил название модифицированного метода Прони [1] или вариационного метода идентификации [11].

В обзоре [6] отмечена недостаточная изученность алгоритмов с обратными итерациями в нелинейной задаче на собственные значения, связанной с модифицированным методом Прони. В [1] была доказана локальная сходимость второго алгоритма М. Осборна [8] через выполнение условия сжатия в точке минимума. В [7] обсуждалась скорость сходимости обратных итераций в нелинейной задаче на собственные значения в окрестности минимума. В [4] в предположении малости возмущений установлены глобальная сходимость первого алгоритма М. Осборна [9] к неподвижной точке и положение неподвижной точки в малой окрестности минимума.

В настоящей статье исследуется полулокальная сходимость второго алгоритма М. Осборна [8]. В отличие от локальной сходимости, полулокальная означает выполнение условий сжатия итерирующего отображения в каждой точке некоторой окрестности минимума.

2. Два алгоритма М. Осборна

В матричных обозначениях [4] уравнение (1) имеет вид

(3)
$$G^{\mathsf{T}}z = 0,$$

$$G^{\mathsf{T}} \doteq \begin{bmatrix} \gamma_0 & \gamma_1 & \dots & 1 & & & 0 \\ & \gamma_0 & \gamma_1 & \dots & 1 & & & \\ & & \ddots & \ddots & & \ddots & \\ 0 & & & & \gamma_0 & \gamma_1 & & 1 \end{bmatrix} \doteq \backslash \gamma^{\mathsf{T}} \backslash \in \mathbb{R}^{(N-n)\times N}.$$

После минимизации (2) по z при условии (1) приходим к выражению

 $J = J(\gamma) = \gamma^{\mathrm{T}} V^{\mathrm{T}} C V \gamma, \quad C \doteq (G^{\mathrm{T}} G)^{-1} \in \mathbb{R}^{(N-n) \times (N-n)},$

(5)
$$\gamma \doteq [\gamma_0; \dots; \gamma_{n-1}; 1] \in \mathbb{R}^{n+1},$$

$$V \doteq \begin{bmatrix} x[1] & x[2] & \dots & x[n+1] \\ x[2] & x[3] & \dots & x[n+2] \\ \vdots & \vdots & & \vdots \\ x[N-n] & x[N-n+1] & \dots & x[N] \end{bmatrix} \in \mathbb{R}^{(N-n)\times N}.$$

В [9] М. Осборн предложил алгоритм приближенной минимизации $J(\gamma)$ (4). После попадания в малую окрестность минимума в результате итераций этого алгоритма появляется возможность нахождения минимума универсальным итерациями типа Ньютона. Матрица $Q \doteq V^{\mathrm{T}}CV$ неотрицательно определена. Пусть $\lambda_1(Q) \geqslant 0$ и $p_1(Q)$ — наименьшее собственное значение и соответствующий собственный вектор Q, и наблюдения x таковы, что число $\lambda_1(Q)$ некратное. Алгоритм М. Осборна [9] имеет вид

(6)
$$\gamma_{[k+1]} = p_1\left(Q(\gamma_{[k]})\right), \quad k \geqslant 0.$$

Вычислительные эксперименты показывают [2], что итерации (6) малочувствительны к выбору $\gamma_{[0]}$ и имеют предельную точку в малой окрестности минимума J (4). В [4] в предположении малости нормы возмущений $\min_{z:(1)}\|x-z\|$ предложены доказательства этих экспериментально обнаруженных свойств.

Для исследования второго алгоритма М. Осборна [8] далее понадобятся формулировки трех теорем из [4]. Принято, что нормы матриц $||A|| \doteq \sup_{x \neq 0} \frac{||Ax||}{||x||}$ согласованы с евклидовой нормой $||x|| \doteq \sqrt{x^{\mathrm{T}}x}$. Пусть наблюдения $x = z_* + \eta$ порождены добавлением возмущения η к «истинному» процессу z_* , $G^{\mathrm{T}}(\gamma_*)z_* = 0$.

Теорема 1. Пусть в области Γ , содержащей истинную точку γ_* и точки $\gamma_{[k]}, k \geqslant k_*$ при некотором $k_* \geqslant 0$, выполнено условие на малость $\lambda_1(Q)$ и тем самым на малость нормы возмущения $||x - z_*||$:

(7)
$$\frac{2n \cdot \sqrt{\lambda_1} \cdot ||C|| \cdot ||V||}{\lambda_2 - \lambda_1} < 1.$$

Тогда отображение $\gamma_{[k]} \to \gamma_{[k+1]}$, при $k \geqslant k_*$ в итерации (6) является сжимающим, следовательно, имеет единственную неподвижную точку в Γ .

