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KAPLAN’S PENALTY OPERATOR IN APPROXIMATION OF A
DIFFUSION-ABSORPTION PROBLEM WITH A ONE-SIDED

CONSTRAINT

T.V. SAZHENKOVA, S.A. SAZHENKOV

Abstract. We consider the homogeneous Dirichlet problem for the
nonlinear diffusion-absorption equation with a one-sided constraint im-
posed on diffusion flux values. The family of approximate solutions con-
structed by means of Alexander Kaplan’s integral penalty operator is
studied. It is shown that this family converges weakly in the first-order
Sobolev space to the solution of the original problem, as the small regular-
ization parameter tends to zero. Thereafter, a property of uniform approx-
imation of solutions is established in Hölder’s spaces via systematic study
of structure of the penalty operator.

Key words: penalty method, p-Laplace operator, diffusion-absorption
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Introduction

In this article, we consider the problem of description of a stationary nonlinear
diffusion-absorption process in a bounded continuum Ω of d-dimensional space
of independent variables x. Dimension d ∈ N is given arbitrarily. The vector-
function of diffusion flux J is given by either Fick’s or Fourier’s law and nonlinearly
depends on the gradient of the sought scalar function u = u(x). This dependence
is power-law. More precisely, the divergence of diffusion flux is p-Laplacian of
u, i.e., divx J = ∆pu := divx(|∇xu|p−2∇xu). The scalar absorption function is
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also nonlinear and is defined by the formula a(u) = |u|p−2u.1 From the physical
viewpoint, the sought function u may have the sense of concentration of some
component of matter or the sense of temperature of a matter continuum. Also u
may stand for deformation in equilibrium problems in hyper-elasticity. In general,
the equations of the form −∆pu+ α(u) = f (with a nonlinear function α = α(u))
arise in mathematical modelling in rheology, glaciology, radiation of heat, and
plastic moulding; in description of Brownian motion and even in game theory (see
mathematical tug-of-war games in [8, 17,20]).

A great amount of publications is devoted to various questions about well-
posedness and qualitative properties of solutions to such equations and the vast
theory is constructed as the result (see, for example, monographs and surveys
[1,2,15,16,25]). In the present work, a problem with constraint |∇xu| ≤ 1 is studied.
In turn, the presence of the constraint leads to the mathematical formulation in
the form of variational inequality or, equivalently, in the form of the minimization

problem for the functional F (u) =
1

p

∫
Ω

(
|∇xu|p+ |u|p

)
dx−

∫
Ω

fu dx on the convex

closed set {u : |∇xu| ≤ 1}.2 Here f is a given density of distributed external sources
in molecular diffusion or distributed external mass forces in hydrodynamics and
hyper-elasticity.

Penalty methods take place among widely used methods for fruitful study of
the above stated questions on existence and qualitative properties of solutions.
Besides, penalty methods are constructive ones in the sense that they provide
approximation of solutions of original problems with the help of families of solutions
to perturbed unconstrained minimization problems. The penalty method is exactly
the method that we use in this paper. With the help of the integral version of
Alexander Kaplan’s penalty function, for an arbitrarily given and small δ > 0 we
succeed to obtain refined approximation in C(Ξδ) for the solution of the nonlinear
diffusion-absorption problem with the constraint on the diffusion flux, with Ξδ being
a closed set in Ω such that the Lebesgue measure of Ω\Ξδ is less than δ. This article
is somewhat close to other studies devoted to description of diffusion-convection-
absorption problems with one-sided constraints [3,4] and it is a natural continuation
of the works [9, 21,22].

1. Formulation and well-posedness of the problem

In the present work, we consider the following homogeneous Dirichlet problem
for the diffusion-absorption equation with a one-sided constraint on the diffusion
flux.

Problem D-A. In a bounded domain Ω ⊂ Rd with the smooth boundary ∂Ω, it is
necessary to find a function u = u(x) satisfying the equation

(1.1a) − divx J + |u|p−2u = f,

1It is clear from the further outline in the article that, on the strength of the first Sobolev
embedding theorem [19, Ch. I, Th. 1.1], all results of the article can be naturally extended to the
case when a(u) = |u|q−2u with any q ∈ (1, pd/(d− p)) for d > p and any q ∈ (1,+∞) for d ≤ p.

