
S e⃝MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 16, стр. 42–84 (2019) УДК 519.854.2
DOI 10.33048/semi.2019.16.003 MSC 90B35

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY OF
CONSTRUCTING THE OPTIMAL SCHEDULE FOR THE

ROUTING OPEN SHOP PROBLEM WITH UNIT EXECUTION
TIMES

R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

Abstract. For the Routing Open Shop problem with unit execution
times, the first algorithm with parameterized complexity is designed
for constructing an optimal schedule. Its running time is bounded by
a function (Pol(|V |) + f(m, g)) · |I|, where Pol(|V |) is a polynomial of
the number of network nodes, f(m, g) is a function of the number of
machines and the number of job locations, and |I| is the input length in
its compact encoding.

Keywords: FPT -algorithm, Open Shop problem, routing, scheduling,
UET, parameterized complexity.

1. Introduction

The target problem of this paper is the Routing Open Shop problem (ROS-
problem, for short) being an extension of two classical discrete optimization problems:
the Open Shop problem and metrical Travelling Salesman Problem (metrical TSP).

In the Open Shop problem [9], one needs to perform a given set of jobs
J .

= {J1, . . . , Jn} on a given set of machines M .
= {M1, . . . ,Mm}, while the

execution time pkj of the operation of each job Jj on each machine Mk is known. It

van Bevern, R., Pyatkin, A.V., Sevastyanov, S.V., An algorithm with
parameterized complexity of constructing the optimal schedule for the routing open
shop problem with unit execution times.

c⃝ 2019 van Bevern R.A., Pyatkin A.V., Sevastyanov S.V.
The first author was supported by the Russian Foundation for Basic Research (grant 16-31-

60007). The second author was supported by the Russian Foundation for Basic Research (grant
17-01-00170). The third author was supported by the Russian Foundation for Basic Research
(grant 18-01-00747).

Received October, 2, 2018, published January, 27, 2019.
42

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 43

is required to construct a minimum length schedule for performing all operations,
which meets the non-simultaneity requirements to pairs of related operations: no
two operations of the same machine or on the same object may overlap
in time (see Definition 2.12).

In the metrical Travelling Salesman Problem, we are given a complete
ordinary graph G = (V,E) with weighted edges, where the weight τij of an edge
eij = (vi, vj) is a nonnegative integer representing the distance between vertices vi
and vj of graph G. The distance function is symmetrical and meets the triangle
inequality. It is required to find in G a hamiltonian cycle of minimum weight (i.e., a
route passing through all vertices, such that each vertex, but the first one, appears
exactly once, and the last vertex coincides with the first one; the weight of the route
is the total weight of its edges).

The ROS-problem (Routing Open Shop) We are given n objects {J1, . . . , Jn}
on a map, for which a certain set of operations should be performed by specialized
executors (that will be referred to as machines) from a given set {M1, . . . ,Mm}. We
consider a special (and at the same time, classical) case, when each machine Mk

performs exactly one operation Ok
j (of a given nonnegative integral duration

pkj) on each object Jj . A schedule for performing the operations should meet
standard requirements to multistage systems. We assume that the objects are
located at nodes of a transportation network G = (V,E), and that the machines
travel over the edges of the network. (This makes our problem setting different from
the classical scheduling problems for multistage systems, where the machines are
assumed to be statical — fixed in space, while the objects at which the machines
should perform operations have to move between the machines either instantly, or
for a given time.) All the time that a machine performs an operation on an object,
it must be at the node hosting the object. The travel time of a machine through
an edge of the network is fixed (i.e., depends neither on a machine, nor on the
direction, nor on any other circumstances) and is assumed to have a nonnegative
integral value. At the beginning, all machines are located at a special node called
depot. At the completion of the whole process all operations must be performed
and all machines must return to the depot.

It follows from the non-simultaneity requirement that each machine should per-
form its operations in a certain sequence which is to be determined in the problem
solution. Besides, the order of performing the operations on an object is unfixed
either and may be chosen arbitrarily. (The problems of that type are called Open
Shop problems.) The main goal of the problem solution is constructing a complete
feasible schedule S which chronologically describes all machine actions (i.e., per-
forming the operations and traveling through the network), meets all necessary
requirements and provides minimum to the completion time of the whole process
(Fmax(S)). According to the standard three-field notation of scheduling problems
[14], we denote this problem as ⟨RO ||Fmax⟩. To bring our terminology to correspon-
dence with the standard terminology of scheduling theory for multistage systems,
the set of operations on an object Jj will be further called job Jj .

An alternative setting of the above problem was considered in [1, 19], where the
travel times of a machine through edges of the network were interpreted as setup
times of the machine dependent on the pair of consequent jobs processed by that
machine (more precisely, depended on the groups to which the jobs belong) and
independent of a machine.

44 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

FPT-algorithms are nowadays one of the most popular and promising approa-
ches in discrete optimization. Along with results establishing the NP-hardness
of problems, development of such algorithms provides a deeper understanding of
the nature of the computational complexity of hard-to-solve problems, enables
one to clarify which problem parameters have the most significant impact on its
complexity. The main idea behind designing such an algorithm consists of three
components. First, we should detect all “critical” parameters of the problem under
consideration, i.e., those ones that stipulate the exponential running time of any
algorithm for the exact problem solution. (In other words, critical parameters
are those ones that, while being part of the input, make the problem NP-hard.)
Secondly, we should design an algorithm for the exact problem solution such that
the dependence of its running time on all critical parameters could be separated
from the dependence on all other parameters. And thirdly, the latter dependence
should be polynomial in the input length. A problem is called fixed-parameter
tractable (FPT) with respect to its parameter k, if there is an algorithm that solves
any instance I in f(k)·|I|O(1) time, where f(x) is an arbitrary computable function.
The corresponding algorithm is normally called a fixed-parameter algorithm, or an
algorithm with parameterized complexity. For more detail, we refer the reader to the
recent textbook by Cygan et al. [7].

Note that a fixed-parameter algorithm running in O(2k · |I|) time runs in polyno-
mial time for k ≤ O(log |I|), whereas an algorithm with running time O(|I|k) runs in
polynomial time only if k is constant. (At that, changing the value of that constant
changes the power of the polynomial.) The latter algorithm is not a fixed-parameter
algorithm.

Recently, the field of FPT-algorithmics in scheduling and routing has shown
increased interest [3, 4, 10–13, 16], whereas such algorithms for problems containing
elements of both routing and scheduling seem to be rare [2, 5]. The main target of
our research is studying a possibility for designing an FPT -algorithm for the exact
solution of the ROS-problem.

A review of known results on the ROS-problem. If the number of machines
(m) is part of the input, the ROS-problem is NP-hard in strong sense, even if the
network contains a single node (because the Open Shop problem is strongly NP-
hard [18]). On the other hand, if there is only one machine, and all operations are of
zero length (while remaining obligatory), then searching for an optimal schedule is
equivalent to searching for a shortest route of the machine through active nodes of
the network (i.e., the depot and all nodes locating the objects), which is equivalent
to the corresponding metrical TSP. The NP-hardness of the latter is known from
[17, p.371], where it was shown that the NP-hard decision problem of existing a
hamiltonian cycle in a given graph G can be polynomially reduced to a metrical
TSP with edge weights 1 and 2. This implies that the ROS-problem is strongly NP-
hard, when the number of active nodes (g) is part of the input. Consequently, if one
wishes to solve the ROS-problem in polynomial time, he has to restrict parameters
m and g. (In other words, the algorithm should be parameterized with respect to
m and g.)

Yet this is insufficient for obtaining a polynomial-time algorithm, since it is
known [9] that even on the network with a single node in the case of only three
machines the problem is NP-hard (being the three-machine Open Shop problem).
Thus, we have to restrict some other parameters of the ROS-problem (related to

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 45

constraints of the Open Shop problem). Those parameters are the number of jobs n
and execution times of operations. Yet if we bound the number of jobs by a constant,
the number of operations becomes also bounded by a constant. At that, the problem
of founding the optimal schedule reduces to the enumeration of a constant number
of variants of a mutual order of relative operations, and for each such variant — to
searching for the critical path in the corresponding graph with a constant number
of vertices, which yields a trivial algorithm of problem solution in polynomial time.
Thus, only the problem version with restricted execution times (while the number
of jobs remains part of the input) is of interest.

In the current paper, we investigate one of the most simple restrictions on the
execution times of operations, assuming that all operations are of unit length. We
call this problem ROS-UET (Routing Open Shop with Unit Execution Times).

On the encoding schemes of the problem input. First we should note that
the ROS-UET problem is not a special case of the ROS-problem, because these
two problems use different encoding schemes of their input. (Clearly, to perform
the correct complexity analysis of a discrete optimization problem, one needs to use
the most compact encoding scheme of its input.) Since in the ROS-UET problem all
objects have equal vectors of operation durations, and only differ by their locations
in the transportation network, the information on the objects can be given in the
input in an aggregated form, in which the objects located at the same node are
indistinguishable. To provide this information, it is sufficient to specify the number
of the objects located at each active node only. Thus, the encoding length of the
information on the objects in the ROS-UET problem can be estimated from above
and from below by the amounts O(g log n) and Ω(g + log n), respectively. Such
an encoding scheme for the input data of the ROS-UET problem will be further
referred to as a compact encoding. The input length of an instance I will be denoted
as |I|. At that, for the ROS-UET problem, the compact encoding will be used.

In [2], an FPT -algorithm was designed for the decision version of the ROS-UET
problem (i.e., for computing the optimum of the problem); the algorithm was
parameterized with respect to m and g. For the original ROS-UET problem (i.e.,
for that of constructing an optimal schedule) the algorithm was completed up
to a (m+ g)-parameterized algorithm with a polynomial dependence of its running
time on the parameter n (the number of objects), which, however (in view of the
logarithmic dependence of the input length on this parameter), did not allow to
treat it as an FPT -algorithm. As also noted in [16], until today it was unknown
if the problem allows a polynomial-time solution when the values of parameters m
and g are fixed, while the number of the objects (n) is part of the input. In the
current paper, we give a positive answer to this question.

Results of the paper. The main result of the paper is an FPT -algorithm for
constructing an optimal schedule for any given instance of the ROS-UET problem.
Its running time is (Pol(|V |) + f(m, g)) · |I|, where Pol(|V |) is a polynomial of
the number of network nodes, f(m, g) is a function of the number of machines and
the number of job locations, and |I| is the input length in its compact encoding.
The secondary result is a simple g-parameterized linear-time FPT -algorithm
computing asymptotically optimal schedules under bounded g, increasing n,
and slowly increasing (as o(n)) parameter m.

The outline of the paper by sections:

46 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

1. Introduction.
2. Basic notions and notation.
3. Preliminary results and analysis of properties of optimal schedules.

3.1. The lemma on the existence of an integral optimal solution of the ROS-
problem.

3.2. A reduction of the ROS-problem to ROS∗. An approximation solution of
the ROS∗-UET problem.

3.3. Properties of an optimal solution of the ROS∗-UET problem.
3.4. Two problems on constructing a feasible semi-schedule.
3.5. The criterion of non-simultaneity of special operations and efficient algorithms

of constructing a local job schedule at a non-special node.
3.6. The criterion of existing a complete feasible schedule of a given length.

4. A description and justification of the algorithm A.
4.1. A basic idea and an informal scheme of the algorithm.
4.2. A detailed scheme of the algorithm.
4.3. A description and justification of the algorithm procedures.
4.4. Justification of the correctness and the optimality of the algorithm. The

bound on its running time.
5. Discussion.
6. Conclusion.

2. Basic notions and notation

We notice here that this section performs a reference function. For the reader’s
convenience, all definitions of basic notions related to problem settings and to
algorithms are systematized and collected in one place, which enables the reader to
find them easily. You may skip this section at your first reading, while referring to
it as necessary.

Common mathematical notation

N — the set of positive integral numbers;
Z — the set of integers;
Z+ — the set of non-negative integers;
R — the set of real numbers;
{. . . } — a set;
⟨. . . ⟩ — an ordered set (a sequence).
The same angle brackets will be used for denoting a stable aggregate consisting of
different-type parts (e.g., a pre-schedule P = ⟨∆, s, T,D,RSS⟩); a misunderstanding
cannot arise, since in a definition of a sequence, normally, an ellipsis is used (which
means a variable number of components), while the number of components of an
aggregate is fixed.
[a, b] = {t ∈ R | a ≤ t ≤ b} — a closed interval of real numbers;
[a, b]Z = {t ∈ Z | a ≤ t ≤ b} (a, b ∈ Z, a ≤ b) — an interval of integers;
[x] = [1, x]Z = {1, . . . , x} (x ∈ N) — a starting segment of the set of integers;
X1⊕X2 — a concatenation of sequences X1 and X2;
null — an empty string or sequence.

Definition 2.1 (a unit interval). An interval of real numbers ui = [i−1, i], defined
for an integral positive i ∈ N will be called a unit interval.

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 47

Definition 2.2 (a discrete domain of time). A subset of points at the time axis
compound of a finite set of unit intervals is called a discrete domain of time. The
number of different unit intervals forming a domain T is called a domain length
and is denoted by ∥T ∥.

Definition 2.3 (a cyclic shift). We say that a permutation π′′ = (π′′(1), . . . , π′′(n))
is obtained from π′ = (π′(1), . . . , π′(n)) by a cyclic shift by h ∈ [0, n − 1]Z, if for
any i ∈ [n],

π′′(i) =

{
π′(i− h), if i > h
π′(n+ i− h), otherwise.

Definition 2.4 (computational operations). Binary operations of comparison/ad-
ding/
subtraction of two numbers, as well as unary operations of reading an address
of an array element and a subsequent extraction of its value from the array will be
called elementary computational operations. An operation of reading/writing one
bit of information will be called a bit-operation.

Remark 1. It is quite clear that the time consumed by any elementary computatio-
nal operation can be bounded above (by the order of magnitude) by the total record
length of its operands in binary encoding.

Definition 2.5 (running time). The running time of an algorithm is the number
of arithmetical and logical operations, as well as of operations of extracting the
values of array elements. The bit running time of an algorithm is the number of bit
operations estimated by taking into account the number of different computational
operations (of all types) performed in the algorithm, and of the maximum possible
record length of their operands.

Parameters and objects of the model

Jobs, machines, the original transportation network:
n — the number of jobs/objects;
m — the number of machines;
{J1, . . . , Jn} — the set of jobs;
{M1, . . . ,Mm} — the set of machines;
Ok
j (k ∈ [m], j ∈ [n]) — the operation of job Jj on machine Mk;

G = (V,E) — the original transportation network;
v0 ∈ V — the depot (the place of the starting and of the completing stays of each
machine);
ρ′(e) — the length of an edge e ∈ E; we assume that ρ′(e) ∈ N for all e ∈ E.

Definition 2.6 (generalized operations). By generalized operations we call both
the machine operations on the objects, and the operations of their traveling between
objects situated at different nodes of the transportation network.