Следствие 1. Пусть в области Γ выполнено $\|C\| \leqslant a$, $\|V\| \leqslant b$. Тогда для сжатия в отображении $\gamma_{[k]} \to \gamma_{[k+1]}$ (6) достаточно условия

$$\sqrt{\lambda_1} < \sqrt{\varrho^2 + \lambda_2} - \varrho, \quad \varrho \doteq nab.$$

Теорема 2. Все элементы $\gamma_{[k]}$ в итерациях (6) при $k \geqslant k_* = 1$ остаются в следующей окрестности истинной точки γ_* :

(8)
$$\frac{\|\gamma_{[k]} - \gamma_*\|}{\|\gamma_*\|} \leqslant \frac{\alpha' \cdot \|C_*\| \cdot \|V_*\|^2}{\lambda_{2*}} \tilde{\varepsilon} + O(\tilde{\varepsilon}^2) \leqslant
\leqslant \frac{\alpha \cdot \|C_*\| \cdot \|V_*\|^2}{\lambda_{2*}} \tilde{\varepsilon}, \quad \tilde{\varepsilon} \doteq \frac{\varepsilon}{\|V_*\|} \doteq \frac{\|V - V_*\|}{\|V_*\|} = \frac{\|V(x - z_*)\|}{\|V(z_*)\|}.$$

Константа α' определена условием $\|C_{[k]}\| \leq \alpha' \|C_*\|$, $k \geq 0$, которое можно рассматривать как ограничение на начальное значение $\gamma_{[0]}$, а константа $\alpha > \alpha'$ определяется условием мажорирования слагаемых $O(\varepsilon^2)$ в (8).

Теорема 3. Пусть выполнены условия

$$\varepsilon < \frac{1}{5n\|C_*\|^{1/2}} \cdot \frac{\lambda_2}{\alpha \, \|C_*\| \cdot \|V_*\| \cdot \|\gamma_*\|} \quad u \quad \varepsilon < \|V_*\|.$$

Тогда следующее неравенство является достаточным для выполнения условия теоремы 1 в области (8):

$$\varepsilon < \frac{\varepsilon_*}{f_1^{1/2}}, \quad i\partial e$$

$$\begin{split} \varepsilon_* &\doteq \frac{\sqrt{\omega^2 + \lambda_2} - \omega}{\sqrt{2 \, \|C_*\|}}, \quad \omega \doteq 4n \, \|C_*\| \cdot \|V_*\|, \\ f_1 &\doteq \alpha_0 + \alpha_1 \|V_*\| + \alpha_2 \|V_*\|^2, \\ \alpha_0 &\doteq 1 + \frac{2n \left(\sqrt{\lambda_2} \, \|C_*\|^{1/2} + \|C_*\| \cdot \|V_*\|\right)}{\lambda_2} \cdot \|V_*\|, \\ \alpha_1 &\doteq \frac{2n \left(\sqrt{\lambda_2} \, \|C_*\|^{1/2} + 3 \, \|C_*\| \cdot \|V_*\|\right)}{\lambda_2}, \quad \alpha_2 &\doteq \frac{4n \|C_*\|}{\lambda_2}. \end{split}$$

Доказательства теорем 1–3 и следствия 1 даны в [4].

Второй алгоритм М. Осборна [8] в отличие от (6) находит точный минимум (4). Для описания алгоритма определим постоянные матрицы частных производных $E_i \doteq \frac{\partial G}{\partial \gamma_i}$. Верны равенства

$$G = E_0 \gamma_0 + \ldots + E_n \gamma_n, \quad E_{i-1}^{\mathrm{\scriptscriptstyle T}} x = V_i, \quad i \in \overline{1, n+1},$$

где $V_i - i$ -й столбец матрицы V. Производная целевой функции:

$$J_{i}' \doteq \frac{\partial J}{\partial \gamma_{i}} = 2x^{\mathrm{T}} E_{i} C G^{\mathrm{T}} x - 2x^{\mathrm{T}} G C G^{\mathrm{T}} E_{i} C G^{\mathrm{T}} x \doteq 2 \sum_{j} B_{ij} \gamma_{j},$$

$$B_{ij} \doteq x^{\mathrm{T}} \left(E_{i} C E_{j}^{\mathrm{T}} - G C E_{j}^{\mathrm{T}} E_{i} C G^{\mathrm{T}} \right) x =$$

$$= V_{i}^{\mathrm{T}} C V_{j} - x^{\mathrm{T}} G C E_{i}^{\mathrm{T}} E_{j} C G^{\mathrm{T}} x.$$

$$(9)$$

В матричной записи

(10)
$$J' = 2B(\gamma)\gamma = 2(Q - L^{\mathrm{T}}L)\gamma,$$

где $B(\gamma) \doteq ||B_{ij}||$ — симметричная матрица,

$$L \doteq \begin{bmatrix} L_1 & \dots & L_{n+1} \end{bmatrix}, \quad L_i \doteq E_i C G^{\mathrm{T}} x.$$