2By analogy with the theory of hyper-elasticity, this functional can be referred to as the stored
p-energy [15], [24, Sec. 17.3]. Within the framework of this theory, the identity |∇xu| = 1 is the
yield criterion.
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where the diffusion flux J is defined by the formulas

(1.1b) J ∈ ∂Φ(∇xu), Φ(τ ) =
1

p

∫
Ω

Q(τ (x))dx, Q(τ ) =

{
|τ |p for |τ | ≤ 1,
+∞ for |τ | > 1,

and the homogeneous Dirichlet condition

(1.1c) u|∂Ω = 0.

In the formulation of Problem D-A, p ∈ (1,+∞) is a given constant exponent,
f ∈W−1,p′

(Ω) is a given functional, and W−1,p′
(Ω) (p−1 + (p′)

−1
= 1) is the dual

space to the Sobolev space W 1,p
0 (Ω). The norm in W 1,p

0 (Ω) is standardly defined
by the formula

∥ϕ∥W 1,p
0 (Ω) =

(∫
Ω

[
|ϕ(x)|p + |∇xϕ(x)|p

]
dx

)1/p

.

Relations (1.1b) mean that J is an element of the subdifferential ∂Φ of the functional

Φ: τ 7→ 1

p

∫
Ω

Q(τ (x))dx at the point τ = ∇xu. Notice that Φ is a Gâteaux-

differentiable mapping on the set

M := {τ : Ω 7→ Rd are measurable vector-functions

such that |τ (x)| ≤ 1 almost everywhere in x ∈ Ω} ⊂ Lp(Ω)d,

and its Gâteaux derivative Φ′(τ ) is defined by the formula

⟨Φ′(τ ),v⟩ =
∫
Ω

|τ (x)|p−2τ (x) · v(x)dx ∀v ∈ Lp(Ω)d.

Notation 1. Here and further in the article by ⟨·, ·⟩ the duality brackets are defined,
i.e., ⟨Ψ, ψ⟩ is the value of a functional Ψ ∈ V∗ on an element ψ ∈ V, where V is a
reflexive Banach space and V∗ is the dual space to V.

On the strength of the well-known equivalency property in subdifferential calculus
[6, Ch. I, Sec. 5], we conclude that ∂Φ(τ ) is defined onM and that ∂Φ(τ ) = {Φ′(τ )}.
Also remark that Φ is not a proper function on Lp(Ω)d\M and therefore ∂Φ(τ ) = ∅
for τ ∈ Lp(Ω)d \M . This observation leads to the following formulation.

Definition 1. By the weak generalized solution (w.g.s.) of Problem D-A we call a
function u ∈W 1,p

0 (Ω) satisfying the bound

(1.2a) |∇xu| ≤ 1 almost everywhere in Ω

and the variational inequality

(1.2b)
∫
Ω

[
|∇xu|p−2∇xu · ∇x(φ− u) + |u|p−2u(φ− u)

]
dx ≥ ⟨f, φ− u⟩

for any test function φ ∈W 1,p
0 (Ω) such that |∇xφ| ≤ 1 almost everywhere in Ω.

Notation 2. Introduce the notation for two solution-dependent3 domains in Ω:

Ω− = {x ∈ Ω: |∇xu(x)| < 1}, Ω1 = Ω \ Ω−.

3Notice that the w.g.s. of Problem D-A exists and is unique. See Proposition 2.
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Remark 1. Since M is a convex set containing the origin x = (0, 0, . . . , 0), (1.2b)
is equivalent to equation4

(1.3) − divx(|∇xu|p−2∇xu) + |u|p−2u = f in Ω−

in the sense of distributions. In Ω1, (1.2b) does not imply (1.3), in general.

Notation 3. Introduce notation for the class of sought functions u,

(1.4) M := {φ ∈W 1,p
0 (Ω): |∇xφ| ≤ 1 almost everywhere in Ω}.

Validity of the next two assertions directly follows from the well-known facts in
convex analysis and theory of variational inequalities for monotonous operators [6,
Ch. I, Prop. 5.5; Ch. II, Prop. 2.1], [14, Ch. III, Th. 1.4].

Proposition 1. Function u ∈ M is a w.g.s. to Problem D-A in the sense of
Definition 1 if and only if it is a solution to the minimization problem on M for
the functional

F (φ) =
1

p

∫
Ω

(|∇xφ|p + |φ|p) dx− ⟨f, φ⟩,

i.e., if

(1.5) F (u) = inf
φ∈M

F (φ).