Definition 2.7 (related operations). Two generalized operations are called related,
if they are to be performed by the same machine or on the same object.

Definition 2.8 (active/intermediate nodes). The depot-node, as well as all nodes
of the original transportation network containing objects are called active nodes.
Thus, those and only those nodes are active, in which machines make stays. Nodes
different from the depot are called intermediate.

48 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

The reduced transportation network:
G∗ = (V ∗, E∗) denotes the reduced transportation network — a complete graph
containing only active nodes of network G;
V ∗ = {v1, . . . , vg} is the set of nodes of G∗ in their natural numeration (see
Definition 2.9);
g = |V ∗| is the number of active nodes of network G;
nν (ν ∈ [g]) is the number of objects at node vν ∈ V ∗;
vν∗ ∈ V ∗ is the depot (ν∗ is its natural number);
E∗ is the complete set of edges of network G∗;
ρ(e) is the length of edge e = (vi, vj) ∈ E∗ (i ̸= j) equal to the length of the
shortest path between the corresponding nodes of network G in any of the two
directions; once due to the above agreement the length of any edge from G belongs
to N, all values of {ρ(e)} are also in N (i.e., each edge length is an integer number
≥ 1; this fact is essentially used later in Lemma 3.4 while obtaining the upper bound
on the number of stays of any machine in any optimal schedule); furthermore, it
can be easily seen that function ρ(e) meets metric properties;
ρmax = max{ρ(vi, vj) | i, j ∈ [g], i ̸= j} is the maximum edge length in network G∗;
|I| is the input length (in the compact encoding) of an instance I of the ROS∗-UET
problem;
|I| .

=
∑

e∈E∗ log ρ(e) + logm + log n is a lower bound on the input length (in the
compact encoding) of a given instance I;
ρ(R) the length of a route R in network G∗;
H∗ is a hamiltonian cycle of minimum length in network G∗;
C̄ is a lower bound on the optimum for a given instance of problem ROS∗-UET
defined by the formula

(1) C̄ = ρ(H∗) + n.

Definition 2.9 (natural numeration of nodes and objects, function Loc(j)). A nu-
meration of nodes in nonincreasing order of the number of objects located at a
node (n1 ≥ · · · ≥ ng) will be called natural. A numeration of objects in nonincrea-
sing order of the natural indices of the nodes containing those objects will be also
called natural.
Nν

.
=

∑
i∈[ν] ni (ν ∈ [g]); N0 = 0; Ng = n;

J (ν)
.
= [Nν−1 + 1, Nν]Z is the interval of natural indices of the objects located at

node vν ;
O(ν) = {Ok

j | k ∈ [m], j ∈ J (ν)} is the set of operations on objects at node
vν (ν ∈ [g]);
Loc(j) = min{ν ∈ [g] |Nν ≥ j} is the function determining the natural index of a
node containing the object with natural index j ∈ [n].

It should be noted that there is no need in computing the function Loc(j) in the
algorithm, because the node containing object j is known in advance. Furthermore,
we need not maintain and calculate the global numeration of the objects (and jobs),
since their local numeration at each node is sufficient for the algorithm. Yet in the
latter case we would have to denote each job by a pair of indices (ν, j) (for instance,
in notation of operations), which is not convenient. Thus, the function Loc(j) is
introduced mostly for the sake of the convenience of notation in our paper.

Parameters of schedules

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 49

Definition 2.10 (stays). In any schedule S at any time from [0, Fmax(S)] every
machine is either traveling (through edges and nodes of the transportation network),
or performing a stay at a node. A stay of a machine at a node corresponds to
the maximal by inclusion time interval within which the machine is located at
that node. At any time from that interval, the machine either performs one of the
operations located at that node or is idle. Stays of a machine, different from its
first and last stays (being performed at the depot), are called intermediate. Given
known a schedule of operations, we say that a stay is nonempty, if the machine
performs at least one operation in it. Otherwise, the stay is called empty. The stay
at which an operation O′ is performed, is called a personal stay of that operation.

Since the number of stays is essential for estimating the running time of the
algorithm, it should be specified at which cases staying of a machine at a node is
considered as a “stay” (empty or nonempty), and at which ones this is not the case.
This question is resolved in our paper in a simple way, by switching from ROS to
the ROS∗-problem on network G∗ containing only active nodes. Moreover, we may
also assume that in network G∗ every machine has only nonempty intermediate
stays, moving between each pair of consequent stays (located at different nodes
of network G∗) through the single edge connecting those nodes. At that, for each
machine we admit the existence of an empty starting and/or finishing stay (at the
depot), provided that such stays must have zero durations.

Definition 2.11 (special nodes/jobs/operations/stays). Node vν of network G∗ is
called special (nonspecial), if nν < m (nν ≥ m). We denote by: gns — the number
of nonspecial nodes; SN

.
= [gns + 1, g]Z — the set of indices of special nodes;

gsn
.
= |SN | — the number of special nodes; g = gns+ gsn. The jobs (as well as their

operations) located at a special node are called special jobs (operations). The stays
at special nodes are called special stays.

Machine routes (the basic form):
Rk = ⟨T k

1 , . . . , T
k
sk
⟩ is a route of machine Mk, or a chronological sequence of its

stays; sk is the number of stays of machine Mk;
T k
t = (νkt ; bkt , e

k
t) (k ∈ [m], t ∈ [sk]) contains the complete information on the tth

stay of machine Mk, where t denotes the machine index of the stay, νkt denotes
the natural index of the node, where the tth stay of machine Mk is performed,
bkt , e

k
t ∈ R+ denote the starting and completion times of the stay;

R = {Rk | k ∈ [m]} is the complete package of machine routes;
sk,ν denotes the number of stays of machine Mk at node vν .

Machine routes (the alternative form):
T̂ = ⟨T̂ (1), . . . , T̂ (s)⟩ is the total sequence of stays {T̂ (q)} indexed in the order of
lexicographical increasing of pairs (b(q), µ(q)):

(2) (b(1), µ(1)) <lex (b(2), µ(2)) <lex · · · <lex (b(s), µ(s));

T̂ (q) = (µ(q), ν(q), b(q), e(q)) contains the complete information on the qth stay in
sequence T̂ : µ(q) is the machine index, ν(q) is the node index, b(q), e(q) are the
starting and the completion times of stay q; q ∈ [s] is called an absolute stay index ;
s is the total number of stays.
A stay characterized by the two-dimensional vector T (q) = (µ(q), ν(q)) will be called
a semi-stay. The total sequence of semi-stays is a sequence T = ⟨T (1), . . . , T (s)⟩

50 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

defined by relations (2) (if all moments {b(q)} are known) or defining such relations
(when {b(q)} are unknown).

Note that these two forms of routes (the basic form and the alternative one) are
informa-tively equivalent, since each of the two can be completely determined
from the other.

An absolute job schedule, a complete schedule:
SJ = {C(Ok

j) | k ∈ [m], j ∈ [n]} is an absolute job schedule, where C(Ok
j) ∈ [1,∞)

is the completion time of operation Ok
j ;

S = ⟨R, SJ⟩ is a complete schedule;
C(S) = maxk∈[m] e

k
sk

is the length of schedule S.

A relative job schedule:
RS(ν)

.
= {LC(Ok

j) | k ∈ [m], j ∈ J (ν)} is a relative job schedule at node vν , where
LC(Ok

j) = (LC1(O
k
j), LC2(O

k
j)) are the local coordinates of operation Ok

j ;
LC1(O

k
j) ∈ [sk,ν] is the local index (see Definition 2.14) of the personal stay (see

Definition 2.10) of operation Ok
j ;

LC2(O
k
j) ∈ [nν + ∆ − 1] is the value of the shift of the completion time of

operation Ok
j with respect to the starting time of its personal stay (for ∆ ∈ [m]).

The absolute completion time of operation Ok
j can be computed by the formula

(3) C(Ok
j) = τ(Ok

j) + LC2(O
k
j),

when the starting time τ(Ok
j) of its personal stay becomes known.

Definition 2.12 (non-simultaneity). Two operations are called non-simultaneous,
if in a given (either absolute or relative) schedule the time intervals of their processing
are intersecting at at most one point (being boundary for both intervals).

Definition 2.13 (active schedule). A schedule is called active, if no starting/comple-
tion time of a generalized operation can decreased without changing the mutual
order of processing some pair of related operations.

It follows from the above definition that in any active schedule: (a) any empty
stay has zero length; (b) any nonempty stay completes synchronously with the
completion time of some operation; (c) the movement of each machine between
any two consequent stays (which have to be performed at different nodes of the
network) is carried out along the shortest path in the shortest time.

Determinative parameters of a schedule:
Given a complete schedule S, we define five its determinative parameters:
∆[S] is a parameter conformed with schedule length by the equality: ∆[S]

.
= C(S)−

C̄ + 1, where C̄ is the lower bound on the optimum defined in (1);
s[S] is the total number of semi-stays in schedule S;
T[S] = ⟨T[S](1), . . . , T[S](s[S])⟩ is the total sequence of stays of schedule S defined
by relations (2); given T[S], we can determine the increasing sequence K[S] =
⟨q̄(1), . . . , q̄(s̄)⟩ of absolute indices of special stays (where s̄ is the number of special
stays; their numeration by indices t ∈ [s̄] will be called relative).
It should be noted that for any complete schedule S sequence T[S] is uniquely
defined by relations (2), since no machine may have two and more simultaneously
starting stays;
D[S] : [s̄ + 1] → [0, 2m] is the displacement function defined for each special stay

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 51

(with a relative index t ∈ [2, s̄]Z) by the amount δ(t) .
= b(q̄(t))− b(q̄(t− 1)) that its

starting point is shifted with respect to the starting point of the previous special
stay:

(4) D[S](t) =

{
δ(t), if δ(t) < 2m;
2m, if δ(t) ≥ 2m;

we also set D[S](1) = D[S](s̄+ 1) = 2m;
RSS[S] = {RS(ν) | ν ∈ SN} is a relative schedule of jobs located at special nodes.

Notions and objects used in algorithm A
The Big Cycle is the main part of algorithm A; it represents a cycle enumerating

a finite set of possible variants of pre-schedule P . At the iterations of Big Cycle we
are searching for a variant of pre-schedule extendable up to a feasible complete
schedule S. The first such variant found provides an optimal schedule.

Next, we summarize all definitions of different numerations of stays.

Definition 2.14 (numerations of stays). A numeration of stays by indices 1, 2, . . .
consensual with relations (2) and defined for the sets of: all stays of a schedule/all
special stays/all stays of machine Mk/all stays of machine Mk at node vν — is
called an absolute/relative/machine/local numeration; the index of a stay is called,
respectively, an absolute/relative/machine/local index.

Pre-schedule P

Definition 2.15. A combination (maybe, unrealizable) P = ⟨∆, s, T,D,RSS⟩
of possible values of determinative parameters ⟨∆[S], s[S], T[S], D[S], RSS[S]⟩ of a
complete feasible schedule S will be called a pre-schedule. Further, B(X) denotes
the number of variants of component X ∈ {∆, s, T,D,RSS} of a pre-schedule P ,
to be enumerated in algorithm A.

Feasible values of components and the number of variants of pre-
schedule P . Additional information extractable from P

Component ∆. Based on the definition of the determining parameter ∆[S] and
on Property P2 of any optimal schedule S (being proved in Lemma 3.3, page 60),
we bound the values of the component ∆ by the interval [m]. In turn, any value of
∆ defines an upper bound on the length of schedule S under construction:

(5) C(S) ≤ L(∆)
.
= C̄ +∆− 1.

Component s. Based on Property P5 of the optimal schedule S∗ (the existence
of which is proved in Lemma 3.3), we bound the values of the component s by the
interval [m(g + 1),m(m+ 2g − 2)]Z.

The sequence of semi-stays T = ⟨T (1), . . . , T (s)⟩ is defined by a sequence
consisting of s pairs T (q) = (µ(q), ν(q)) ∈ [m]× [g].

Additional information extractable from T :
sk, the number of stays of machine Mk (k ∈ [m]);
sk,ν , the number of stays of machine Mk at node vν ;
s(ν) =

∑
k∈[m] sk,ν , the total number of stays at node vν ; s(ν) = |O(ν)|;

s̄, the number of special stays;
γ(k, t′), the function determining the absolute index of a stay of machine Mk by its

52 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

machine index t′ ∈ [sk];
κ(t), the function determining the machine index of a special stay by its relative
index t;
q̄(t), the function determining the absolute index of a special stay by its relative
index t;
RN(k, ν; t′′), the function determining the relative index of a special stay of machine
Mk at node vν (ν ∈ SN) by its local index t′′ ∈ [sk,ν];
β(k, ν; t′′), the function determining the absolute index of a stay of machine Mk at
node vν (ν ∈ [g]) by its local index t′′ ∈ [sk,ν];
RT

k = ⟨γ(k, t) | t = 1, 2, . . . , sk⟩, a T -route of machine Mk (or the increasing sequence
of absolute indices of stays of machine Mk);
ρ(RT

k) =
∑sk

t=2 ρ(ν(γ(k, t− 1)), ν(γ(k, t))), the length of route RT
k ;

Q(k, ν), the set of absolute indices of stays of machine Mk at node vν ;
K = ⟨q̄(1), . . . , q̄(s̄)⟩, the increasing subsequence of absolute indices of special stays.

Definition 2.16 (ANS- and semi-special nodes). Node vν of network G∗ will be
called an absolutely-non-special node (or ANS-node, for short), if for a given pre-
schedule P = ⟨∆, s, T,D,RSS⟩, the inequality nν ≥ 2s(ν) holds. If m ≤ nν < 2s(ν),
the node is called semi-special.

Feasible values of the component T and the number of its variants
The sequence of semi-stays T should meet the following requirements:
(a) any two consequent stays of machine Mk should be located at different nodes:
ν(γ(k, t′)) ̸= ν(γ(k, t′ + 1)), k ∈ [m], t′ ∈ [sk − 1];
(b) the values of sk,ν∗ (k ∈ [m]) should be in the interval [2, nν∗ + 2]Z, while the
values of other amounts sk,ν (k ∈ [m], ν ∈ [g] \ {ν∗}) should be in the intervals
[nν] (in particular, all sk,ν > 0, which means that each machine should visit each
node of network G∗ at least once);
(c) sk,ν ≤ g + (∆− 1)/2 (k ∈ [m], ν ∈ [g]);
(d) the subset {T (q) | q ∈ [m]} of the first m stays in T should be compound of
the first stays of all machines M1, . . . ,Mm (being performed at the depot and
starting at time 0); they are marked by pairs (µ(q), ν(q)) := (q, ν∗); it should be
noted that in a feasible schedule no stay at a node different from the depot may
start at time 0, since the passage of a machine from the depot to another node
requires positive time; by that reason (as well as due to property (a)), no non-first
stay of any machine at the depot can start at time 0 either; as a result, the first
stays of all machines (and only them) should start at time 0; the subset of
the first m stays of sequence T should be entirely compound of the first stays of all
machines (in the semi-schedule, which is to be found in problem ILP (P) in Section
3.5, these stays will receive zero starting times: b(q) := 0, q ∈ [m]);
(e) ν(γ(k, 1)) = ν(γ(k, sk)) = ν∗, k ∈ [m], which means that the first and the last
stays of each machine Mk should be performed at the depot.