Матрица L тёплицева:

(11)
$$L^{\mathrm{T}} = \begin{bmatrix} l_1 & \dots & l_{N-n} & 0 \\ & \ddots & & \ddots \\ 0 & & l_1 & \dots & l_{N-n} \end{bmatrix} \doteq \backslash l^{\mathrm{T}} \backslash \in \mathbb{R}^{(n+1) \times N}.$$

Здесь $l \doteq [l_1; \dots; l_{N-n}] = CG^{\mathsf{T}}x = CV\gamma$ — вектор множителей Лагранжа в задаче (2) (см. [8, 12]).

Обозначим $p_0(B)$ собственный вектор матрицы $B(\gamma)$, соответствующий собственному числу с наименьшим модулем. Второй алгоритм М. Осборна [8, (5.4)], [1, (15)] состоит в итерациях

(12)
$$\gamma_{[k+1]} = p_0\left(B(\gamma_{[k]})\right), \quad k \geqslant 0.$$

Несложно убедиться, что критические точки J'=0 являются неподвижными точками алгоритма (12).

3. Полулокальная сходимость алгоритма (12)

В предельном случае $\eta \to 0$ матрица $B(\gamma)$ (10) принимает значение

$$B(\gamma) \to B_*(\gamma) \doteq V_*^{\mathrm{T}} C V_* - L_*^{\mathrm{T}} L_*,$$

$$L_* = \langle l_*^{\mathrm{T}} \rangle, \quad l_* = C V_* \gamma = l_*(\gamma).$$

Исследование глобальной сходимости (12) затруднено сложной структурой матрицы $L_*^{\mathrm{T}}L_*$ и неясным поведением собственного вектора $p_0(B_*)$ как функции γ . Тем не менее, в малой окрестности γ_* вектор множителей Лагранжа l_* близок к нулю, и можно получить условие на сжатие отображения $\gamma_{[k]} \to \gamma_{[k+1]}$ (12). Применение теории возмущений позволяет описать окрестность гарантированной сходимости алгоритма с точностью до слагаемых $O(\varepsilon^2)$. В [1] через исследование спектрального радиуса матрицы производной Фреше $\dot{F}(\gamma_c) \doteq \frac{\mathrm{d}\gamma_{[k+1]}}{\mathrm{d}\gamma_{[k]}}(\gamma_c)$ было доказано, что алгоритм (12) устойчив в неподвижных точках γ_c , $J'(\gamma_c) = 0$. Здесь мы найдем окрестность, в которой спектральный радиус $\rho(\dot{F}(\gamma))$ удовлетворяет условию сжатия $\rho < 1$. В этом смысле говорится о полулокальной сходимости.

Будем считать, что вектор $\gamma_{[k]}$ получен после итерации (6), и согласно теореме 2 находится в окрестности Δ_* истинного значения γ_* :

(13)
$$\gamma_{[k]} \in \Delta_* \doteq \{ \gamma : \| \gamma - \gamma_* \| \leqslant c_* \varepsilon \}, \quad c_* = \frac{\alpha \cdot \| C_* \| \cdot \| V_* \| \cdot \| \gamma_* \|}{\lambda_{2*}}.$$

Теорема 4. Пусть в произвольной точке $\gamma \in \Delta_*$ выполнено следующее условие на малость λ_1 и тем самым на малость нормы возмущения $\varepsilon = ||V - V_*||$:

(14)
$$\frac{2 \|C\| \cdot \|V\|}{\lambda_2 - \lambda_1} \cdot \left[n \sqrt{\lambda_1} + c_2 \varepsilon \right] < 1,$$

$$c_2 \doteq (N - n) \left(\frac{\alpha \|C\| \cdot \|V\|^2}{\lambda_2} + 1 \right) \cdot \|C\| \cdot \|\gamma\|,$$

где λ_i , $i \in \overline{1, n+1}$, — собственные числа матрицы Q (9), (10), упорядоченные по возрастанию. Тогда для любого $\gamma_{[k]} \in \Delta_*$ отображение $\gamma_{[k]} \to \gamma_{[k+1]}$ в итерации (12) является сжимающим.

Следствие 2. В условиях теоремы 4 в области Δ_* (13) верны следующие утверэндения:

- (a) целевая функция J (2) имеет критическую точку $J'(\gamma_c) = 0$;
- (б) критическая точка $\gamma_{\rm c}$ единственная;
- (в) $\gamma_{\rm c}$ есть точка минимума;
- (г) итерации (12) сходятся $\kappa \gamma_c$.