Proposition 2. Whenever f ∈ W−1,p′
(Ω), Problem D-A has a unique w.g.s. in

the sense of Definition 1.

Remark 2. The set M consists of rather regular functions. By the second Sobolev
embedding theorem [19, Ch. I, Th. 1.2], one has that if φ ∈ M then φ ∈W 1,∞

0 (Ω)

and the operator of natural embedding of M into W 1,∞
0 (Ω) is continuous. Further-

more, by the first Sobolev embedding theorem [19, Ch. I, Th. 1.1], one has that if
φ ∈ M then φ has a continuous extension on Ω. In particular, for any x0 ∈ ∂Ω
one has that ess lim

x → x0

x ∈ Ω

φ(x) = 0 for any sequence {x → x0, x ∈ Ω}.

2. Kaplan’s penalty function

In applications, it is often useful to find solutions to problems of the form (1.5)
approximately via solutions of problems of unconstrained optimization. Penalty
methods give ways to implement this approach. These methods have a long history
and they constitute a large and powerful theory. The basics of this theory can be
found, for example, in [7, 11, 14, 16]. Also, these methods are fruitful for studies of
topics on refined regularity of solutions to optimization problems with nonlinear
constraints (see [16, Ch. 3, Sec. 5.5]).

Let us briefly recall that, for a closed convex nonempty subset K of a reflexive
Banach space V, by a penalty operator associated with K we call any operator β
satisfying the following properties:

β : V 7→ V∗ is monotonous, bounded, and semicontinuous,
{w : w ∈ V, β(w) = 0} = K.

4Recall that (1.3) is a nonlinear degenerate equation for p > 2 and a nonlinear singular equation
for p ∈ (1, 2). For p = 2, it is a semilinear equation with the convenient Laplace operator ∆2 ≡ ∆x.
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Let us consider the minimization problem for some Gâteaux-differentiable strictly
convex functional Ψ: V 7→ R:

(2.1) Find u ∈ K such that Ψ(u) = inf
w∈K

Ψ(w).

Problem

(2.2) Ψ′(uε) +
1

ε
β(uε) = 0, uε ∈ K (ε > 0),

where β is a penalty operator associated with K, is called the penalized problem
associated with problem (2.1). Suppose additionally that the norms defined in V
and V∗ are strictly convex.5 On the strength of the above made assumptions and
the well-known results from [16, Ch. III, Sec. 5], penalty operators exist, problem
(2.2) is uniquely solvable for any fixed ε ∈ (0, 1), and the sequence {uε} of its
solutions converges weakly in V to the unique solution u ∈ K of problem (2.1), as
ε→ 0.

In general, the penalty operator β can be defined in different ways, the question
about how to choose the ‘best possible’ operator is somewhat fuzzy, as well as an
answer to it. In the present article, in order to construct approximate solutions to
Problem D-A, we apply the penalty function which was originally introduced by
Alexander Kaplan [11] and then has been widely implemented in study of nonlinear
problems of variational calculus with constraints [10,12,13,22].

Definition 2. [11, Ch. III, §3.4, Formula (3.44)]. Functional Φ(t)
ε : W 1,p

0 (Ω) 7→ R
defined by the formula

Φ(t)
ε (φ) =

1

εp

∫
Ω

(
|∇xφ|p − 1 +

√
(|∇xφ|p − 1)2 + ε2+t

)
dx, ε > 0, t ≥ 0

is called Alexander Kaplan’s integral penalty function associated with the set M,
defined by formula (1.4).

Notation 4. Introduce notation for the interior of the set M:

intM := {φ ∈ M : ∃ δ = const ∈ (0, 1) such that
|∇xφ|p ≤ 1− δ for almost all x ∈ Ω}.

Proposition 3. Family {Φ(t)
ε }ε∈(0,1) has the following properties.

(i) Φ
(t)
ε are convex functionals.

(ii) Φ
(t)
ε (φ) −→

ε→0
0 ∀φ ∈ intM.

(iii) Φ
(t)
ε (φ) −→

ε→0
+∞ ∀φ ∈W 1,p

0 (Ω) \M.