Let us estimate the number of variants of component T : B(T) = (mg)s ≤
2O(m(m+g) logmg).

Function D (displacement) and additional information extractable from it

Function D : [s̄ + 1] → [0, 2m]Z provides a semi-rigid time skeleton for the future
schedule S, compound of special stays. “Semi-rigid”, because only starting times
of some pairs of stays are tied hard, while the completion times of stays remain
unspecified. The distance between starting times of “neighboring” special stays

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 53

(having “neighboring” indices t − 1 and t in the relative numeration of stays) is
specified in schedule S by the relations

b(q̄(t))− b(q̄(t− 1))

{
= D(t), if D(t) < 2m;
≥ D(t), if D(t) = 2m

for t = 2, . . . , s̄. We also set D(1) = D(s̄+ 1) = 2m. Let us estimate the number
of variants of component D: B(D) ≤ (2m+ 1)s−1 ≤ 2O(m(m+g) logm).

Definition 2.17 (a segment of the sequence of special stays). Function D divides
the interval [s̄] (of relative indices of special stays) into segments, divisible from each
other by values D(t) = 2m. Let T ∗ .

= ⟨t∗1, t∗2, . . . , t∗ŝ⟩ be the increasing sequence of
indices t ∈ [s̄ + 1] for which D(t) = 2m. (The sequence is nonempty: at least, we
have D(1) = 2m, implying t∗1 = 1.) Then the ξth segment is defined as the set
{t ∈ [s̄] | t∗ξ ≤ t < t∗ξ+1}.

Definition 2.18 (a personal segment and segment coordinates of a stay). Segment
S(t) containing the special stay with a relative index t ∈ [s̄] will be called a personal
segment of that stay. Let us define segment coordinates for each special stay t as
a pair (SC1(t), SC2(t)), where SC1(t) denotes the relative index of the first stay
of segment S(t), and SC2(t) shows the shift of the starting time of stay t with
respect to the starting time of stay SC1(t). The segment coordinates of stay t can
be computed by the recurrent formulas:

SC1(t) := t, SC2(t) := 0, if D(t) = 2m;
SC1(t) := SC1(t− 1), SC2(t) := SC2(t− 1) +D(t), if D(t) < 2m

(as can be easily seen, they are integral).

A relative schedule of special jobs (RSS): RSS is a family {RS(ν) | ν ∈
SN} of relative schedules at special nodes, where SN is the index set of special
nodes, and RS(ν) (a relative schedule of jobs located at node vν) is defined on
page 50 as a family {(LC1(O

k
j), LC2(O

k
j)) | k ∈ [m], j ∈ J (ν)} of pairs of local

coordinates for all operations at node vν . The absolute completion time of each
special operation will be computed by the formula

(6) C(k, j) = b(β(k, Loc(j);LC1(O
k
j))) + LC2(O

k
j)

after getting a solution of the ILP ′(P)-problem, when the starting and the comple-
tion times ({b(q), e(q) | q ∈ [s]}) of all stays become known.

Additional information extractable from RSS:
Having RSS, we can compute durations of special stays:

(7) A(P, t) := max
Ok

j ∈O[t]
LC2(O

k
j), t ∈ [s̄]

(where O[t] denotes the set of operations performed at stay t ∈ [s̄]), as well as

Segment coordinates (SC1(O
k
j), SC2(O

k
j)) of special operations, where

SC1(O
k
j)

.
= SC1(RN(k, Loc(j);LC1(O

k
j))) is specified by the segment coordinate

SC1 of the personal stay of operation Ok
j , and SC2(O

k
j)

.
= SC2(RN(k, Loc(j);

LC1(O
k
j))) + LC2(O

k
j) specifies the shift of the completion time of operation

Ok
j with respect to the starting time of stay SC1(O

k
j). These coordinates can be

computed in the algorithm synchronously with specifying a pre-schedule P , and
allow one to check RSS for compliance with all non-simultaneity requirements to

54 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

related special operations. In Lemma 3.7 (Section 3.4) a criterion of non-simultaneity
of two special operations is proved. It runs that two special operations are non-
simultaneous, if and only if they mismatch as points in the two-dimensional space
of their segment coordinates, which allows one to check this property efficiently.

Feasible values of the component RSS and an upper bound on the
number of its variants
Local coordinates LC1(O

k
j) and LC2(O

k
j) of special operations {Ok

j } receive values
from the integral intervals [sk,ν] ⊆ [m] and [nν + ∆ − 1] ⊆ [2m − 2], respectively,
with ν = Loc(j) (subject to the restrictions set to the amounts sk,ν in requirement
(b) to component T). A relative schedule RSS is called feasible, if it meets the
requirement of non-simultaneity: any two related special operations in a feasible
schedule should be non-simultaneous (see Definitions 2.7 and 2.12).

Subject to the upper bound gsnm
2 on the number of special operations (where

gsn is the number of special nodes in network G∗), the overall number of variants
of component RSS can be estimated as B(RSS) ≤ (2m2)gsnm

2 ≤ 2O(gsnm
2 logm).

Definition 2.19 (a feasible pre-schedule). Pre-schedule P = ⟨∆, s, T, D,RSS⟩ is
feasible, if all above mentioned requirements to its components are met.

Given ∆′ ∈ [m], P(∆′) denotes the set of feasible pre-schedules P = ⟨∆, s, T,D,RSS⟩
with values ∆ ≤ ∆′; P will denote the set ∪∆′∈[m]P(∆′) of all feasible pre-schedules
for a given instance of problem ROS∗-UET .

Pre-schedule/semi-schedule/complete schedule:
In our algorithm, we distinguish three stages of readiness of a schedule: a pre-

schedule, a semi-schedule, and a complete schedule. To obtain a pre-schedule, we
specify the values of so called determinative parameters of a schedule, whose ranges
of values can be restricted by functions independent of the number of objects
n. Since the number of determinative parameters is also bounded by a function
independent of n, this implies that even the complete enumeration of all combinations
of values of those parameters requires time bounded by a function depending on
parameters m and g only.

Given a pre-schedule P , by solving the problem ILP ′(P) (formulated in Section
3.4), we find a semi-schedule. It is characterized by the property that the whole
information on machine routes becomes known. (Thus, one of the two compo-
nents of a complete schedule becomes completely defined.) A local schedule of jobs
at each special node is also known.

Definition 2.20 (an extension of a schedule). Suppose, we are given two partial
schedules: S′ and S′′. We say that schedule S′′ is an extension of schedule S′, if the
list of parameters of schedule S′′ with known values includes that of schedule S′.

For instance, given a pre-schedule, we construct a semi-schedule which is its
extension. The complete schedule being built next is an extension of the semi-
schedule.

3. Preliminary results and analysis of properties of optimal
schedules

In the first lemma presented in this section, we establish not only the fact of
the existence of an optimal schedule for any given instance of the ROS-problem,

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 55

but also the existence of such a schedule with certain properties. The next sub-
section contains a polynomial-time reduction of the ROS-problem to the ROS∗-
problem on the transportation network G∗ possessing a number of nice properties.
Subsequently, we pass over to constructing and analysis of an algorithm for solving
the ROS∗-UET problem. Next, in Sub-section 3.2, a parameterized approximation
algorithm for solving the ROS∗-UET problem is presented and its absolute perform-
ance guarantee is established, which is further implemented for deriving a bound on
the running time of the exact algorithm. In Sub-section 3.3, we prove the existence of
an optimal schedule of problem ROS∗-UET with a bunch of such properties that
enable us to restrict the number of variants of pre-schedules under enumeration
by a function depending only on parameters m (the number of machines) and g
(the number of nodes of network G∗). In the next sub-section (3.4) two integer
linear programming problems (ILP (P) and ILP ′(P)) are considered, being used
in the algorithm of extending a given pre-schedule P up to a feasible semi-schedule.
A close relation between these two problems is established. Next, in Sub-section 3.5,
two polynomial-time procedures of extending a given semi-schedule (obtained as a
solution of the ILP ′(P)-problem) up to a complete feasible schedule are presented.
Lemma 3.10 proved in Sub-section 3.6 is a key result used for justification of our
main algorithm.

3.1. The lemma on the existence of an integral optimal solution of the
ROS-problem. Since in the ROS-problem it is required that each machine has
to walk around all objects (performing on each object exactly one operation), and
since the route of each machine starts and ends at the depot, it has, thereby, to
walk around all active nodes of network G. It follows that for the existence of a
feasible solution it is required that the sub-network corresponding to the set of all
active nodes must be connected. Since, next, it is well known that the problem of
verifying the connectivity of any given subset of vertices of a graph is polynomially
solvable, we may further assume (without loss of generality of the problem under
solution) that in any problem instance specified at the input of the ROS-problem
the network is connected. That the connectivity of the network is also a sufficient
condition for the existence of an optimal solution of the ROS-problem, we get
known from the following

Lemma 3.1. For any instance of the ROS-problem, there exists an optimal schedule
with the following properties: (a) all essential events (such as the beginning and the
completion of an operation, the beginning and ending of a machine movement, the
beginning and ending of a machine stay at a node, the starting and ending of the
whole project) happen at integral points in time; (b) the ending time of each
stay of a machine (with the exception of its last stay) coincides with the starting
time of its movement to a different node of the network; the ending time of its
last stay coincides with the completion time of some generalized operation of that
machine; (c) every time moment of starting a movement of a machine coincides
with either the completion time of an operation processed by that machine, or with
time 0; (d) the movement of a machine from one active node to another one is
carried out along the shortest way in the shortest time.

Proof. To begin with, we note that the fact of existing a non-empty set of feasible
schedules for any given instance of the ROS-problem is evident. (To obtain such
a schedule, it is sufficient to provide for each machine, consequently, a possibility

56 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

to perform all its operations in an arbitrary order.) For an arbitrary given feasible
schedule S, we define a precedence graph for the set of all generalized operations
(see Definition 2.6), being performed by machines according to schedule S. In view
of the non-simultaneity requirements to related operations (see Definitions 2.12
and 2.7), in any feasible schedule S between any two related operations {o′, o′′}
one of the two precedence relations may hold: either o′ ≺ o′′, or o′′ ≺ o′, where
o′ ≺ o′′ means: “o′′ starts not earlier then o′ is completed”. The family of such
relations can be modeled by a network model of the type “jobs-arcs” (or by a directed
graph G̃(S) = (Ṽ , Ã) with weighted arcs), in which to each generalized operation
o′ correspond two vertices (b(o′) and e(o′)), representing the events of starting
and completion of the operation, and an arc (b(o′), e(o′)) with length equal to the
duration of the operation. If {o′, o′′} are two consecutive operations on objects,
which are to be performed by machine Mk at different nodes (vν′ , vν′′) of network
G, then between the corresponding vertices in the precedence graph should be the
operation of the machine movement from node vν′ to node vν′′ . The length of such
a generalized operation (and of the corresponding arc in graph G̃(S)) is equal to
the distance between the nodes vν′ and vν′′ , i.e., to the length of the shortest simple
path connecting these nodes in G. Beside that, an operation of a machine movement
from vν′ to vν′′ is added in two more cases: 1) when vν′ is the depot, while the first
operation of the machine is located at another node (vν′′), and 2) when the last
operation of a machine is located at node vν′ ̸= v∗ = vν′′ . And lastly, it is clear that
when two operations of a machine are being processed consecutively (in schedule
S) at the same node of G, then we need to add no “movement operation” of the
machine between them (as well as no superfluous arc in graph G̃(S)).

Let now two generalized related operations (o′ and o′′) be performed in schedule
S directly one after another in order o′ ≺ o′′. Then, to specify this order of
their processing, we add an arc (e(o′), b(o′′)) of zero length to graph G̃(S). Beside
that, for each machine Mk we add to graph G̃(S) two vertices-events: αk and ωk,
denoting the start of the very first, and the end of the very last stays of machine Mk

(both stays being performed at the depot). Vertex αk is connected by a zero-length
arc with the starting event of the first generalized operation of that machine, while
the completion event of its very last generalized operation is connected by a similar
arc with vertex ωk. And finally, we add to graph G̃(S) vertices v∗ and v∗∗ denoting
the start and the completion of the whole project, and add also zero-length arcs from
v∗ to every vertex αk, and from each vertex ωk to vertex v∗∗, which completes the
construction of graph G̃(S).

As can be easily seen, graph G̃(S) is a reduction graph of the partial order
≺ .
=≺S , defined (for a given schedule S) on the set of generalized operations and on

the set of events generated by those operations. We should also note that at each
point in time each machine is either making a stay at a node (see Definition 2.10),
or is traveling between two successive stays. Henceforth, each starting event of a
machine movement from one node to another coincides with the completion event
of the previous stay of the machine, while the ending event of a machine movement
coincides with the starting event of the next stay of the machine.

In so defined network G̃(S), there exists a tight lower bound (t̃) on the moment
of any event v ∈ Ṽ (a so called earliest moment of the event), realizable on the
longest (critical) path in graph G̃(S) from vertex v∗ to vertex v. As is easily seen,

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 57

there are no positive-length cycles in G̃(S) (since the existence of such a cycle would
contradict the feasibility of the given schedule S). Thus, a sufficient condition for
the existence of a feasible active schedule S≺ for the set of all events in graph G̃(S) is
satisfied. This schedule is also feasible for the set of operations in the ROS-problem;
furthermore, it minimizes the occurrence time τ(v) of each event v ∈ G̃(S) over
all feasible schedules with a given partial order specified on each pair of related
operations. At that, τ(v) is equal to the length of the critical path from vertex v∗

to vertex v. Since the length of each arc is integral, this implies the integrality of
the occurrence time of each event in schedule S≺, including the completion event
of the whole project. This means the integrality of the length of schedule S≺.

The active schedule S≺ has the minimum length among feasible schedules with
a given order ≺. Having enumerated all variants of the order of performing related
operations (the number of such variants is finite) and all corresponding schedules
S≺, we can find a schedule S̃, on which the global minimum of schedule length is
attained. Property (b) of the schedule obtained follows from the definition of stay ;
properties (c) and (d) follow from the defining property of an active schedule and
from the construction of graph G̃(S). �

The lemma proved above implies the following

Corollary 3.1. In an algorithm of searching for an optimal solution of the ROS-
problem, we may restrict ourselves by considering those schedules only possessing
the properties listed in Lemma 3.1.