Доказательство следствия. Пункты (б) и (г) следуют из принципа сжимающих отображений и того факта, что $\gamma_{\rm c}$ есть неподвижная точка итераций (12). Пункт (в) следует из оценки строгой положительной определенности матрицы вторых производных J''>0 в окрестности точки γ_* при малых возмущениях $\varepsilon\to 0$ [1, 13]. Остается доказать пункт (а), который по сути означает, что итерации (12) не выходят из области Δ_* .

Пусть для итераций (12) $\gamma_{[k]} \in \Delta_*$. Тогда в (10) $L(\gamma_{[k]}) \sim O(\varepsilon)$ и $||L^{\mathrm{T}}L|| \sim O(\varepsilon^2)$, и можно рассматривать матрицу $B(\gamma)$ как $Q(\gamma)$ с малым возмущением $L^{\mathrm{T}}L$. По теории возмущений [4, (16)] норма отличия $d\gamma_{[k+1]}$ результата итерации (12) от итерации (6) имеет второй порядок малости по ε :

(15)
$$\|\mathrm{d}\gamma_{[k+1]}\| \leqslant \frac{1}{\lambda_2 - \lambda_1} \cdot \|L^{\mathrm{T}}L \cdot p_1\| + O(\varepsilon^2) = O(\varepsilon^2).$$

Поскольку итерации (6) с точностью до слагаемых $O(\varepsilon^2)$ остаются в области Δ_* (теорема 2), то же имеет место и для итераций (12). Следствие доказано.

Следствие 3. Пусть в окрестности Δ_* (13) выполнено (14). Тогда для любого начального значения $\gamma_{[0]}$ с условием $\|C_{[0]}\| \leqslant \alpha \|C_*\|$ последовательное применение одного шага алгоритма (6) и затем итераций (12) приводит к точке $\gamma_c \in \Delta_*$ локального минимума целевой функции J (1), и эта точка единственная в окрестности Δ_* (13) истинного значения γ_* .

Доказательство. По теореме 2 после одного шага алгоритма (6) попадаем в окрестность $\gamma_{[1]} \in \Delta_*$. Далее теорема 4 и следствие 2.

В заключение сформулируем утверждение об условиях сжатия итераций (12) в области Δ_* (13), аналогичное теореме 3 для итераций (6).

Теорема 5. Пусть выполнены условия и обозначения теоремы 3 и дополнительно $\varepsilon < \frac{\lambda_2}{c_3}$, $c_3 \doteq \frac{2\omega}{n} c_2$, где константа c_2 определена в (14). Тогда следующее неравенство является достаточным для выполнения условия теоремы 4 в области Δ_* (13):

$$\varepsilon < \frac{\varepsilon_*}{f_1^{1/2} + \left(\frac{2\omega c_2}{n\lambda_2}\right)\varepsilon_*}.$$

4. Доказательство теорем 4, 5

Доказательство теоремы 4. Применим теорию возмущений [4, (16)] к собственному вектору $p_0(B_{[k]})$:

(16)
$$\|\mathrm{d}\gamma_{[k+1]}\| = \|\mathrm{d}p_0(B_{[k]})\| \leqslant \frac{\|\mathrm{d}B_{[k]} \cdot p_0\|}{\min_{i \in \overline{1,n}} |\lambda_i(B) - \lambda_0(B)|} + O(\varepsilon^2).$$

Повторяя рассуждения из доказательства теоремы 1 в [4], построим оценку для нормы в правой части (16) в виде

(17)
$$\|dB_{[k]} \cdot p_0\| \leqslant c(\varepsilon) \cdot \|d\gamma_{[k]}\| + O(\varepsilon^2), \quad c(\varepsilon) = O(\varepsilon).$$

Отсюда будет следовать искомое условие на ε для выполнения условия сжатия $\|\mathrm{d}\gamma_{[k+1]}\|<\|\mathrm{d}\gamma_{[k]}\|$. Нужно найти $c(\varepsilon)$.

Из (15) имеем $p_0(B_{[k]}) = p_1(Q_{[k]}) + O(\varepsilon^2)$. Тогда с учетом оценок

$$\|\mathrm{d}p_1\| \leqslant \frac{\|\mathrm{d}Q \cdot p_1\|}{\lambda_2 - \lambda_1} + O(\varepsilon^2),$$

$$\|\mathrm{d}Q \cdot p_1\| \leqslant 2\sqrt{\lambda_1} \|C\| \cdot \|V\| \cdot \|\mathrm{d}G\|, \quad \|\mathrm{d}G\| \leqslant n \cdot \|\mathrm{d}\gamma\|$$