(iv) For fixed ε > 0 and t ≥ 0 functional Φ
(t)
ε is Gâteaux-differentiable. Its

derivative (Φ
(t)
ε )′: W 1,p

0 (Ω) 7→W−1,p′
(Ω) is defined by the formula

⟨(Φ(t)
ε )′(φ), ψ⟩ = 1

ε

∫
Ω

(
1 +

|∇xφ|p − 1√
(|∇xφ|p − 1)2 + ε2+t

)
|∇xφ|p−2∇xφ · ∇xψ dx

∀φ,ψ ∈W 1,p
0 (Ω).

5Note that the canonical norms in W 1,p
0 (Ω) and W−1,p′ (Ω) (p ∈ (1,+∞)) are strictly convex.
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Proof. Justification of assertions (i)–(iii) is fulfilled analogously to the proof of these
assertions for algebraic finite (non-integral) Alexander Kaplan’s penalty function,
keeping track of considerations in [9], [11, Ch. III, Sec. 3.4]. Assertion (iv) is verified
by the direct calculation of the Gâteaux derivative. �

Remark 3. We call operator β
(t)
ε := ε(Φ

(t)
ε )′ Alexander Kaplan’s approximate

penalty operator and we call the problem

(2.3) F ′(uε) +
1

ε
β(t)
ε (uε) = 0, uε ∈W 1,p

0 (Ω), ε > 0

Alexander Kaplan’s penalized problem associated with Problem D-A.

As well as for the ‘abstract’ problem (2.2), solution of (2.3) is understood in the
generalized sense.

Definition 3. Function uε ∈W 1,p
0 (Ω) is called a weak generalized solution (w.g.s.)

of problem (2.3) if it satisfies the integral equality

(2.4)
∫
Ω

(
|∇xuε|p−2∇xuε · ∇xφ+ |uε|p−2uεφ

)
dx

+
1

ε

∫
Ω

(
1 +

|∇xuε|p − 1√
(|∇xuε|p − 1)2 + ε2+t

)
|∇xuε|p−2∇xuε · ∇xφdx = ⟨f, φ⟩

∀φ ∈W 1,p
0 (Ω).

Remark 4. Strictly speaking, operator β(t)
ε itself is not a penalty operator assoc-

iated with the set M. Furthermore, for any φ ∈W 1,p
0 (Ω) one has that

β(t)
ε (φ) −→

ε→0
β(t)(φ) uniformly in W−1,p′

(Ω),

where β(t) is defined by the formula

(2.5)

⟨β(t)(φ), ψ⟩ =
∫
{x: |∇xφ|=1}

∇xφ ·∇xψ dx+

∫
{x: |∇xφ|>1}

2|∇xφ|p−2∇xφ ·∇xψ dx

∀φ,ψ ∈W 1,p
0 (Ω).

Denote M0 := {φ ∈ W 1,p
0 (Ω) : |∇xφ| < 1 almost everywhere in Ω}. From (2.5) it

is clear that {φ ∈W 1,p
0 (Ω): β(t)(φ) = 0} = M0. Thus the limiting penalty operator

is associated with the unclosed in W 1,p
0 (Ω) convex set M0. Obviously, the set M is

its closure in W 1,p
0 (Ω).

In view of this remark, the limiting passage as ε → 0 in (2.3) is more delicate
than the similar one in the classical monograph [16, Ch. 3, Th. 5.2]. The next
section is devoted to the proof of solvability of problem (2.3) for fixed ε > 0 and to
justification of the limiting passage in this problem as ε→ 0.

3. Proof of solvability of Problem D-A by means of operator β
(t)
ε

The first main result of the article is as follows.

Theorem 1. (i) For any fixed ε ∈ (0, 1) and for any given f ∈W−1,p′
(Ω) there is

a unique w.g.s. uε to problem (2.3) in the sense of Definition 3.
(ii) uε −→

ε→0
u weakly in W 1,p

0 (Ω), where u is the w.g.s. of Problem D-A.
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Let us introduce one useful notation and then turn to verification of Theorem 1.

Notation 5. Define operator A: W 1,p
0 (Ω) 7→W−1,p′

(Ω) by the formula

A(φ) := F ′(φ) + f ∀φ ∈W 1,p
0 (Ω),

or, equivalently,

⟨A(φ), ψ⟩ =
∫
Ω

(
|∇xφ|p−2∇xφ · ∇xψ + |φ|p−2φψ

)
dx ∀φ,ψ ∈W 1,p

0 (Ω).