3.2. A reduction from the ROS-problem to the ROS∗-problem.
An approximation algorithm for the ROS∗-UET problem. The original
transportation network is modeled by an ordinary graph G with weighted edges,
where the edge weight is defined as the time required for the movement of any
machine (and in any of two possible directions) between the nodes connected by
the edge. Since the whole job in this model is being performed in active nodes
only of network G (between which the machines move along the shortest routes, by
Corollary 3.1), while all the remaining (not active) nodes of the network are used as
“transit” nodes only, it makes sense to pass over to a reduced network G∗, containing
active nodes only (see Definition 2.8). Thus, network G∗ = (V ∗, E∗) represents a
complete ordinary graph, whose set of vertices coincides with the set of active
nodes of network G, while the weight ρ(i, j) of each edge (vi, vj) ∈ E∗ (i ̸= j)
is equal to the time of machine movement (along the shortest path) between
the corresponding nodes of the original network G. As follows from the definition
of the function ρ(i, j), it meets all metric properties (from which only two will
be used: symmetry and transitiveness). From now on, the ROS-problem on the
reduced transportation network G∗ will be called a ROS∗-problem.

Proposition 3.1. The ROS-problem can be reduced to the ROS∗-problem in polyno-
mial time. The running time of the reduction is equal (by the order of magnitude) to
the polynomial running time of the algorithm of searching for the bunch of shortest
routes between all pairs of nodes from a given subset V ∗ ⊆ V of nodes of the original
network G. �

In view of Proposition 3.1, to construct a parameterized algorithm for the exact
solution of the ROS-UET problem, it is sufficient to design such an algorithm for

58 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

the ROS∗-UET problem. We start the analysis of the latter by deriving a lower
bound on its optimum.

Proposition 3.2. The length of any feasible route of any machine Mk (k ∈ [m])
(and as a corollary, the length of any feasible schedule) in the ROS∗-UET problem
cannot be less than C̄

.
= ρ(H∗) + n, where ρ(H∗) is the shortest hamiltonian cycle

in network G∗, and n is the total number of jobs.

Proof. Indeed, once in any feasible schedule S any machine has to get around all
the nodes of the network locating jobs (while in the ROS∗-UET problem, all nodes
of the network contain jobs, except, maybe, the node-depot), and since any machine
route must start and end at the depot, this means that each machine has to get
around all nodes of network G∗. As follows from the completeness of graph G∗

and from the transitiveness of eights of its edges, the minimum-length route passing
through all nodes of network G∗ is a hamiltonian cycle of the minimum weight
(denoted by H∗), which provides the summand ρ(H∗) of the lower bound. The
addend n is added to the bound, since each machine performs all jobs. �

As was said above, the main result of the paper concerns designing an algorithm
of the exact solution of the ROS∗-UET problem. However, we first present a
quite simple approximation algorithm for its solution. (The result obtained will be
used further in the construction of the exact algorithm.)

Lemma 3.2. For any instance of the ROS∗-UET problem there exists a feasible
schedule S, the length of which is no greater than C̄ +m− 1 (where C̄ is the lower
bound on the optimum derived in Proposition 3.2).

Proof. Let H∗ be the shortest hamiltonian cycle. We define schedule S as follows.
Number the machines {M1, . . . ,Mm} arbitrarily, and let them go in this order,
one after another, using the same route H∗, but with the time lag of every other
machine (with respect to the previous one) equal to 1. For each machine Mk at
each node vν we organize a stay of length nν , while which the machine should
perform all the jobs located at that node. At that, all machines perform the jobs
in the same order (which is defined for machine M1 at each node vν arbitrarily).
Since each operation has unit length, the unit shift of the schedule of each machine
Mk (k > 1) with respect to the previous machine (Mk−1) guarantees that the non-
simultaneity requirement is met for all operations of each job. Since the compliance
with all other requirements is evident, schedule S is feasible. Its length (C̄+m−1)
is defined by the time when the last machine (Mm) returns to the depot. �

This simple lemma (and its proof) imply a mass of interesting corollaries that will
be used in Section 3.3 while deriving properties of optimal schedules. As a one more
direct corollary, we obtain a (m, g)-parameterized approximation algorithm A′ for
solving the problem with an absolute performance guarantee. For m and g bounded
by constants and for the increasing n, this algorithm becomes asymptotically optimal,
and its running time becomes linear on the length of the input in the compact
encoding. Algorithm A′ uses (as a subroutine for solving the TSP problem) the
DP-algorithm designed in 1962 by Bellman (and independently, by Held and Karp).

Theorem 3.1. (Bellman, R., 1962), (Held, M., Karp, R.M., 1962) The TSP problem
with n cities and an arbitrary matrix of distances can be solved in O(2nn2) elementa-
ry computational operations (see Definition 2.4).

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 59

Theorem 3.2. For the ROS∗-UET problem, there exists an approximation algo-
rithm A′ that solves it with an absolute performance guarantee not greater than
m−1 and with bit running time O(2gg2+mg)|I| (where |I| is the length of problem
input in compact encoding).

Proof. Let us take schedule S constructed in the proof of Lemma 3.2 as a desired
one. (Thus, we may skip the checking of its feasibility.) It follows from Proposition
3.2 and Lemma 3.2 that the length of schedule S deviates from the optimum by
at most the amount m− 1. It remains to show that the schedule can be computed
within the announced time.

To begin with, we find a hamiltonian cycle H∗ in graph G∗ (which requires
O(2gg2) elementary computational operations, due to Theorem 3.1), after which
we renumber the nodes of network G∗ by indices {1, . . . , g} in the order of their
passage by the cycle H∗ (with the starting and the ending points at the depot):
H∗ = (v1, v2, . . . , vg, v1). Let us compute the amounts ρν =

∑ν
i=2 ρ(vi−1, vi), N

′
ν =∑

i∈[ν] ni (N
′
0 = 0), t′ν = N ′

ν−1 + ρν , t′′ν = N ′
ν + ρν for all ν ∈ [g].

Next, we renumber the jobs at node vν arbitrarily by indices from the interval
[N ′

ν−1 + 1, N ′
ν]Z. Unlike the natural job numeration (see Definition 2.9), we will

call it a hamiltonian one. Then in the desired schedule S, machine Mk (k ∈ [m])
performs the jobs located at node vν in the order of their hamiltonian numeration
in the time interval [t′ν , t′′ν]+k−1. To uniquely define such schedule S, it is sufficient
to specify only the intervals [N ′

ν−1 + 1, N ′
ν]Z of the indices of jobs located at nodes

vν (ν ∈ [g]) and the time intervals [t′ν , t
′′
ν] (ν ∈ [g]) of performing the operations

of those jobs by machine M1. (The time interval of any other machine Mk, k > 1,
can be obtained from that of M1 by shifting it forward by k − 1.) Subject to the
encoding length of the amounts {N ′

ν , t
′
ν , t

′′
ν | ν ∈ [g]} (which is not greater than

g(log n + 2 log(C̄ + m − 1)) ≤ O(g2(log n + log ρmax + logm)) ≤ O(g2|I|)), we
obtain the claimed bound on the bit running time of the whole algorithm: T (A′) ≤
O(2gg2)|I|.

Actually, the algorithm is g-parameterized, since it is sufficient to specify in
schedule S the time intervals for only one machine (M1). (The interval of each
next machine Mk can be obtained by the corresponding shifts by (k−1) time units.)
Yet, if it is required to specify explicitly the time intervals for all machines, then
we will have to add the summand mg|I| to the bound on running time. �

Lemmas 3.1, 3.2 and Proposition 3.2 imply

Corollary 3.2. The optimum of any instance of the ROS∗-UET problem exists
and can be represented in the form C(S∗) = L(∆)

.
= C̄ + ∆ − 1, where ∆ ∈ [m],

and C̄ is the lower bound on the optimum established in Proposition 3.2. �

3.3. Properties of an optimal solution of the ROS∗-UET problem. In
this subsection we proof the existence (for any given instance of the ROS∗-UET
problem) of an optimal schedule with a certain bunch of properties enabling one to
reduce significantly the enumeration of variants of pre-schedules (in the algorithm
of computing the optimal schedule, Section 4), which thereby reduces the running
time of the algorithm.

Properties of optimal schedules
P1. The schedule is entirely integral, which means the integrality of all its
temporal parameters (including local and segment coordinates of operations, the

60 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

values of function D, etc.) and — the integrality of the occurrence times of all
significant events (such as the starting and the completion of an operation, the
start and the end of a machine movement through the edges of the network, the
start and the end of a machine stay at a node of the network, the completion of
the whole schedule).

P2. The schedule length can be represented in the form: C(S) = L(∆)
.
= C̄ +

∆ − 1, where ∆ ∈ [m], and C̄ is the lower bound on the optimum established in
Proposition 3.2.

P3. The total idle time of each machine is no greater than m− 1.

P4. Any two successive stays of a machine are performed at different nodes.

P5. The number of stays of any machine cannot be less than g+1 and is not greater
than 2g− 1+∆′, where ∆′ = C(S)− C̄ ≤ m− 1; the total number of stays belongs
to the interval [m(g + 1),m(m+ 2g − 2)]Z.

P6. The number of stays of any machine at any node is not greater than g+∆′/2,
where ∆′ = C(S)− C̄ = ∆− 1.

P7. In the schedule, there are no empty intermediate stays (see Definition 2.10),
while any empty starting or ending stay of a machine has got zero length.

P8. The number of stays (sk,ν) of each machine Mk at any node vν , ν ̸= ν∗,
is not greater than nν , and at node vν∗ is not greater than nν∗ + 2. At that, if
sk,ν∗ = nν∗ + 2, then the first and the last stays of machine Mk are empty, and
all its operations at the depot are distributed among nν∗ intermediate stays (with
local indices from [2, nν∗ + 1]Z).

P9. The first local coordinate (LC1(O
k
j), see page 50) of any special operation

Ok
j at the condition sk,ν ≤ nν (where ν

.
= Loc(j)) takes values from the interval

[nν] ⊆ [m − 1], and at the alternative condition sk,ν ∈ {nν + 1, nν + 2} (which,
when P8 holds, is possible only for ν = ν∗) — from the interval [nν +1] ⊆ [m]. The
second local coordinate (LC2(O

k
j)) takes values from the interval [2m− 2].

Lemma 3.3. There exists an optimal schedule S∗ with properties P1-P9.

To prove Lemma 3.3, we need the following result.

Lemma 3.4. Let G = (V,E) be a connected g-vertex graph with integer positive
weights of edges ({ρ(e) | e ∈ E}), and let R be a closed walk passing through each
vertex at least once and containing 2g − 2 + k edges (k ∈ Z+). Then R has weight
ρ(R) ≥ ρ(R∗) + k, where ρ(R∗) is the minimum weight of a closed walk passing
through all vertices of graph G.

Proof. If k = 0, we are done. Let k > 0, and let H = (VH , EH) be a multigraph
consisting of all vertices and edges of the closed walk R. Thus, VH = V , and EH

includes an edge {u, v} of G that many times the edge is contained in R. As a
result, H has got g vertices and 2g−2+k edges. It is connected and Eulerian, so, it
contains a spanning tree T consisting of g− 1 edges. The “additional” g− 1+ k ≥ g
edges of H comprise a cycle C whose removal from H results in a connected eulerian
multigraph with a less number of edges. We repeat this deletion procedure until we
get a multigraph H ′ with at most g− 1 “additional” edges. Since it is still eulerian,
it includes an eulerian tour R′ through all vertices of G, and thus having the weight

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 61

ρ(R′) ≥ ρ(R∗). Since at least k edges of R have been deleted, the weight of R is at
least ρ(R∗) + k. �
Corollary 3.3. If for some z ∈ Z+ and for a given feasible schedule S for the
ROS∗-UET problem the length of a route RS

k of machine Mk is not greater than
ρ(H∗) + z, then the number of its edges does not exceed 2g − 2 + z.

Proof. Suppose the contrary, i.e., for a feasible schedule S obtained for the ROS∗-
UET problem the number of edges of the route RS

k is equal to 2g− 2+ z′ for some
integer z′ > z. Then, since in a complete graph G∗ with edge weights satisfying the
metric properties the shortest route through all vertices is a hamiltonian cycle, by
Lemma 3.4 we have the relations ρ(RS

k) ≥ ρ(H∗) + z′ > ρ(H∗) + z contradicting
the conditions of our lemma. �
The proof of Lemma 3.3: Let us take the optimal schedule S̃ with properties
(a)-(d), the existence of which was proved in Lemma 3.1 (page 55). Then property
P1 coincides with property (a). Property P2 holds by Corollary 3.2, from which we
directly derive property P3. Property P4 is a corollary of property (b).

Since, in view of property P2, the length of the route RS̃
k of each machine Mk

is not greater than ρ(H∗) +∆− 1 for some ∆ ∈ [m], by Corollary 3.3, the number
of edges of the route RS̃

k is not greater than 2g − 3 + ∆. Since, by property P4,
between any two edges of the route of machine Mk (as well as prior to the first, and
after the last edge) machine Mk performs exactly one stay, the number of its stays
in the route ρ(RS̃

k) does not exceed 2g − 2 +∆, which implies the upper bound on
the total number of stays. The lower bound (sk ≥ g + 1) on the number of stays
of machine Mk follows from the feasibility of schedule S̃ (since each machine has
to visit each node of network G∗, and should visit the depot at least twice). Thus,
property P5 holds.

Let us prove property P6. To begin with, let us estimate the maximum possible
number of stays at the depot. As is known, any machine Mk has the first stay at
the depot. After that, in the route of the machine one can observer the repetition:
“non-depot”, depot, “non-depot”,. . . , depot, where each “depot” means exactly one
stay (at the depot), while each “non-depot” means several (at least one) stays at
nodes different from the depot. Henceforth, by property P5, we obtain the desired
bound: sk,ν∗ ≤ (sk − 1)/2+ 1 = (sk +1)/2 ≤ (2g− 1+∆)/2 ≤ g+∆′/2. For other
nodes (different from the depot) a stronger bound holds:

sk,ν ≤ (sk − 1)/2 ≤ (2g − 3 + ∆)/2 ≤ g − 1 + ∆′/2.

Let us prove P7. Suppose that in schedule S̃ there is an empty intermediate stay X
at node vν . Then by property (c), the completion of stay X coincides with either
time 0, or the completion of some operation O′. The first case is impossible, since
stay X is intermediate, while at the completion of the starting stay the machine
had to move to another node (by property (b)), which requires a non-zero time.
In the second case, since stay X is empty, operation O′ is, clearly, performed in
another stay Y , at the completion of which the machine should move to another
node (by property (b)). And again, due to the strict positiveness of the weights
of all edges of network G∗, the time passing between the stays X and Y cannot
be zero. Thus, the second case is also impossible, which completes the proof of
property P7.

Property P8 is a direct consequence of property P7.