(см. [4, (16), (19)] и (24) в приложении) имеем

$$\|dB_{[k]} \cdot p_0\| \leq \|V^{\mathrm{T}}C (dG^{\mathrm{T}} \cdot G + G^{\mathrm{T}} \cdot dG) CV p_1\| + 2 \|L\| \cdot \|dL\| \leq$$

$$\leq 2 \sqrt{\lambda_1} \|C\| \cdot \|V\| \cdot n \cdot \|d\gamma_{[k]}\| + 2 \|L\| \cdot \|dL\|.$$
(18)

Из определения $L = \langle CV\gamma \rangle$ (11) по аналогии с (24) получаем

$$||L|| \leqslant (N-n) \cdot ||CV\gamma||,$$

откуда следует

$$||L|| \le (N-n) \cdot (||C(V-V_*)\gamma|| + ||CV|| \cdot ||\gamma - \gamma_*||) + O(\varepsilon^2)$$

и с учетом (13)

(19)
$$||L|| \leqslant (N-n) \cdot (||C|| \cdot ||\gamma_*|| \cdot \varepsilon + ||C|| \cdot ||V|| \cdot c_* \varepsilon) + O(\varepsilon^2).$$

Наконец.

(20)
$$dL = dC \cdot V\gamma + CVd\gamma = CVd\gamma + O(\varepsilon).$$

Собирая оценки (16), (18), (19), (20), приходим к условию сжатия для отображения (12):

$$\frac{2 \|C\| \cdot \|V\|}{\min_{i \in \overline{1,n}} |\lambda_i(B) - \lambda_0(B)|} \cdot \left[n \sqrt{\lambda_1(Q)} + c_2 \varepsilon \right] < 1,$$

$$c_2 = (N - n) \cdot \|C\| \cdot (\|\gamma_*\| + \|V\| \cdot c_*),$$

$$c_* = \frac{\alpha \|C_*\| \cdot \|V_*\| \cdot \|\gamma_*\|}{\lambda_2(Q_*)}.$$

Теперь заметим, что вместо норм $\|C\|$, $\|C_*\|$, $\|V\|$, $\|V_*\|$, $\|V_*\|$ и собственных чисел $\lambda_1(Q)$, $\lambda_2(Q_*)$, $\lambda_i(B)$ можно использовать нормы и собственные числа, вычисленные в любой точке $\gamma \in \Delta_*$, поскольку из соображений непрерывности указанные замены приведут к изменениям второго порядка малости $O(\varepsilon^2)$. Так же вместо $\lambda_i(B)$ можно использовать $\lambda_{i+1}(Q)$. В результате условие сжатия принимает вид

$$\frac{2 \|C\| \cdot \|V\|}{\lambda_2 - \lambda_1} \cdot \left[n \sqrt{\lambda_1} + c_2 \varepsilon \right] < 1,$$

$$c_2 \doteq (N - n) \left(\frac{\alpha \|C\| \cdot \|V\|^2}{\lambda_2} + 1 \right) \cdot \|C\| \cdot \|\gamma\|.$$

Теорема доказана.

Доказательство теоремы 5. Нам понадобятся формулировки двух лемм из [4].

Лемма 1. При условии $\|\Delta\gamma\| \leqslant \frac{1}{5n \|C_*\|^{1/2}}$ верно $\|\Delta C\| \leqslant 5n \|C_*\|^{3/2} \|\Delta\gamma\| \leqslant \|C_*\|$.

Лемма 2. Пусть $V = V_* + E$, $\varepsilon \doteq ||E||$, u ε (8) $||C|| \leqslant ||C_*|| + ||\Delta C||$. Тогда ε области (8) верна оценка

$$\lambda_1 \leqslant \left[1 + \frac{2n\left[\sqrt{\lambda_2}\|C_*\|^{1/2} + \|\Delta C\| \cdot \|V_*\| + (\|C_*\| + \|\Delta C\|)\,\varepsilon\right](\|V_*\| + \varepsilon)}{\lambda_2}\right] \times \\ \times (\|C_*\| + \|\Delta C\|)\,\varepsilon^2.$$

Далее повторим рассуждения из доказательства теоремы 3 в [4], заменив (7) на более сильное условие (14). Неравенство (14) отличается от (7) слагаемым $c_2\varepsilon$. По следствию 1 с учетом леммы 1 для сжатия достаточно неравенства

$$\lambda_1 < \left(\sqrt{\omega^2 + (\lambda_2 - c_3 \varepsilon)} - \omega\right)^2, \quad c_3 \doteq \frac{2\omega c_2}{n}, \quad \omega \doteq 4n \|C\| \cdot \|V\|.$$

Применив лемму 2, получим достаточное условие в виде

(21)
$$\left(\alpha_0 + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2\right) \varepsilon^2 < \frac{\omega^2}{2\|C_*\|} \left(\sqrt{1 + \frac{(\lambda_2 - c_3 \varepsilon)}{\omega^2}} - 1\right)^2,$$

$$\alpha_0 \doteq 1 + \frac{2n\left(\sqrt{\lambda_2} \|C_*\|^{1/2} + \|C_*\| \cdot \|V_*\|\right) \|V_*\|}{\lambda_2},$$

$$\alpha_1 \doteq \frac{2n\left(\sqrt{\lambda_2} \|C_*\|^{1/2} + 3\|C_*\| \cdot \|V_*\|\right)}{\lambda_2}, \quad \alpha_2 \doteq \frac{4n\|C_*\|}{\lambda_2}.$$

Последнее является видоизменением неравенства (36) в [4].