Proof. (1) In order to justify assertion (i), it is sufficient to verify that the operator(
φ 7→ A(φ) +

1

ε
β(t)
ε (φ)

)
: W 1,p

0 (Ω) 7→W−1,p′
(Ω)

is bounded, strictly monotonous, semicontinuous, and coercive [16, Ch. 2, Sec. 2,
Th. 2.1]. Coerciveness is understood in the sense of the limiting relation⟨

A(φ) +
1

ε
β(t)
ε (φ), φ

⟩
∥φ∥W 1,p

0 (Ω)

→ +∞ for ∥φ∥W 1,p
0 (Ω) → +∞.

Also recall that an operator mapping fromW 1,p
0 (Ω) intoW−1,p′

(Ω) is called bounded,
if it maps bounded sets in W 1,p

0 (Ω) into bounded sets in W−1,p′
(Ω); an operator

A: W 1,p
0 (Ω) 7→W−1,p′

(Ω) is called semicontinuous if

the function λ 7→ ⟨A(φ+λψ), ζ⟩ is continuous from R into R, ∀φ,ψ, ζ ∈W 1,p
0 (Ω);

and an operator A: W 1,p
0 (Ω) 7→W−1,p′

(Ω) is called monotonous if

⟨A(φ)−A(ψ), φ− ψ⟩ ≥ 0 ∀φ,ψ ∈W 1,p
0 (Ω).

If this inequality is strict for all φ ̸= ψ then A is called strictly monotonous.
All four properties (i.e., boundedness, strict monotonicity, semicontinuity, and

coercivity) are verified for the mapping φ 7→ A(φ) +
1

ε
βε(φ) directly by means

of Hölder’s, Young’s, and Cauchy — Schwarz’ inequalities. Also notice that the
mapping φ 7→ F (φ) + ⟨f, φ⟩ is a strictly convex functional and Φ

(t)
ε is a convex

functional (see assertion (ii) in Proposition 3 and [16, Ch. 2, Sec. 1, Prop. 1.1]).
Thus, assertion (i) in Theorem 1 is proved. Now we pass to the limit and

rigorously justify the limiting relation in (2.4), as ε→ 0.
(2) Insert uε into (2.4) on the place of φ, which is legal. This yields the energy

identity
(3.1)∫
Ω

(
|∇xuε|p + |uε|p

)
dx+

1

ε

∫
Ω

(
1 +

|∇xuε|p − 1√
(|∇xuε|p − 1)2 + ε2+t

)
|∇xuε|p dx = ⟨f, uε⟩.

Estimating in the right-hand side by means of Cauchy — Schwarz’ and Young’s
inequalities, we arrive at the energy inequality

(3.2) ∥uε∥pW 1,p
0 (Ω)

≤ ∥f∥p
′

W−1,p′ (Ω)

and the elementary bound for the penalty operator
(3.3)

0 < ⟨β(t)
ε (uε), uε⟩ ≡

∫
Ω

(
1+

|∇xuε|p − 1√
(|∇xuε|p − 1)2 + ε2+t

)
|∇xuε|p dx ≤ ε

p′
∥f∥p

′

W−1,p′ (Ω)
.
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Now rewriting (2.3) in the form

(3.4) β(t)
ε (uε) = −εF ′(uε)

and using (3.2) and Cauchy — Buniakovskii’s and Cauchy — Schwarz’ inequaities,
we derive the estimate on the norm of β(t)

ε (uε):

⟨β(t)
ε (uε), φ⟩ ≤ ε(1 + C2

sob(Ω))∥f∥W−1,p′ (Ω)∥φ∥W 1,p
0 (Ω) ∀φ ∈W 1,p

0 (Ω),

that is,

(3.5) ∥β(t)
ε (uε)∥W−1,p′ (Ω) ≤ ε(1 + C2

sob(Ω))∥f∥W−1,p′ (Ω).

Here Csob(Ω) is the constant from either the first (in the case p ≤ d) or the second
(in the case p > d) Sobolev embedding theorem (see [19, Ch. I, Sec. 1.2]). It depends
merely on the exponent p and on geometry of the domain Ω.

Alongside (3.5) we establish the bound

(3.6) ∥A(uε)∥W−1,p′ (Ω) ≤ C2
sob(Ω)∥f∥W−1,p′ (Ω).