62 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

Let us prove P9. The bound on the first local coordinate of a special operation
follows from property P8 and the definition of a special node. The belonging of the
second local coordinate (LC2(O

k
j)) of a special operation to the interval [2m − 2]

follows from its integrality (by property P1), the definition of a special node (nν ≤
m − 1), and from the bound on the total idle time of a machine (property P3).
Thus, schedule S̃ possesses all properties claimed in Lemma 3.3. �

Proposition 3.3. Pre-schedule P[S∗] = ⟨∆[S∗], s[S∗], T[S∗], D[S∗], RSS[S∗]⟩ of schedule
S∗ belongs to the set P(∆[S∗]) defined on page 54. At that, ∆[S∗] ∈ [m].

Proof. Inclusion ∆[S∗] ∈ [m] follows from the definition of this determining parameter
(presented on page 51) and from the property P2 of schedule S∗. Let us show that
pre-schedule P[S∗] of schedule S∗ meets all restrictions imposed on pre-schedules
from the set P(∆[S∗]).

Restrictions on the overall number of stays s[S∗] are met in view of property
P5. Property (a) of the sequence T[S∗] follows from property P4, property (b)
— from property P8, property (c) — from P6. Property (d) follows from the
feasibility of schedule S∗ (as well as property (e)) and from ordering the stays
in T[S∗] according to (2). Next, the correspondence of the function D[S∗](t) (defined
in (4)) to the definition of component D of a pre-schedule P ∈ P(∆[S∗]) can be
easily checked.The correspondence of the relative schedule (RSS[S∗]) of special jobs
to the restrictions on the values of their local coordinates (imposed on page 50)
follows from property P9. Proposition 3.3 is proved. �

3.4. Two problems on constructing a feasible semi-schedule. Denoting by
variables x(q), y(q) unknown moments b(q), e(q) of the beginning and the ending
of stays T (q) (q ∈ [s]), at each iteration of the Big Cycle of algorithm A we solve
the problem ILP (P) of constructing a feasible semi-schedule S extending a given
pre-schedule P = ⟨∆, s, T,D,RSS⟩. Constraints LP1-LP4 of problem ILP (P)
provide the feasibility of semi-schedule S, while constraints LP5 -LP8 provide its
correspondence to pre-schedule P .

Problem ILP (P)

Find integral non-negative values of variables x(q), y(q), satisfying the follow-
ing constraints:

LP1: x(q) ≤ y(q), q ∈ [s] provides a non-negativeness of the length of each stay
(which, however, admits the existence of zero-length stays);

LP2: x(q) = 0, q ∈ [m] reflects the condition (d) on a feasible sequence T ;
LP3:

∑
t∈[sk,ν]

(y(β(k, ν, t))−x(β(k, ν, t))) ≥ nν , k ∈ [m], ν ∈ [gns]; it runs that
the total length of all stays of each machine Mk (k ∈ [m]) at any non-special
node vν (ν ∈ [gns]) cannot be less than the number of jobs located at that node;

LP4: x(γ(k, t+1))−y(γ(k, t)) = ρ(ν(γ(k, t)), ν(γ(k, t+1))), k ∈ [m], t ∈ [sk−1];
the time needed to a machine Mk for traveling between two its successive stays
(that should be performed at different nodes of network G∗, by property (a) of
component T of a feasible pre-schedule) is defined for a given network by function ρ;

LP5: The following inequalities (that should hold for every q ∈ [s− 1]) provide
necessary and sufficient conditions for a schedule S to meet the equality T[S] = T
between the sequence of semi-stays T[S] (defined in accordance with (2)) and the

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 63

component T of pre-schedule P .

x(q + 1)− x(q) ≥
{

0, if µ(q) < µ(q + 1);
1, otherwise.

Indeed, the inequality x(q + 1) − x(q) ≥ 0 is necessary in all cases for the validity
of the inequality (b(q), µ(q)) <lex (b(q + 1), µ(q + 1)); when µ(q) < µ(q + 1), it is
also sufficient. In case µ(q) > µ(q + 1), the strict inequality x(q + 1) − x(q) > 0 is
necessary and sufficient, which is equivalent (due to the integrality of variables) to
the inequality x(q + 1)− x(q) ≥ 1. Finally, in case µ(q) = µ(q + 1), the inequality
x(q+1)−x(q) ≥ 1 is also sufficient, while its necessity follows from the requirement
of feasibility of schedule S. This requirement (with respect to two successive stays
of a machine) is formulated in a stronger form in LP4;

LP6: y(q̄(t))− x(q̄(t)) = A(P, t), t ∈ [s̄];
it runs that the length of the tth special stay is defined by the amount A(P, t)
computable for a given relative schedule of special jobs (RSS) while specifying the
pre-schedule P ;

LP7: for each t ∈ [2, s̄]Z, the constraint for the difference in time between the
starting times of two successive special stays is specified by function D of pre-
schedule P :

x(q̄(t))− x(q̄(t− 1))

{
= D(t), if D(t) < 2m;
≥ D(t), if D(t) = 2m;

LP8: y(γ(k, sk)) ≤ L(∆), k ∈ [m]; the last stay of each machine (and henceforth,
the whole schedule) has to be completed by the time L(∆) defined in (5).

Problem ILP ′ differs from ILP by that only, the inequality LP3 is replaced by
the equality LP3′:

∑
t∈[sk,ν]

(y(β(k, ν, t))− x(β(k, ν, t))) = nν , k ∈ [m], ν ∈ [gns],

We denote:
Sol(P) and Sol′(P) to be the sets of solutions ⟨X,Y ⟩ .

= {x(q), y(q) | q ∈ [s]}
of problems ILP (P) and ILP ′(P), respectively, where s is the total number of
stays of all machines in pre-schedule P ; Sol(∆) = ∪P∈P(∆)Sol(P); Sol′(∆) =
∪P∈P(∆)Sol

′(P);
let Ψ(X,Y) : Sol(∆) → Z+ be the function defined by the equality:

Ψ(X,Y)
.
=

∑
(x(q),y(q))∈⟨X,Y ⟩

(x(q) + y(q)).

The connection between two problems set above is established in the following

Lemma 3.5. Given ∆ ∈ [m], the relation Sol(∆) ̸= ∅ holds, if and only if
Sol′(∆) ̸= ∅.

Proof. “if” is evident, since every solution of problem ILP ′(P) is also a solution of
problem ILP (P).
“only if” Let Sol(∆) ̸= ∅, i.e., the definition area of function Ψ is nonempty. Since
function Ψ takes integral nonnegative values on the solutions ⟨X,Y ⟩ ∈ Sol(∆), it
attains its minimum on some solution ⟨X∗, Y ∗⟩ ∈ Sol(P ∗), P ∗ = ⟨∆∗, s∗, T ∗, D∗,
RSS∗⟩ ∈ P(∆). Let us prove that ⟨X∗, Y ∗⟩ is also a solution of problem ILP ′(P ∗).

Suppose the contrary, i.e., at least one of the inequalities LP3 (for some machine
Mk′ and a non-special node vν′) holds as a strict inequality. In view of the integrality
of the solution ⟨X∗, Y ∗⟩, the discrepancy in that inequality (the difference between
its left and right parts) is not less than 1. Let us diminish it by decreasing by 1 the

64 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

length of the last nonempty stay of machine Mk′ at node vν′ (i.e., by decreasing
y∗(q′) by 1, where q′ is the absolute index of the stay). If the stay length decreases
thereby down to zero (i.e., the stay is no longer a “stay”, by Definition 2.10), we
remove it and decrease by 1 the total number of stays (s∗). Next, if that stay was
intermediate, we make the path of the machine from the node of its previous stay
to the node of its next stay “straighter” (and, possibly, shorter). If, as a result of
the above reduction, both those stays appear to be at the same node, we glue them
together (according to the definition of a stay), reducing further the parameter s∗.
Furthermore, if q′ is not the last stay of machine Mk′ (i.e., has got a machine index
t′ < sk′,ν′), then to correspond to the requirement LP4, we diminish (by at least 1)
the time x∗(γ(k′, t′+1)) of the beginning of the next, (t′+1)th stay of machine Mk′ ,
which may change both the order of stays in sequence T ∗, and the function D∗.
Besides, if the stay (t′+1) is special (i.e., is situated in a special node vν′′), than the
decreasing of its starting time results in a different relative schedule (RSS′), as well
as increases the length of that stay. Thus, the new solution ⟨X ′, Y ′⟩ is a solution
of a problem ILP (P ′), defined by another pre-schedule (P ′ = ⟨∆, s, T ′, D′, RSS′⟩).
If we prove that P ′ ∈ P(∆), we will obtain a contradiction with the choice of the
solution ⟨X∗, Y ∗⟩, since Ψ(X ′, Y ′) < Ψ(X∗, Y ∗).

The only circumstance that could prevent the pre-schedule P ′ to belong to P(∆)

is a possible violation (at least, for one operation Ok′

j performed at the (t′ + 1)th
stay of machine Mk′) of the restriction LC2(O

k′

j) ≤ nν′′ +∆− 1 set on page 53 (in
the definition of a relative schedule of special jobs). As a result of such a violation,
the length of the stay would exceed nν ′′+∆−1, the idle time of the machine at node
vν ′′ (as well as its total idle time) would exceed ∆− 1, and the length of the route
would exceed L(∆). Yet, it is clear that the length of semi-schedule S′, defined by
the solution ⟨X ′, Y ′⟩, coincides with the length of semi-schedule S∗ from which S′

was obtained, and thus, it cannot exceed L(∆). The contradiction obtained proves
the inclusion P ′ ∈ P(∆), which contradicts the choice of the solution ⟨X∗, Y ∗⟩.
Henceforth, it is proved that ⟨X∗, Y ∗⟩ must be a solution of a problem ILP ′(P ∗)
for some P ∗ ∈ P(∆), whence Sol′(∆) ̸= ∅. Lemma 3.5 is proved. �

By means of an original technique, Frank and Tardos (1987) elaborated an FPT -
algorithm for solving a general Integer Linear Programming problem (ILP-problem);
the algorithm was parameterized by the number of variables and used polynomially
bounded space.

Theorem 3.3. (Frank and Tardos [8]; see (author?) [15, p. 27]) Given an ILP-
problem with h variables, it can be solved in O(h2.5h+o(h)) · |IILP | ≤ 2O(h log h) · |IILP |
time and with a space requirement polynomial in the encoding length (|IILP |) of its
input.

To estimate the running time of the algorithm for solving the ILP ′(P)-problem,
as applied to our case, it is sufficient to estimate the number of variables and the
encoding length of the input of the ILP ′(P)-problem. It can be easily seen that
both the number of variables and the number of constraints in problem ILP ′(P)
are bounded above by the amount O(s) which, due to the restrictions imposed on
pre-schedules, cannot exceed O(m2 + mg). Since the matrix of coefficients of the
ILP ′(P)-problem consists of the numbers ±1 and 0 only, the record length of this
matrix (in bits) coincides with the matrix size (i.e., O(s2)); at that, the record of the

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 65

free column requires at most O(s)·|I| bits. Thus, we have |IILP | ≤ O(s2)+O(s)·|I| ≤
O(s2) · |I|, and due to the result of Theorem 3.3, we may formulate the following

Lemma 3.6. Given a pre-schedule P , problem ILP ′(P) can be solved in time
2O(s log s) · |I| and with a space requirement Pol(m, g)|I|, where Pol(m, g) is a
polynomial of m and g; s is the total number of stays in the solution (specified in
P), and |I| is the input length of the ROS∗-UET problem in the compact encoding
scheme.

3.5. The criterion of non-simultaneity of special operations and efficient
algorithms of constructing a local job schedule at a non-special node.

Proposition 3.4. If schedule S is an extension of a pre-schedule P = ⟨∆, s, T,D,
RSS⟩ ∈ P, then the processing intervals of any two special stays from distinct
segments do not overlap.

Proof. The validity of the statement directly follows from two facts:
(1) the total idle time of any machine in schedule S is no greater than m− 1 (since
pre-schedule P ∈ P specifies the constraint: C(S) ≤ L(∆)

.
= C̄+∆−1 ≤ C̄+m−1);

this implies that the length of any special stay in schedule S does not exceed 2m−2;
(2) the difference between the starting times of any stay of a segment and of any
stay of the next segment is not less than 2m (by the definition of function D). �

Lemma 3.7. (the criterion of non-simultaneity of special operations)
Suppose, we are given a pre-schedule P = ⟨∆, s, T,D,RSS⟩ ∈ P. Then in any
complete schedule S, being an extension of P , any two special operations O′ and O′′

are non-simultaneous (by Definition 2.12), if and only if their segment coordinates
differ in at least one component.

Proof. “only if” Suppose that both segment coordinates of operations O′ and
O′′ coincide. This means that the completion times of these two operations are
strictly tied to the starting time of the same special stay (with a relative number
SC1(O

′) = SC1(O
′′)), and that they are shifted with respect to that moment by

the same amount (SC2(O
′) = SC2(O

′′)),which implies the simultaneity of these
operations.

“If” segment coordinates of operations O′ and O′′ differ at their first components
(i.e., the operations belong to different segments), then the time intervals of these
operations do not overlap, by Statement 3.4. Suppose now that their first segment
coordinates coincide, i.e., the operations O′ and O′′ belong to the same segment,
but differ in their second segment coordinates — in the shifts of their completion
times with respect to the starting time of the segment. Then, due to the integrality
of the relative schedule (RSS), the completion times of the operations O′ and O′′

differ by at least 1. This provides their non-simultaneity, since both operations have
unit length. �

Next, we will consider the problem of constructing a feasible local schedule for
jobs located at a given non-special node within given time domains specified for each
machine. In two independent lemmas, we will establish certain sufficient conditions
that guarantee the existence of feasible local schedules. For a constructive proof
of those lemmas, two procedures will be used. One of them is based on a theorem
due to Cole et al (2001) and on their algorithm of finding a proper edge coloring
of a bipartite graph in the minimum number of colors. Another procedure realizes

66 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

our algorithm of constructing a feasible schedule consistent with a given family
of time domains. Although the second procedure has a more restricted scope of
its implementation (it guarantees the construction of a desired schedule for large
enough values of nν only), but exactly this procedure provides the FPT -property
of the whole algorithm and the polynomial dependence of its running time on the
length of recoding the problem input under the compact encoding scheme. As a
result, both these procedures find their proper application in our algorithm.

Definition 3.21. We say that a local schedule of jobs at a non-special node vν
is consistent with a given family Tν = {Tk,ν | k ∈ [m]} of discrete domains of time
(see Definition 2.2), if: (a) the performance interval of each operation Ok

j (k ∈
[m], j ∈ J (ν)) is contained in the domain Tk,ν ; (b) any two related operations of
jobs {j ∈ J (ν)} are non-simultaneous (see Definitions 2.7 and 2.12).

Definition 3.22. We say that a schedule of jobs at a given node vν′ (ν ′ ∈ [g])
is consistent with a given feasible solution {x(q), y(q) | q ∈ [s]} of the ILP ′(P)-
problem (defined for a given pre-schedule P), if it is consistent with the family
Tν ′ = {Tk,ν ′ | k ∈ [m]} of discrete domains of time Tk,ν ′ =

∪
q∈Q(k,ν ′)[x(q), y(q)],

where Q(k, ν ′) = {q ∈ [s] |µ(q) = k, ν(q) = ν ′}.