Для переменной x в интервале $x \in [0, \alpha]$ верна оценка

$$\left(\frac{\sqrt{1+\alpha}-1}{\alpha}\right)^2 x^2 \leqslant \left(\sqrt{1+x}-1\right)^2.$$

Тогда с обозначениями $x \doteq \frac{(\lambda_2 - c_3 \varepsilon)}{\omega^2}$, $\alpha \doteq \frac{\lambda_2}{\omega^2}$ от (21) приходим к условию

$$\left(\alpha_0 + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2\right) \varepsilon^2 < \frac{\omega^2}{2\|C\|} \left(\frac{\sqrt{1+\alpha} - 1}{\alpha}\right)^2 \frac{\left(\lambda_2 - c_3 \varepsilon\right)^2}{\omega^4} \doteq A \left(\lambda_2 - c_3 \varepsilon\right)^2.$$

Последнее на интервале $\varepsilon \in [0, \|V_*\|]$ следует из неравенства

$$\sqrt{\alpha_0 + \alpha_1 \|V_*\| + \alpha_2 \|V_*\|^2} \varepsilon \doteq f_1^{1/2} \varepsilon < A^{1/2} (\lambda_2 - c_3 \varepsilon),$$

$$f_1 \doteq \alpha_0 + \alpha_1 \|V_*\| + \alpha_2 \|V_*\|^2,$$

которое есть

$$\varepsilon < \frac{A^{1/2}\lambda_2}{f_1^{1/2} + A^{1/2}c_3} = \frac{\varepsilon_*}{f_1^{1/2} + \left(\frac{2\omega c_2}{n\lambda_2}\right)\varepsilon_*}.$$

Теорема доказана.

5. Приложение. Оценки для нормы $\|C\|$

Лемма 3. Для $C = (G^{\mathrm{T}}G)^{-1}$, где матрица $G^{\mathrm{T}} \in \mathbb{R}^{(N-n)\times N}$ определена в (3), верны оценки

(22)
$$\frac{1}{(n+1)^2 \|\gamma\|^2} \leqslant \|C\| \leqslant \frac{2}{(d_{\gamma})^{2n}}.$$

 $3\partial ecb\ d\gamma \doteq \min_{s:\gamma(s)=0} \min_{|\omega|=1} |\omega-s|$ — расстояние между множеством корней многочлена $\gamma(s)=\gamma_0+\gamma_1 s+\ldots+\gamma_n s^n$ и единичной окружностью на комплексной плоскости.

Для доказательства леммы установим вспомогательные утверждения.

Предложение 1. Верна оценка $\|C\| \leqslant \frac{2}{\lambda_{\min}(G_{\rm c}^{\rm T}G_{\rm c})}$, где $G_{\rm c}$ — квадратная циркулянтная матрица

$$G_{\mathbf{c}}^{\mathsf{T}} \doteq \left[\begin{array}{cccccc} 1 & & & 0 & \gamma_0 & \dots & \gamma_{n-1} \\ \vdots & \ddots & & & 0 & \ddots & \vdots \\ \gamma_1 & & \ddots & & & \ddots & \gamma_0 \\ \gamma_0 & \ddots & & 1 & & & 0 \\ & \gamma_0 & \ddots & \ddots & \vdots & 1 & & \\ & & \ddots & \ddots & \vdots & 1 & & \\ & & & \ddots & \gamma_1 & \vdots & \ddots & \\ 0 & & & \gamma_0 & \gamma_1 & \dots & 1 \end{array} \right] \in \mathbb{R}^{M \times M}, \quad M \doteq N - n.$$

 \mathcal{A} оказательство. Верно равенство $\|C\|=\lambda_{\max}\left(C\right)=\frac{1}{\lambda_{\min}\left(G^{\mathrm{T}}G\right)},$ и для G^{T} (3) выполнено

$$G^{\mathrm{T}}\underbrace{\begin{bmatrix} 0 & I_n \\ I_{M-n} & 0 \\ 0 & I_n \end{bmatrix}}_{E} \doteq G^{\mathrm{T}}E = G_{\mathrm{c}}^{\mathrm{T}}.$$