(3) On the strength of (3.2) and (3.6), extracting a proper subsequence from
{ε→ 0}, if necessary,6 we conclude that

uε −→
ε→0

u weakly in W 1,p
0 (Ω),(3.7)

A(uε) −→
ε→0

χ weakly* in W−1,p′
(Ω),(3.8)

with some limiting u and χ.
Using Lebesgue’s dominated convergence theorem [23, theorem 1.4.48] as ε→ 0,

from (3.3) we derive that u ∈ M.
Let v ∈ intM. Take φ := v in (2.4) and combine the result with (3.1) to get

(3.9) ⟨A(uε)− f, v − uε⟩ =
1

ε
⟨β(t)

ε (v)− β(t)
ε (uε), v − uε⟩ −

1

ε
⟨β(t)

ε (v), v − uε⟩.

Here we added and subtracted the term
1

ε
⟨β(t)

ε (v), v − uε⟩ in the right-hand side.
Since v ∈ intM, by the definition we have |∇xv|p ≤ 1 − δ for almost all x ∈ Ω

with some constant δ ∈ (0, 1). By simple technical considerations we establish the
estimate

(3.10) 0 < 1 +
|∇xv|p − 1√

(|∇xv|p − 1)2 + ε2+t
=

=
ε2+t

(|∇xv|p − 1)2 + ε2+t + (1− |∇xv|p)
√
(|∇xv|p − 1)2 + ε2+t

≤

≤ ε2+t

δ2 + ε2+t + δ
√
δ2 + ε2+t

≤ ε2+t

2δ2
almost everywhere in Ω.

On the strength of (3.2) and (3.10), from the definition of penalty operator β(t)
ε

(see Remark 3 and assertion (iv) in Proposition 3) we derive that

(3.11)
1

ε
⟨β(t)

ε (v), v − uε⟩ = o(ε1+t−θ) as ε→ 0 ∀ θ ∈ (0, 1), ∀ v ∈ intM.

6We keep index ε for the extracted subsequence.
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Since β(t)
ε is monotonous, we have that

1

ε
⟨β(t)

ε (v) − β(t)
ε (uε), v − uε⟩ ≥ 0. On the

strength of (3.11), this inequality and (3.9) yield that

(3.12) ⟨A(uε)− f, v − uε⟩ ≥ −1

ε
⟨β(t)

ε (v), v − uε⟩.

In turn, due to (3.7) and (3.8), this gives

(3.13) ⟨χ− f, v⟩ ≥ lim sup
ε→0

⟨A(uε), uε⟩ − ⟨f, u⟩.

Notice that v :=
u

λ
with any λ > 1 is an admissible test function for (3.13), since

u

λ
∈ intM in this case. Now passing to the limit as λ → 1 + 0, from (3.13) we

derive
⟨χ− f, u⟩ ≥ lim sup

ε→0
⟨A(uε), uε⟩ − ⟨f, u⟩,

i.e.,

(3.14) ⟨χ, u⟩ ≥ lim sup
ε→0

⟨A(uε), uε⟩.

Recall from item (1) of this proof thatA is bounded monotonous and semicontinuous.
Hence it is pseudo-monotonous in the sense that the following property holds
true [16, Ch. 2, Defn. 2.1 and Th. 2.5].

From the condition

wj −→
j→∞

w weakly in W 1,p
0 (Ω) and lim sup

j→∞
⟨A(wj), wj − v⟩ ≤ 0,

it follows that lim inf
j→∞

⟨A(wj), wj − v⟩ ≥ ⟨A(w), w − v⟩ ∀ v ∈W 1,p
0 (Ω).

(3.15)

From (3.14) and (3.15) it follows that lim inf
ε→0

⟨A(uε), uε − v⟩ ≥ ⟨A(u), u− v⟩. On
the strength of (3.11) and (3.12), this yields that ⟨f, u− v⟩ ≥ ⟨A(u), u− v⟩ for all
v ∈ intM, and hence for all v = φ ∈ M due to denseness of intM in M. This
means that (1.2b) is valid. Therefore u is the w.g.s. of Problem D-A.

Theorem 1 is proved. �

Remark 5. (On convergence of energies.) Since {uε}ε→0 is a minimizing sequence
and ⟨A(v), v⟩ = ∥v∥p

W 1,p
0 (Ω)

∀ v ∈ W 1,p
0 (Ω), the following limiting relation for the

stored p-energies holds true:

(3.16)
1

p
∥uε∥pW 1,p

0 (Ω)
− ⟨f, uε⟩ −→

ε→0

1

p
∥u∥p

W 1,p
0 (Ω)

− ⟨f, u⟩.