Theorem 3.4. (Cole et al, 2001 [6]) For any given bipartite multigraph with h
edges and with the maximum vertex degree d, there exists a proper edge coloring in
d colors. The coloring can be found in O(h log d) time.

Lemma 3.8. Let ⟨X,Y ⟩ = {x(q), y(q) | q ∈ [s]} be a feasible solution of problem
ILP ′(P), defined for a given pre-schedule P ∈ P. Then for any non-special node vν
there exists a local schedule S(ν) of jobs from J (ν), consistent with the solution
⟨X,Y ⟩ (see Definition 3.22). Schedule S(ν) can be constructed by Procedure 1
(described below) in time O(mnν log nν).

Proof. Let Tk,ν (k ∈ [m], ν ∈ [nns]) be a discrete domain of time defined for
a machine Mk and a non-special node vν by the solution ⟨X,Y ⟩ according to
Definition 3.22. We should schedule nν operations of machine Mk in the domain
Tk,ν satisfying the non-simultaneity conditions for all pairs of related operations.
Since solution ⟨X,Y ⟩ meets requirements LP3′, and the time intervals of all stays
of machine Mk do not overlap, domain Tk,ν represents a union nν = ∥Tk,ν∥ of
different integral unit time intervals ui = [i−1, i]. Thus, to each machine Mk,
it is assigned that many time units, that it needs for performing all jobs located
at node vν . In other words, the whole time assigned to machine Mk for its stays
at node vν should be spent to performing jobs; at that, in different units of time
machine Mk should perform different jobs; symmetrically, all jobs being performed
at the same time unit must be different. As a result, we come to the following
problem.

Let B = (VB , EB), VB = VL ∪ VR, be a bipartite graph in which the vertices of
the left part (v′k ∈ VL) represent machines (Mk, k ∈ [m]), while the vertices of the
right part (v′′i ∈ VR) represent unit time intervals {ui | i ∈ U(ν)

.
= ∪k∈[m]Uk,ν}, Uk,ν

is the set of indices of the unit time intervals that compound the domain Tk,ν . Let
us connect each vertex v′k ∈ VL by an edge with each vertex from VR representing
an interval from {ui | i ∈ Uk,ν}. Thus, the cardinality of the left part is equal to m,
while the degree of each vertex from the left part is equal to nν ≥ m; at that, the
degree of each vertex from the right part is not greater than m, the total number

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 67

of edges is mnν , and the maximum vertex degree in graph B is equal to nν . By
Theorem 3.4, there exists a proper edge coloring of graph B in nν colors, which
can be found in O(mnν log nν) time. (This procedure of the proper edge coloring
will be further referred to as “Procedure 1”.) As one can guess, in this coloring,
color c(v′k, v

′′
i) of an edge (v′k, v

′′
i) corresponds to the local index of the job being

processed by machine Mk in the unit time interval ui. The absolute job index can
be computed by the formula j = Nν−1 + c(v′k, v

′′
i). �

It should be noted that, although the feasible local schedule of processing the
jobs located at a given node vν is built by Procedure 1 in time O(mnν log nν) (which
is polynomial on the number of objects at that node), this is not a polynomial
on the input length in its compact encoding, because such encoding has length
only logarithmically dependent on nν . As a result, we may use the described above
procedure only at nodes heaving small values of the parameter nν (for instance,
values bounded by a function of parameters m and g). For arbitrarily large values of
nν , in our algorithm quite a different Procedure 2 (described below) is used, capable
to build rather simple feasible schedules, the encoding of which has length bounded
by a polynomial of log nν . (And that much time will be spent in the algorithm for
constructing those schedules. At that, the schedule remains uniquely and correctly
defined.) Thus, Procedure 2 has the required running time. Everything seams to be
Ok, but. . . the flaw of Procedure 2 is that it can guarantee the constructing of a
proper schedule only for large enough values of nν . The collision appeared is
solved in the current paper as follows. All non-special nodes are divided into two
categories: of semi-special nodes (with a number of objects nν < 2s(ν), where s(ν)
is the total number of stays of machines at node vν) and — of absolutely-non-special
nodes (with a number of objects nν ≥ 2s(ν)), after which we apply Procedure 1 to
the first nodes and Procedure 2 — to the second ones.

To describe and justify Procedure 2, we need to introduce a few notions.

Definition 3.23 (COS). The last operation of a stay (in a given schedule or in a
schedule under construction) will be called a completing operation of the stay (or
COS, for short).

As follows from properties (b) and (c) of schedules (from Lemma 3.1) and — from
Corollary 3.1, any last operation of a stay completes that stay (in the sense that
the completion time of the last operation coincides with the completion time of its
personal stay).

Definition 3.24 (conflicting operations). We will say that two operations are
conflicting by job in schedule S, if they are processed simultaneously (in the same
unit time interval) and belong to the same job. Schedules of machines Mk and Mk′

are conflicting, if there are two operations Ok
j and Ok′

j conflicting by job.

Definition 3.25. For a given w ∈ N we define two functions. Function φw :
[w]× [0, w − 1]Z → [w] specified by the formula

φw(i, h)
.
=

{
i− h, if i > h
w + i− h, if i ≤ h

enables one, given an arbitrary permutation π′ = (π′(1), . . . , π′(w)) of indices
{1, . . . , w}, a given shift amount h ∈ [0, w − 1]Z, and a position index i ∈ [w], to
compute the value π′′(i) = π′(φw(i, h)) of the permutation π′′ obtained from π′ via

68 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

a cyclic shift by amount h (see Definition 2.3). Function ηw : [w]× [w] → [0, w−1]Z
specified by formula

ηw(i, j)
.
=

{
i− j, if i ≥ j
w + i− j, if i < j

defines the shift h of permutation π′′ with respect to π′ providing the equality
π′′(i) = π′(j). (Thus, ∀ i, j ∈ [w], we have the identity: j = φw(i, ηw(i, j)).)

Lemma 3.9. Let ⟨X,Y ⟩ = {x(q), y(q) | q ∈ [s]} be a feasible solution of the
ILP ′(P)-problem defined for a given pre-schedule P ∈ P. Then for any ANS-node
vν (see Definition 2.16, page 52) there exists a local schedule S(ν) for the jobs from
J (ν) consistent with the solution ⟨X,Y ⟩ (see Definition 3.22). Schedule S(ν) can
be constructed by means of Procedure 2 (described below) with a bit running time
O(ms(ν) + s(ν) log s(ν)) · |I|, where |I| is the input length of the given instance I
of problem ROS∗-UET in the compact encoding scheme.

Proof. Let Tk,ν (k ∈ [m], ν ∈ [nns]) be a discrete domain defined for machine
Mk and for an ANS-node vν by a solution ⟨X,Y ⟩ according to Definition 3.22.
Since solution ⟨X,Y ⟩ meets requirements LP3′, and once the intervals {[x(q), y(q)]}
constituting the domain Tk,ν do not overlap, we have the equality ∥Tk,ν∥ = nν .

Given an ANS-node vν , let us renumber the machines {Mk} in the non-increasing
order of sk,ν , while for jobs from J (ν) we will use their original (local) numeration
by indices from [nν]. Thus, the processing of the jobs from J (ν) by a machine Mk

can be specified by a permutation πk of indices {1, 2, . . . , nν}; in view of the equality
∥Tk,ν∥ = nν , each such permutation uniquely defines a schedule Sk of performing
the jobs within the domain Tk,ν , since the machine has no idle time within that
domain. The main peculiarity of schedule S(ν) (to be constructed) is that each
permutation πk (k ∈ [m]) will be obtained from the permutation π1

.
= (1, 2, . . . , nν)

via a cyclic shift by a certain amount hk (see Definition 2.3).
The amounts {hk} will be defined by induction on k ∈ [m] in the order of

machine numeration. We set h1 = 0. Suppose that for some k > 1 the amounts
h1, . . . , hk−1 are already defined so that schedules S1, . . . , Sk−1 meet the non-
simultaneity requirements (and thus, there are no conflicts between those schedules).
Let us show that there exists a proper value of the amount hk, which defines a
schedule Sk conflicting with no of already defined schedules S1, . . . , Sk−1.

Suppose that the amount of the shift hk is somehow defined, thereby defining a
permutation πk, and suppose that in the partial schedule specified by permutations
π1, . . . , πk, a conflict appeared between two operations (Ok

j′ and Ok′

j′ , k′ < k) of
a job j′ ∈ J (ν) which was scheduled to be processed in stays T (q) and T (q′) of
machines Mk and Mk′ simultaneously. Since in the schedules of both machines
the jobs from J (ν) are processed in the same order (1, 2, . . . , nν) (but with, maybe,
different cyclic shifts), this implies that the succeeding operations on these machines
(within the same pair of stays) are also pairwise conflicting. As a result, we obtain
one of two possible situations: (a) the COS defined (see Definition 3.23) for stay
T (q′) is conflicting with some operation of stay T (q); (b) the COS defined for stay
T (q) is conflicting with some operation of the same job which is simultaneously
processed in stay T (q′). Thus, to choose a feasible value of the amount hk, it is
sufficient to avoid the conflicts of the types (a) and (b).

While analyzing the conflict situations of type (a), we observe that each COS of
machines M1, . . . ,Mk−1 hits into the interval of at most one stay of machine Mk,

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 69

and if such a hitting happens for some COS Ok′

j , then its conflict with operation
Ok

j appears in that case only, when the latter is being performed in the same unit
time interval. At that, the hitting of Ok

j into that unit interval happens for a unique
value of the shift hk. Thus, each COS of machines M1, . . . ,Mk−1 (at node vν under
consideration) defines at most one restriction on the choice of the proper value of
hk (at that, different COSes may define the same restriction). We may conclude
that to avoid the conflict situations of type (a), it is sufficient to forbid at most
s(ν)− sk,ν variants of values hk.

While analyzing in a similar way the conflict situations of type (b), we observe
that each COS of machine Mk conflicts with at most k − 1 operations of machines
M1, . . . ,Mk−1. Thus, the conflict situations of type (b) define at most (k − 1)sk,ν
restrictions on the choice of the proper value of hk, which together with conflicts of
type (a) results in at most zk,ν

.
= s(ν)+ (k−2)sk,ν restrictions. Since the machines

are indexed by non-increasing of sk,ν , for any k the inequality sk,ν ≤ s(ν)/k holds,
whence we obtain the bound zk,ν ≤ s(ν) + k−2

k s(ν) < 2s(ν). Since we have got nν

possible values of hk, and since for any ANS-node (by Definition 2.16) we have the
inequality nν ≥ 2s(ν), it follows that for each machine Mk there always exists a
non-conflict variant of the shift hk.

To complete the proof of the lemma, it remains to describe the algorithm (called
a Procedure 2) of finding a feasible schedule with the claimed bound on running
time. The algorithm consists in searching for a proper (non-conflict) value of the
shift hk for each machine Mk, k ∈ [m], and in the subsequent presentation of the
schedule in a compact form.

Procedure 2

At the input of the procedure, we are given a family Bν = {Bk,ν | k ∈ [m]}
of finite sets Bk,ν

.
= {(x(q), y(q)) | q ∈ Q(k, ν)}, specifying the limits of stays of

each machine Mk (k ∈ [m]) at node vν , where Q(k, ν) = {β(k, ν; t) | t ∈ [sk,ν]} is
the set of absolute indices of those stays. Each set Bk,ν specifies a discrete domain
Tk,ν = ∪q∈Q(k,ν)[x(q), y(q)].

At the output we have a schedule for each machine Mk at a given ANS-
node vν in the form of a list of pairs Sk,ν = {⟨τk,ν(t),Jk,ν(t)⟩ |t ∈ [s′k,ν]}, where
τk,ν(t) = [τ ′k,ν(t), τ

′′
k,ν(t)] is a time interval in which machine Mk performs (without

an idle time) all jobs with indices from the interval Jk,ν(t) = [j′k,ν(t), j
′′
k,ν(t)]Z in

the increasing order of indices, and the value of the parameter s′k,ν is defined in the
procedure and is equal to one of two values: {sk,ν , sk,ν + 1}.

Beside that, the following information is used in the “body” of the procedure:
— the list E of events listed in a non-increasing order of their occurrence times
(backwards). As “events”, we consider the start or the completion of a stay at node
vν . Each event e ∈ E is characterized by five parameters: ⟨k(e), t(e), q(e), st(e), τ(e)⟩,
where k(e) is the machine number, t(e) and q(e) are the local and the absolute
indices of the stay, st(e) is the “status” of the event (st(e) = “start” or “completion”
of the stay);

τ(e) =

{
y(q(e)), if st(e) = “completion”
x(q(e)), if st(e) = “start” — is the occurrence time of event e;

— array H[1..m], where H[k] specifies the amount hk of the cyclic shift of permutation
πk with respect to permutation π1;

70 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

— a bit array F [1..2s(ν)] of forbidden values of hk at step k of the Main stage,
where F [i] = 1, if the value hk = i − 1 is forbidden, and F [i] = 0 — otherwise;
(since the maximum possible number of forbidden values is less than 2s(ν), it is
sufficient to check the values hk ∈ [0, 2s(ν) − 1]Z only; among them, there exists
(for sure) at least one admissible value);
— array SM [1..m] (the “status” of machine Mk, k ∈ [m]); SM [k] takes values from
the interval [0, sk,ν]Z; SM [k] = 0 means that at the time of the occurrence of the
current event e ∈ E machine Mk has no stay at node vν ; a value SM [k] = t > 0
means that the machine performs its tth stay at node vν (where t is the local index
of the stay);
— array N ′[1..m, 1..(g+m/2)] keeps positions of COSes in permutations {πk} over
all k ∈ [m] and over all stays of machine Mk at node vν . The number of such stays
(sk,ν) is not greater than g +m/2, in view of property (c) of the sequence of stays
T (specified in the pre-schedule) and in view of the restriction ∆ ≤ m.

The procedure consists of two stages: the Preliminary and the Main one.
At the Preliminary stage, we make the initialization of values of the arrays that

are to be computed. Arrays F, SM , and N ′ are set identically to zeros; E := null.
Furthermore, for all k ∈ [m] and t ∈ [sk,ν], we compute:

N ′[k, t] :=
∑

q∈Q(k,ν,t)

(y(q)− x(q)), Q(k, ν, t)
.
= {β(k, ν;u) |u ∈ [t]}.

The Main stage represents a cycle on k̃ = 1, ...,m, where at step k̃ we compute
the values of H[k̃] and construct the schedule of machine Mk̃ at node vν .

Step k̃ consists of four actions, denoted by letters “Ai”. (At step k̃ = 1 action
A2 is skipped, as a result of which the array F of forbidden values remains equal
to zero, and for the shift of permutation π1 the value H[1] = 0 is chosen.)