Заметим, что $\|E\| = \sqrt{\lambda_{\max}\left(E^{\mathrm{\scriptscriptstyle T}}E\right)} = \sqrt{2}$. Далее, $\|E^{\mathrm{\scriptscriptstyle T}}x\| \leqslant \|E\| \cdot \|x\| = \sqrt{2}\,\|x\|$ и верны соотношения

$$\lambda_{\min} (G_{c}^{T} G_{c}) = \min_{\|p\|=1} \|G_{c} p\|^{2} = \min_{\|p\|=1} \|E^{T} \underbrace{Gp}_{x}\|^{2} \le$$

$$\leq 2 \min_{\|p\|=1} \|Gp\|^{2} = 2 \lambda_{\min} (G^{T} G).$$

Отсюда получаем доказываемое утверждение.

Предложение 2. Пусть $\zeta_k \doteq \mathrm{e}^{2\pi\mathrm{i}(k/M)} - \kappa$ орень из единицы. Спектр матрицы $G_{\mathrm{c}}^{\mathrm{T}}G_{\mathrm{c}}$ есть множество $\{|\gamma(\zeta_0)|^2,\ldots,|\gamma(\zeta_{M-1})|^2\}.$

Доказательство. Матрица G_c^{T} правоциркулянтная, обозначим ее первую строку $[c_0, \ldots, c_{M-1}]$. Верно разложение [14, п. 3.7.3]

$$G_{\rm c}^{\rm T} = \Phi \left[{\rm diag} \left(\lambda_0, \dots, \lambda_{M-1} \right) \right] \Phi^{-1} \doteq \Phi \Lambda \Phi^{-1},$$

где $\Phi \doteq \frac{1}{\sqrt{M}} F$, $F \in \mathbb{C}^{M \times M}$ — симметричная матрица дискретного преобразования Фурье с элементами $F_{kl} \doteq \mathrm{e}^{-2\pi\mathrm{i}(kl/M)}$, $k,l \in \overline{0,M-1}$, $\Phi^{-1} = \Phi^* \doteq \overline{\Phi}^{\mathrm{T}} = \overline{\Phi}$, черта над матрицей означает комплексное сопряжение. При этом собственные числа λ_k есть значения многочлена $c(\zeta) \doteq c_{M-1}\zeta^{M-1} + \ldots + c_0$ в точках единичной окружности $\zeta_0,\ldots,\zeta_{M-1},\,\lambda_k=c(\zeta_k)$, то есть вектор-строка из собственных чисел есть образ Фурье от первой строки $G_{\mathrm{c}}^{\mathrm{T}}\colon [\lambda_0,\ldots,\lambda_{M-1}]=[c_0,\ldots,c_{M-1}]\,F$. С учетом вещественности матрицы G_{c} и симметричности Φ верно представление $G_{\mathrm{c}}^{\mathrm{T}}=\overline{G}_{\mathrm{c}}^{\mathrm{T}}=\overline{\Phi}\Lambda\overline{\Phi}^*=\overline{\Phi}\,\overline{\Lambda}\,\Phi$, поэтому верны равенства

$$G_{c}^{T}G_{c} = G_{c}^{T}\overline{G_{c}} = \Phi \Lambda \Phi^{-1} \left(\overline{\Phi} \overline{\Lambda} \Phi \right)^{T} = \Phi \Lambda \overline{\Lambda} \overline{\Phi} =$$

$$= \Phi \left[\operatorname{diag} \left(|\lambda_{0}|^{2}, \dots, |\lambda_{M-1}|^{2} \right) \right] \Phi^{-1} =$$

$$= \Phi \left[\operatorname{diag} \left(|c(\zeta_{0})|^{2}, \dots, |c(\zeta_{M-1})|^{2} \right) \right] \Phi^{-1}.$$

Для завершения доказательства остается заметить, что $|c(\zeta_k)|=|\gamma(\zeta_k)|$ ввиду равенства $c(\zeta_k)=\zeta_k^{M-n}\gamma(\zeta_k)$ для всех $k\in\overline{0,M-1}$.

Предложение 3. Верна оценка

(23)
$$||C|| \leqslant \frac{2}{\min_{k \in \overline{0, M-1}} |\gamma(\zeta_k)|^2} \leqslant \frac{2}{(d_{\gamma})^{2n}}.$$

Доказательство. С учетом предложений 1 и 2 для доказательства достаточно учесть неравенства

$$|\gamma(\zeta_k)| = |(\zeta_k - s_1) \dots (\zeta_k - s_n)| = |\zeta_k - s_1| \dots |\zeta_k - s_n| \geqslant$$

$$\geqslant \min_{|\omega_1|=1} |\omega_1 - s_1| \dots \min_{|\omega_n|=1} |\omega_n - s_n| \geqslant \left(\min_{s_i} \min_{|\omega|=1} |\omega - s_i|\right)^n = (d_{\gamma})^n.$$

Предложение доказано.