Evidently, in the case p = 2 from (3.16) it follows that

(3.17) uε −→
ε→0

u strongly in W 1,2
0 (Ω).

Also, analogously to [16, Ch. 3, Sec. 5.3] we establish the limiting relation

(3.18) ⟨A(uε)−A(u), uε − u⟩ −→
ε→0

0.

Let us notice that properties (3.16)–(3.18) do not depend on a choice of penalty
operator.7

7The relations (3.16)–(3.18) hold true for any admissible penalty operator.
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In the next (concluding) section, we find out rather subtle and nonstandard
features of the family {uε} that have place precisely thanks to the construction of
Alexander Kaplan’s penalty function.

4. Property of uniform approximation

At first, we establish one important geometric property that leads further to the
result on uniform convergence of the family {uε}, as ε → 0. We introduce into
consideration some sets in Ω depending on the solution of problem (2.3).

Notation 6. For ε, δ ∈ (0, 1) denote

Ω−(ε) := {x ∈ Ω: |∇xuε(x)| < 1}, Ω+(ε) := {x ∈ Ω: |∇xuε(x)| ≥ 1},
Ω−(ε, δ) := {x ∈ Ω: |∇xuε(x)|p ≤ 1− δ},
Ω1(ε, δ) := {x ∈ Ω: 1− δ < |∇xuε(x)|p < 1}.

Remark 6. Obviously, the sets Ω+(ε), Ω−(ε, δ), and Ω1(ε, δ) do not intersect pair-
wise, and Ω+(ε) ∪ Ω−(ε, δ) ∪ Ω1(ε, δ) = Ω for all ε, δ ∈ (0, 1).

Notation 7. In the formulation of Theorem 2 and further in the text by measQ
we denote the Lebesgue measure of a Lebesgue-measurable set Q.

Theorem 2. There exists an increasing by inclusion sequence8 of closed sets {Eεl},
εl −→

l→∞
0, such that

(i) Eεl ⊂ Ω−(εl, ε
1+t/2
l ), l = 1, 2, 3, . . .,

(ii) meas (Ω \ Eεl) ≤ εl−1. In particular, meas
(
Ω \

∞∪
l=1

Eεl
)
= 0.

Proof. For all ε ∈ (0, 1) due to (3.3) we have that
(4.1)
ε

p′
∥f∥p

′

W−1,p′ (Ω)
≥

∫
Ω+(ε)

(
1 +

|∇xuε|p − 1√
(|∇xuε|p − 1)2 + ε2+t

)
|∇xuε|p dx ≥ meas Ω+(ε),

(4.2)
ε

p′
∥f∥p

′

W−1,p′ (Ω)
≥

∫
Ω−(ε)

(
1− 1− |∇xuε|p√

(|∇xuε|p − 1)2 + ε2+t

)
|∇xuε|p dx =

=

∫
Ω−(ε)

ε2+t|∇xuε|p dx
(1− |∇xuε|p)2 + ε2+t + (1− |∇xuε|p)

√
(1− |∇xuε|p)2 + ε2+t

.

From (4.2), for all ε, δ ∈ (0, 1) the estimate

ε

p′
∥f∥p

′

W−1,p′ (Ω)
≥

≥
∫
Ω1(ε,δ)

ε2+t|∇xuε|p dx
(1− |∇xuε|p)2 + ε2+t + (1− |∇xuε|p)

√
(1− |∇xuε|p)2 + ε2+t

≥

≥
∫
Ω1(ε,δ)

ε2+t(1− δ) dx

δ2 + ε2+t + δ
√
δ2 + ε2+t

8The increase in the inclusion means that Eεn ⊂ Eεm for m > n.



246 T.V. SAZHENKOVA, S.A. SAZHENKOV

follows. Since δ and ε are mutually independent, we may take δ = ε1+t/2. Continue

estimating, taking into account that 1 − δ = 1 − ε1+t/2 ≥ 1

2
for ε ≤ 2−2/(2+t), to

get

(4.3)
ε

p′
∥f∥p

′

W−1,p′ (Ω)
≥

meas
(
Ω1(ε, ε

1+t/2)
)

4 + 2
√
2

.