A1 (the adjustment of the list of events E : adding to E the events of machine Mk̃,
with a simultaneous renumbering of the list by lexicographical increasing of pairs
(−τ(e), k(e))). Look through the list Bk̃,ν = {(x(q′), y(q′)) | q′ = β(k̃, ν; t′), t′ ∈ sk̃,ν}
of the time limits of stays of machine Mk̃; for each q′, we define two events: {e′q′ , e′′q′}
(of the start and of the completion of stay q′). Put k(e′q′) = k(e′′q′) := k̃; t(e′q′) =

t(e′′q′) := t′; q(e′q′) = q(e′′q′) := q′; st(e′q′) := “start” ; st(e′′q′) := “completion” ;
τ(e′q′) := x(q′) + 1

2 ; τ(e′′q′) := y(q′).
Insert each new event e into the list E , while keeping the increasing order of pairs

(−τ(e), k(e)).

A2 (formation of the array F [1..2s(ν)] of the forbidden values for H[k̃]). We
are consecutively (in the cycle on ℓ := 1, . . . , |E|) looking through the list of events
e ∈ E , while establishing the value (τ̃) of the current time (running conversely):
τ̃ := τ(e).

If st(e) =“completion”, we put SM [k(e)] := t(e) (which means: “the stay t(e)

of machine Mk(e) is open”). In that case, several forbidden values of H[k̃] can be
found, preventing possible conflicts of the COS defined for stay t(e) of machine
Mk(e) with operations of the same job on other machines. Two possible cases are
considered: k(e) ̸= k̃ and k(e) = k̃.

If k(e) ̸= k̃, then for arising a possible conflict (of type (a)) with machine Mk̃,
the condition t′

.
= SM [k̃] > 0 must hold (which means: at the current point in

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 71

time (τ̃) a stay t′ of machine Mk̃ is open). For defining a forbidden value, we need
to know the index of the job (j) being processed on machine Mk(e) in the unit
time interval uτ̃ . By Definition 3.25, the index of the job that stays in the ith
position of permutation π′′ (shifted by h with respect to π′), coincides with the
index of the job staying in position φw(i, h) of permutation π′. Since in our case,
w = nν , h = H[k(e)], i = N ′[k(e), t(e)], π′′ = πk(e), π′ = π1 = (1, 2, . . . , nν)
(whence π′(i′) = i′), we obtain

j = π′′(i) := φnν (N
′[k(e), t(e)], H[k(e)]).

For a conflict on job j to be arisen between machines Mk(e) and Mk̃, the same job
j must be processed on machine Mk̃ in the time interval uτ̃ . Since this unit time
interval corresponds to the position i′

.
= N ′[k̃, t′]− y(β(k̃, ν; t′))+ τ̃ in permutation

πk̃, it remains to determine the shift of permutation πk̃ at which job j jumps
to position i′. The shift can be computed by the formula h := ηnν (i

′, j) (see
Definition 3.25 of function ηw). To make this value of the shift forbidden (in case
h < 2s(ν)), we put F [h+ 1] := 1.

In the alternative case, when k(e) = k̃, several (up to k̃ − 1) new conflicts
of type (b) may arise between the machine Mk̃ and some machines with smaller
indices. For discovering possible conflicts, we look through (in a cycle on k < k̃)
the elements of the array SM [k]. If for some k the inequality SM [k] = t′ > 0
holds, this means that there may be a conflict between machines Mk and Mk̃. To
compute the forbidden value of the shift H[k̃], we first determine the number of the
position (i′) of permutation πk, corresponding to the unit time interval uτ̃ . It can
be computed by the already known formula: i′ := N ′[k, t′]−y(β(k, ν; t′))+ τ̃ . Thus,
we learn that in the time interval uτ̃ on machine Mk job j = φnν (i

′,H[k]) is being
performed. Now the value of the shift (h), at which job j falls into the position
i′′

.
= N ′[k̃, t(e)] of permutation πk̃, can be computed by the formula h := ηnν (i

′′, j);
in case h < 2s(ν) this enables us to set a new forbidden value of the shift of
permutation πk̃: F [h+ 1] := 1.

If st(e) =“start”, we put SM [k(e)] := 0 (which means: “stay t(e) of machine
Mk(e) is closed ”).

By the completion of scanning the list of the events (E), array F [1..2s(ν)] contains
all possible forbidden values of the shift of permutation πk̃ from the interval [0, 2s(ν)−
1].

A3 (the choice of the feasible value of the shift H[k̃]). By looking the array
F [1..2s(ν)] through, we find i′ = min{i ∈ [2s(ν)] |F [i] = 0} and put H[k̃] := i′ − 1.
(As was shown above, such a value i′ exists for sure.)

A4 (constructing a feasible schedule for machine Mk̃ at node vν , not conflicting
with the schedules of machines M1, . . . ,Mk̃−1). As shown above, the value of the
shift H[k̃] uniquely defines both the permutation πk̃, and the schedule of machine
Mk̃ at node vν . To find that schedule, we first compute the position i′ of the job
with index nν in permutation πk̃:

i′ =

{
H[k̃], if H[k̃] > 0

nν , if H[k̃] = 0.

Find the local index (t′ ∈ [sk̃,ν]) of the stay in which machine Mk̃ performs this
job: t′ = min{t ∈ [sk̃,ν] |N ′[k̃, t] ≥ i′}. (Such t exist: e.g., N ′[k̃, sk̃,ν] = nν ≥ i′.) Put

72 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

d := N ′[k̃, t′]− i′. Next, for each stay t ̸= t′ of machine Mk̃, we form the interval of
indices [j′

k̃,ν
(t), j′′

k̃,ν
(t)]Z

.
= Jk̃,ν(t) of those jobs that are to be processed in that stay

in the time interval τk̃,ν(t)
.
= [τ ′

k̃,ν
(t), τ ′′

k̃,ν
(t)] = [x(q(t)), y(q(t))], q(t) = β(k̃, ν; t).

We put

dt
.
= y(q(t))− x(q(t));

j′′
k̃,ν

(t) := φnν (N
′[k̃, t],H[k̃]);

j′
k̃,ν

(t) := j′′
k̃,ν

(t)− dt + 1.

For the stay with index t = t′, we define: Jk̃,ν(t
′) = [nν − dt′ + d + 1, nν]Z

to be the interval of job indices being processed in the time interval τk̃,ν(t
′)

.
=

[τ ′
k̃,ν

(t′), τ ′′
k̃,ν

(t′)] = [x(q(t′)), y(q(t′)) − d]. If at that, d = 0, then we are done.
Otherwise (when d > 0), we define one more, (sk̃,ν + 1)th interval of job indices:
Jk̃,ν(sk̃,ν + 1) = [d], of jobs being processed in the time interval τk̃,ν(sk̃,ν + 1) =

[y(q(t′))− d, y(q(t′))].
In the schedule of machine Mk̃ defined above, we used “local” job indices at node

vν . To complete the construction of the schedule for machine Mk̃, it remains to pass
over to the natural numeration of jobs (see Definition 2.9), just by increasing the
defined above limits on job indices by the amount Nν−1. �

Next, we should prove that the schedule constructed is feasible. In our opinion,
the only place in the algorithm that needs additional explanation is a possible “lost”
of some forbidden values while performing the Action 2 in the case, when two events
with status “completion” happen simultaneously. We mean the following situation.

Suppose that at the completion of Action 1 at step k′′ of the cycle on k̃, two
simultaneous events (e′ and e′′) with indices ℓ′ and ℓ′′ (in the list E) and with
the status of the “completion” of stays q(e′) and q(e′′), respectively, appear in the
list of events; at that, we have k(e′) < k(e′′) = k′′, whence ℓ′ < ℓ′′. Then, while
scanning the event e′ (at Action 2), the interval of stay q(e′′) is not “opened” yet,
and so, at step ℓ′ of the cycle on ℓ, we do not find a possibility for a possible conflict
between the COS defined for stay q(e′) and the COS defined for stay q(e′′), being
performed in the same unit time interval. However, the possibility for such a conflict
is analyzed while scanning the event e′′ (when stay q(e′) is still “opened”).

An opposite situation (when we could define a redundant forbidden value, and
as a consequence, could get lost the existing solution) could arise in the case, when
two events appear (e′ and e′′) with opposite statuses (st(e′) =“completion”, and
st(e′′) =“start” of a stay), and when, additionally, ℓ′ < ℓ′′ in E . Then while scanning
the event e′, stay t(e′′) would be still “opened”. Yet we avoid such situations by a
small increasing (by amount δ = 1/2) of the occurrence times of the events with
the “start” status.

Thus, we have considered all situations with a possible “incorrectness” of the
algorithm. It remains to estimate its running time.

Since we define two events for each of s(ν) stays, at each step of the algorithm
we have |E| = O(s(ν)). Each event should be inserted into a proper place of the
list E , which can be done in O(log s(ν)) time. Thus, the total time consumed by
Action 1 (over all steps of the cycle on k̃) cannot exceed O(s(ν) log s(ν)).

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 73

While performing Action 2 at each step of the cycle on k̃, for each event e ∈ E
with k(e) ̸= k̃, a constant number of calculations has to be performed (or O(ms(ν))

operations in total, over all steps of the cycle on k̃). For an event e with k(e) = k̃,
the checking of the values of SM [k] for all k < k̃ and the subsequent forming
of forbidden values requires O(m) time, which provides in total (over all steps
of the cycle on k̃) the same bound O(ms(ν)). That many bound is valid on the
total running time of A2 (over all steps of the cycle on k̃). The total running
time of Action 3 cannot also exceed O(ms(ν)). Finally, the total running time
of Action 4 (over all steps of the cycle on k̃) is estimated by O(s(ν)). The overall
number of computational operations of Procedure 2 amounts O(s(ν)(log s(ν)+m)).
To estimate its running time (subject to the encoding length of the operands of
computational operations), this amount should be multiplied by |I|. Lemma 3.9 is
proved. �
3.6. The criterion of existing a complete feasible schedule of a given
length.

Lemma 3.10. Given ∆ ∈ [m], there exists a complete feasible schedule S of length
C(S) ≤ L(∆), if and only if Sol′(∆) ̸= ∅.

Proof. “if” Suppose that for a given pre-schedule P = ⟨∆, s, T,D,RSS⟩ ∈ P(∆)
there exists a solution ⟨X,Y ⟩ = {x(q), y(q) | q ∈ [s]} of problem ILP ′(P). This
solution specifies the time intervals [b(q), e(q)] = [x(q), y(q)] for all stays {T (q) | q ∈
[s]} in pre-schedule P . Thus, the complete information on machine routes in network
G∗ becomes known. Furthermore, by the given relative schedule of special jobs and
by the known starting times {b(q̄(t)) | t ∈ [s̄]} of special stays we can uniquely
restore the absolute schedule for special jobs (by formula (6)). It can be easily
shown that this schedule is consistent in each special node vν ′ with the solution
⟨X,Y ⟩ (according to Definition 3.22).

Indeed, property (a) from Definition 3.21 is satisfied, since the relative (and
therefore, the absolute) schedule is defined for all special operations from O(ν ′).
Property (b) (the inclusion of the processing interval of operation Ok

j into one of
the intervals {[b(q), e(q)] | q ∈ Q(k, ν ′)}) is a corollary of the following properties:
— the position of the processing interval of any special operation with respect to
the interval of its personal stay is uniquely defined by the relative schedule and
does not depend on the subsequent specification of the position of special stays (in
the solution of problem ILP ′(P));
— in the relative schedule, the completion time of an operation Ok

j is shifted (to the
right) with respect to the starting time of its personal stay (with a relative index
t ∈ [s̄]) by the amount LC2(O

k
j) taking integer nonnegative values not less than 1;

— the processing time of the operation is equal to 1, henceforth, the whole interval
of processing the operation lays to the right of the stay starting time;
— the completion time of stay t, in view of the requirement LP6 of problem
ILP ′(P), is shifted with respect to the stay starting time t by the amount A(P, t);
— the amount A(P, t), by its definition (7), is not less than the second local
coordinate (LC2(O

k
j)) of any operation Ok

j ∈ O(ν ′) being processed in stay t; thus,
the whole processing interval of the operation lays to the left of the completion time
of its personal stay.

And lastly, property (c) (the non-simultaneity of related operations from O(ν ′))
is being checked at once while forming a variant of the relative schedule. Thus, the

74 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

consistency of the schedule of special jobs with the solution of problem ILP ′(P) is
proved.

Next, given a semi-schedule, to extend it to a complete schedule, it is required
(and sufficient) to construct at each special node vν a local schedule of jobs from
J (ν), consistent with the solution of problem ILP ′(P). The existence of such a
schedule at each non-special node vν was proved in Lemma 3.8.

To prove the feasibility of the complete schedule S (just obtained), we need
to make sure of the non-simultaneity of related operations. For pairs of operations
belonging to the same set O(ν), this was proved in Lemma 3.8. Alternatively, if
two related operations are located at different nodes, then they are “related by
machine”, and are performed in different stays of that machine. In that case, the
non-simultaneity of the operations is a consequence of the non-overlapping the stays
of each machine (which follows from the requirements LP1 and LP4 of problem
ILP ′(P)).

Finally, C(S) ≤ L(∆), since S meets LP8.
“only if” Suppose that for a given ∆ ∈ [m] there exists a complete feasible

schedule S of length C(S) ≤ L(∆). Then the optimal schedule S∗ with properties
P1-P9 (the existence of which is proved in Lemma 3.3) has length C(S∗) =
L(∆[S∗]) ≤ C(S) ≤ L(∆), whence ∆[S∗] ≤ ∆. By Proposition 3.3, we have P[S∗] ∈
P(∆[S∗]) ⊆ P(∆). Therefore, since schedule S∗ provides a feasible solution to
problem ILP (P[S∗]), we have Sol(∆) ̸= ∅, and by Lemma 3.5, Sol′(∆) ̸= ∅. �

4. A description and justification of the algorithm A

4.1. A basic idea and an informal scheme of the algorithm. The algorithm
for solving the ROS∗-UET problem is based on Lemma 3.10, from which it follows
that, to construct an optimal schedule, it is sufficient to perform the following steps.
— Enumerate all pre-schedules from a certain limited domain (the size of which is
bounded above by a function of m and g), and for each pre-schedule P , try to solve
problem ILP ′(P) by the algorithm of (Frank and Tardos, 1987) with the running
time bounded by a function of m and g. (With that purpose, we preliminarily
extract from P all necessary information, needed to form constraints in problem
ILP ′(P).) The enumeration of pre-schedules completes, as soon as the first pre-
schedule P is found for each there exists a feasible solution of the ILP ′(P)-problem.
— The semi-schedule obtained from the solution of problem ILP ′(P) should be
extended up to a feasible complete schedule S via constructing at each node of
network G∗ (for the jobs located at that node) a feasible local schedule consistent
with the solution of problem ILP ′(P). Such schedules are to be built by means
of three different ways for three types of nodes: special ones, semi-special, and
absolutely-non-special.
— For the nodes of the first type, the relative schedule is used (specified in pre-
schedule P) and the solution of problem ILP ′(P).
— For each node of the second type, we find a proper edge coloring of a bipartite
graph by a minimum number of colors (the existence of such coloring by the
number of colors equal to the number of jobs located at a given non-special node
is guaranteed by Lemma 3.8); the coloring obtained is then transformed into a
schedule of jobs.
— At each node of the third type, for constructing a feasible schedule consistent

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 75

with the solution of problem ILP ′(P), we apply Procedure 2 from the proof of
Lemma 3.9.