Замечание 1. Для чисел ζ_k с ненулевой мнимой частью собственное число $|\lambda_k|^2 = |\gamma(\zeta_k)|^2$ матрицы $G_{\rm c}^{\rm T} G_{\rm c}$ имеет кратность два. Это следует из симметрии $|\gamma(\zeta_k)|^2 = \gamma(\zeta_k)\overline{\gamma(\zeta_k)} = \gamma(\zeta_k)\gamma(\overline{\zeta_k})$ относительно перестановки ζ_k и симметрии множества $\{\zeta_0,\ldots,\zeta_{M-1}\}$ относительно вещественной оси комплексной плоскости. Поэтому в оценке (23) минимум достаточно брать по $k \in \overline{0, \lceil \frac{M}{2} \rceil + 1}$, где $[\cdot]$ — целая часть числа.

Для завершения доказательства леммы 3 используем неравенства

$$||C||^{-1} = ||G^{\mathsf{T}}G|| \le ||G||^2 \le (n+1)^2 ||\gamma||^2,$$

последнее из которых следует из определений (3), (5) и соотношения $Gx \equiv V(x)\gamma$:

$$||G|| = \sup_{\|x\|=1} ||G^{\mathsf{T}}x|| = \sup_{\|x\|=1} ||V(x)\gamma|| \leqslant \sup_{\|x\|=1} ||V(x)|| \cdot ||\gamma|| \leqslant$$

$$(24) \qquad \leqslant \sup_{\|x\|=1} ||V(x)||_2 \cdot ||\gamma|| \leqslant (n+1) ||\gamma||,$$

где $\|\cdot\|_2$ — фробениусовская норма матрицы. Лемма доказана.

Замечание 2. Оценки (22) уместно сопоставить с цепочкой неравенств

$$(d_{\gamma})^n \leq |\gamma(s)|_{|s|=1} \leq |\gamma_0| + \ldots + |\gamma_n| \leq (n+1) \max_i |\gamma_i| \leq (n+1) ||\gamma||,$$

которая, по всей видимости, неулучшаема.

Автор благодарит рецензента за исправление ошибки в утверждении и доказательстве леммы 3.

References

- [1] Osborne M. R., Smyth G. K., A modified Prony algorithm for fitting functions defined by difference equations, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382. MR1087765
- [2] Osborne M. R., Smyth G. K., A Modified Prony Algorithm for Exponential Function Fitting, SIAM Journal of Scientific Computing, 16 (1995), 119–138. MR1311681
- [3] Pereyra V., Scherer G., Exponential data fitting, in: Exponential Data Fitting and Its Applications, Bentham Science Publishers (2010), 1–26.
- [4] Lomov A. A., On convergence of the inverse iteration algorithm for modified Prony method, SEMR, 15 (2018), 1513-1529. MR3885486
- [5] Kostin V.I., On extremum points of some function [in Russian], Upravlyaemye sistemy, Novosibirsk: Institute of Mathematics of SB AS USSR, 24 (1984), 35–42.
- [6] Petersson J., Holmström K., A review of the parameter estimation problem of fitting positive exponential sums to empirical data, Applied Mathematics and Computation, 126:1 (2002), 31–61. MR1868146
- [7] Moor De B., Structured total least squares and L₂ approximation problems, Linear Algebra Appl., 188-189 (1993), 163-207. Zbl 0781.65028
- [8] Osborne M. R., Some special nonlinear least squares problems, SIAM J. Numer. Anal., 12 (1975), 571–592. MR386222
- [9] Osborne M. R., A class of nonlinear regression problems, Data Representation, St. Lucia: University of Queensland Press (1970), 94–101. Zbl 0341.62058
- [10] Egorshin A. O., Budyanov V. P., Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer [in Russian], Avtometriya, 1 (1973), 78–82.
- [11] Egorshin A.O., Least squares method and the fast algorithms in variational problems of identification and filtration (VI method) [in Russian], Avtometriya, 1 (1988), 30–42.
- [12] Egorshin A. O., On tracking extremum parameters in the identification variational problem [in Russian], Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika, 11:3 (2011), 95–113; English transl.: Journal of Mathematical Sciences, 195 (2013), 791–804. MR3141842

- [13] Lomov A. A., Local stability in the problem of identifying coefficients of a linear difference equation [in Russian], Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika, 10:4 (2010), 81–103; English transl.: Journal of Mathematical Sciences, 188:4 (2013), 410–434. MR3049146
- [14] Marple S. L., Digital spectral analysis with applications, Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1986.

Andrei Aleksandrovich Lomov Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia E-mail address: lomov@math.nsc.ru