In view of Remark 6 due to (4.1) and (4.3) we conclude that

(4.4) meas
(
Ω \ Ω−(ε, ε

1+t/2)
)
≤

(5 + 2
√
2)∥f∥p

′

W−1,p′ (Ω)

p′
ε ∀ ε ∈ (0, 2−2/(2+t)).

Introduce the characteristic functions of the sets Ω and Ω−(ε, ε
1+t/2):

1[Ω](x) ≡ 1 for x ∈ Ω,

1[Ω−(ε, ε
1+t/2)](x) :=

{
1 for x ∈ Ω−(ε, ε

1+t/2),
0 for x ∈ Ω \ Ω−(ε, ε

1+t/2).

Estimate (4.4) means that

(4.5) 1[Ω−(ε, ε
1+t/2)] −→

ε→0
1[Ω] in measure in Ω.

Hence by Riesz’s theorem [18, Ch. IV, Sec. 3, Th. 4] there exists εk → 0 (k → ∞)
such that

(4.6) 1[Ω−(εk, ε
1+t/2
k )] −→

k→∞
1[Ω] almost everywhere in Ω.

On the strength of Egorov’s theorem [18, Ch. IV, Sec. 3, Th. 5], for any γ > 0 there
exists such measurable set Ωγ ⊂ Ω that

meas (Ω \ Ωγ) < γ,(4.7)

1[Ω−(εk, ε
1+t/2
k )] −→

k→∞
1[Ω] uniformly on Ωγ .(4.8)

Choose some value γ = εk1 ∈ {εk}k=1,2,... and set Ωεk1
according to Egorov’s

theorem. Due to (4.8) and the fact that functions 1[Ω−(εk, ε
1+t/2
k )] and 1[Ω] attain

values 0 and 1 only, there exists K1 ∈ N such that

(4.9) 1[Ω−(εk, ε
1+t/2
k )] = 1 on Ωεk1

∀ k ≥ K1

Take k2 := max {K1, k1 + 1}, Eεk2 := Ωεk1
. By the construction, we have Eεk2 ⊂

Ω−(εk2 , ε
1+t/2
k2

) and meas (Ω \ Eεk2 ) ≤ εk1 . Further take γ = εk2 and repeat the
procedure. This means, build Eεk3 ⊂ Ω−(εk3 , ε

1+t/2
k3

) such that Eεk2 ⊂ Eεk3 (due
to (4.9)), meas (Ω \ Eεk3 ) ≤ εk2 . Repeating this process, we build the sequence
(4.10)
Eεkl ⊂ Ω−(εkl

, ε
1+t/2
kl

), Eεkl−1 ⊂ Eεkl , meas (Ω \ Eεkl ) ≤ εkl−1
, εkl

−→
l→∞

0.

Relations (4.10) are precisely the assertions (i) and (ii) of the theorem with εl := εkl
.

Theorem 2 is proved. �

The next theorem is the second main result of the article.
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Theorem 3. (On uniform convergence.) For any δ > 0 there exist a value ε0 =
ε0(δ) ∈ (0, 1) and a closed set Ξδ ⊂ Ω, meas Ξδ > meas Ω − δ, such that uε ∈
C0+ϑ(Ξδ) ∀ϑ ∈ [0, 1), ∀ ε ∈ (0, ε0] and

(4.11) uε −→
ε→0

u in C(Ξδ) uniformly in C(Ξδ).

Notation 8. By C0+ϑ(Ξδ) in the formulation of Theorem 3 we standardly denote
the space of Hölder-continuous functions on set Ξδ with Hölder’s exponent ϑ. For
ϑ = 0 we set C0+0(Ξδ) := C(Ξδ).

Proof. By Theorem 2 we can take Eεl with εl−1 ≤ δ as the set Ξδ. On the strength
of the second Sobolev embedding theorem, we obtain that the family {uε}ε∈(0,ε0]

is uniformly bounded in C0+ϑ(Ξδ) (∀ϑ ∈ [0, 1)). Hence it is uniformly bounded
and equicontinuous in C(Ξδ). On the other hand, on the strength of (3.7) and the
first Sobolev embedding theorem, we have that uε −→

ε→0
u weakly in Lq(Ξδ) for any

q ∈ [1,∞). From this, due to the Ascoli — Arcel theorem [5, Sec. 7.5.7], it follows
that (4.11) holds true. It remains to notice that (4.11) holds for any sequence
ε→ 0, since the weak generalized solutions of Problem D-A and problem (2.3) are
unique.

Theorem 3 is proved. �
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