Since pre-schedules are enumerated in the algorithm in a non-decreasing order of
the parameter ∆ (and so, by a non-decreasing of the upper bound L(∆) on schedule
length), it follows that the very first feasible schedule constructed will be optimal.

4.2. A detailed scheme of the algorithm. 1. Preliminary computation:
(a) Constructing the reduced transportation network G∗ = (V ∗, E∗).
(b) Searching for the hamiltonian cycle (H∗) of the minimum length ρ(H∗) in
network G∗.
(c) Computing the lower bound on the optimum (C̄) of problem ROS∗-UET .

% The beginning of the Big Cycle. Assigning values to components of a pre-
schedule.
2. Begin of the cycle on ∆ := 1, . . . ,m.
Computing the upper bound L(∆) = C̄ +∆− 1 on schedule length,
the upper bound 2g − 2 + ∆ on the number of stays of any machine,
and the upper bound ŝ = m(2g − 2 + ∆) on the total number of stays.
3. Begin of the cycle on s := m(g+1), . . . , ŝ % specifying the total number
of stays.
4. Begin of the cycle on variants of sequence T (the total sequence of semi-stays)
of the given length s.
5. Computing a “supplementary information” for the given variant of T .
6. Verification of the variant of T on its correctness. (The iteration of the cycle on
T is terminated ahead of time, if one of the necessary conditions is unsatisfied.)
7. Begin of the cycle on variants of function D : [s̄+ 1] → {0, 1, . . . , 2m}.
8. Computing a “supplementary information” for the given variant of function D
(including the information on the segmentation of the sequence of special stays).
9. Begin of the cycle on variants of RSS (the relative schedule of special jobs).
10. Computing a “supplementary information” (such as segment coordinates of
special operations and lengthes of special stays).
11. Verification of the variant of RSS on its correctness. The iteration of the cycle on
RSS is terminated ahead of time, if one of the necessary conditions is unsatisfied.
12. Generating the constraints of problem ILP ′(P) for the given variant of pre-
schedule P . Solving the problem ILP ′(P).
13. If a feasible solution {x(q), y(q) | q ∈ [s]} of problem ILP ′(P) is found, we
specify the time limits of all stays (b(q) := x(q); e(q) := y(q), q ∈ [s]) and go out
of the Big Cycle and go to the label “B1:” (to the procedures of constructing local
schedules at nodes of network G∗, using the semi-schedule found in the ILP ′(P)-
problem).
14. End of the iteration of the cycle on variants of RSS
15. End of the iteration of the cycle on variants of D
16. End of the iteration of the cycle on variants of T
17. End of the iteration of the cycle on variants of s
18. End of the iteration of the cycle on variants of ∆
% End of the iterations of the Big Cycle.
19. B1: % The Final stage (procedures of constructing the local schedules):
20. Constructing the local schedules at special nodes vν (nν < m).
21. Constructing the local schedules at semi-special nodes vν (m ≤ nν < 2s(ν)) by

76 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

means of Procedure 1.
22. Constructing the local schedules at absolutely-non-special nodes vν (nν ≥ 2s(ν))
by means of Procedure 2.

4.3. A description and justification of the algorithm procedures.
(line 1) Preliminary computation:
(a) Constructing the reduced transportation network G∗ = (V ∗, E∗):
scanning the set V of nodes of the original network G; selecting a subset V ∗ ⊆ V
of active nodes (i.e., the depot and all nodes with nν > 0);
numbering the nodes of the set V ∗ in the non-increasing order of nν : {v1, . . . , vg};
defining the set of edges E∗ of graph G∗ as the set of pairs (vi, vj) (i < j); computing
the length ρ(i, j) of each edge (vi, vj) ∈ E∗ as the length of the shortest path
between the corresponding nodes in the original graph G;
computing the amounts Nν =

∑
i∈[ν] ni (ν ∈ [g]); N0 = 0; numbering the jobs: jobs

located at node vν get indices from the interval [Nν−1 + 1, Nν]Z.
(b) Searching for the hamiltonian cycle (H∗) of minimum length ρ(H∗) in network G∗.
(c) Computing the lower bound on the optimum for the given instance of problem
ROS∗-UET : C̄ := ρ(H∗) + n.

(line 2) Begin of the cycle on ∆ := 1, . . . ,m
Computing the upper bound L(∆) := C̄ +∆− 1 on schedule length,
the upper bound 2g − 2 + ∆ on the number of stays of any machine
and the upper bound ŝ := m(2g − 2 + ∆) on the total number of stays.

(line 3) Begin of the cycle on the total number of stays: s := m(g + 1), . . . , ŝ

(line 4) Begin of the cycle on variants of the total sequence of stays T ;
specifying a variant of a sequence consisting of s pairs (µ(q), ν(q)) ∈ [m]× [g].

(line 5) Computing a “supplementary information” for the given variant
of T
% Compute the number of stays (sk) of each machine Mk (k ∈ [m]) and the
number (sk,ν)
% of its stays at each node vν in arrays s1[1..m] and s2[1..m, 1..g]; the T -route of
machine
% Mk and its length are accumulated in sequence RT (k) (of node indices)
% and in the array ρT [1..m], respectively. Initialization:
s1 ≡ 0; s2 ≡ 0; s̄ := 0; ρT ≡ 0; RT (k) := null, ∀ k ∈ [m];
for q := 1, . . . , s do begin % scanning the sequence T
µ̄ := µ(q); ν̄ := ν(q); t := s2[µ̄, ν̄] + 1; % a one more stay of machine Mµ̄

s2[µ̄, ν̄] := t; % at node vν̄ is found (t is its local index)
β(µ̄, ν̄; t) := q; % the transition from the local index t to the absolute index is

computed
s1[µ̄] := s1[µ̄] + 1; % the machine index of the current stay is computed
γ(µ̄, s1[µ̄]) := q; % and the transition function from the machine index to the

absolute one
RT (µ̄) := RT (µ̄)⊕ ν̄ % have incremented the T -route of machine Mµ̄ by node ν̄
if s1[µ̄] > 1 then ρT (µ̄) := ρT (µ̄) + ρ(ν(γ(µ̄, s1[µ̄]− 1)), ν̄) % and incremented

its length
if ν̄ > gns then begin

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 77

s̄ := s̄+ 1; % a new special stay is found; s̄ is its relative index
q̄(s̄) := q; % the transition from the relative index to the absolute one
RN(µ̄, ν̄; t) := s̄; % computing the transition function from the local index t

% of a special stay to the relative one
κ(s̄) := s1(µ̄); % and from the relative index to the machine index

end (if)
end (for q).

(line 6) Verification of the variant of T on its correctness. (The iteration
of the cycle on T is terminated ahead of time, if one of the conditions (a)-(e) is
unsatisfied.)

(line 7) Begin of the cycle on variants of function D : [s̄+1] → {0, 1, . . . , 2m}.
Put D(1) = D(s̄ + 1) = 2m. For other t ∈ [2, s̄]Z, we choose integral values
D(t) ∈ [0, 2m]Z.

(line 8) Computing a “supplementary information” for the given variant
of function D
In parallel with specifying the values of function D, we compute the (derived from
D) segment coordinates (SC1(t), SC2(t)) of each special stay (t ∈ [s̄]):
for t := 1 to s̄ do

if D(t) < 2m then {SC1(t) := SC1(t− 1); SC2(t) := SC2(t− 1) +D(t)}
else {SC1(t) := t; SC2(t) := 0}

(line 9) Begin of the cycle on variants of the relative schedule of special jobs
(RSS).
The relative schedule was defined in Section 2 as a set of pairs of local coordinates
specified for each special operation Ok

j . At that, coordinate LC1(O
k
j) ∈ [sk,Loc(j)]

specifies the local index of its personal stay, while LC2(O
k
j) ∈ [nLoc(j) + ∆ − 1]

specifies the shift of the completion time of operation Ok
j with respect to the

starting time of its personal stay.

(line 10) Computing a “supplementary information” (such as segment co-
ordinates of special operations and lengthes of special stays).

A(P, t) ≡ 0 (t ∈ [s̄]);
for k := 1 to m do begin

for j := nNC + 1 to n do begin
t := RN(k, Loc(j), LC1(O

k
j));

SC1(O
k
j) := SC1(t); SC2(O

k
j) := SC2(t) + LC2(O

k
j);

A(P, t) := max{A(P, t), LC2(O
k
j)}

end (for j)
end (for k)

(line 11) Verification of the variant of RSS on its correctness
Verification of the non-simultaneity conditions is performed for pairs of related
special operations — separately for each machine and for each special job, by
comparing segment coordinates of two operations (by Lemma 3.7). The verification
of the current RSS is terminated ahead of time, if one of those conditions fails.

78 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

Step 1: machines. For each machine Mk (k ∈ [m]), we form the set Xk of
pairs of segment coordinates of special operations Ok

j over all special jobs j ∈ SJ
.
=

∪ν∈SNJ (ν). We next organize the pairs in Xk in lexicographically non-decreasing
order and compare every two consecutive pairs. Finding two identical pairs means
that the non-simultaneity requirement is failed (by the criterion of Lemma 3.7).

Step 2: jobs. Perform the same for each job j ∈ SJ .
It is clear that the running time of the described procedures is bounded by a

polynomial of m and g, which is dominated by the exponent arising while estimating
the number of variants of pre-schedule P .

(line 12) Generating the constraints of problem ILP ′(P) for the given
variant of pre-schedule P . Solving the problem ILP ′(P).
Given a pre-schedule P , we form the constraints of problem ILP ′(P).
For solving the problem ILP ′(P), we apply the algorithm of (Frank and Tardos,
1987; see also Theorem 3.3, p. 27 (Lokshtanov, 2009))

(line 20) Constructing the local schedules at special nodes vν (nν < m)
The completion time of each special operation is computed by formula (6), based
on the relative schedule (specified in the given pre-schedule P) and on the solution
obtained of problem ILP ′(P).

(line 21) Constructing the local schedules of jobs at semi-special nodes
vν (m ≤ nν < 2s(ν)) by implementing Procedure 1

A local schedule of jobs at a semi-special node vν is constructed by means of the
reduction of that scheduling problem to the problem of searching for a proper edge
coloring of a bipartite graph in a minimum number of colors (see the details of
the reduction in the proof of Lemma 3.8). For solving the latter problem, we use
the algorithm from (Cole et al, 2001) with bound O(mnν log nν) on its running
time. Since that procedure is applied in our algorithm only for semi-special nodes
(where nν < 2s(ν), by Definition 2.16, see page 52), the total running time of the
application of Procedure 1 (over all semi-special nodes) does not exceed O(ms log s),
which, in view of the bound s ≤ O(m(m + g)), is not greater than O(m2(m +
g) logmg).

(line 22) Constructing the local schedules of jobs at absolutely-non-
special nodes vν (nν ≥ 2s(ν)) by means of Procedure 2
To construct a feasible schedule at each ANS-node, we apply Procedure 2 from
the proof of Lemma 3.9. Due to a quite simple form of the schedule (which exists
for any ANS-node), we have a possibility for its compact presentation and efficient
computing, as shown in the proof of Lemma 3.9. The total running time of the
application of Procedure 2 (over all ANS-nodes) amounts O(s log s+ms) elementary
operations, which does not exceed the total running time of the application of
Procedure 1.

4.4. Justification of the correctness and the optimality of the algorithm.
The bound on its running time. We leave the reader to make sure that in the
described above algorithm A only elementary operations are being performed (see
Definition 2.4), and that the encoding length of the operands of each such operation
(and hence, due to Remark 1 and Definition 2.5, also the bit running time of the
operation) does not exceed (by the order of magnitude) the amount |I|, i.e., the

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 79

encoding length of the input of the problem instance I in its compact encoding. For
example, the encoding length of each temporal parameter in any schedule under
consideration (in view of the upper bound on the optimum obtained in Lemma 3.2)
does not exceed logL(∆) ≤

∑
e∈E∗ log ρ(e) + log n + logm = |I| ≤ |I|. Whence,

to estimate the bit running time of the algorithm, it is sufficient to estimate the
number of elementary operations performed in the algorithm (which in our case
amounts the notion of the “running time” of the algorithm), and then to multiply
it by |I|.

Lemma 4.11. The bit running time of algorithm A of solving the ROS∗-UET

problem can be estimated by the amount 2O(gsnm
2 logm+(m2+mg) logmg) · |I|, where

m is the number of machines, g and gsn are the numbers of all and special nodes
of the reduced network G∗, respectively, and |I| is the encoding length of the input
of the ROS∗-UET problem in its compact encoding.

Proof. We remind the reader that by B(X) we denote the number of those variants
of values of component X ∈ {∆, s, T,D,RSS} of a pre-schedules P that are
enumerated in the algorithm; by T (X) we denote the running time of “treating” a
component X. (By “treating” a component X, we mean computing a supplementary
information depending on X and checking the feasibility of the given variant of
component X). By T (ILP), we denote the running time of the solution of problem
ILP ′(P). The running time of the whole algorithm A includes the running time
of the Main part of the algorithm (the Big Cycle), denoted by TMP , and of the
running time of the Preliminary and Final stages.

The most time consuming part of the Preliminary stage is the searching for the
shortest hamiltonian cycle in the reduced network G∗. The running time of this
part, according to Theorem 3.1, can be estimated as 2O(g). The Final stage (CP)
consists in the consecutive application of the procedures of constructing feasible
local schedules of jobs at each node vν , ν ∈ [g]. As was show in Section 4.3 (line
21 and line 22), the running time of this stage is not greater than the polynomial
O(m2(m+ g) logmg), and thus, as will be seen from further bounds, both bounds
(on the running time of the Preliminary and of the Final stages) are majorized by
the bound on the running time of the Main part. Thus, it remains to estimate the
running time of the Main part which can be presented by the following formula:

(8) TMP ≤ B(∆) ·B(s) ·B(T)(T (T) +B(D) ·B(RSS) · (T (RSS) + T (ILP)))

We first estimate the amounts B(X) and T (X) for each component X of a pre-
schedule P . Clearly, B(∆) = O(m) and B(s) = O(ŝ) ≤ O(m(m + g)). The other
amounts B(X) can be taken from Section 2: B(T) ≤ 2O(m(m+g) logmg), B(D) ≤
2O(m(m+g) logm), B(RSS) ≤ 2O(gsnm

2 logm). As we can see, B(D) ≤ B(T).
The time needed for the “treatment” of each variant of component T includes the

time needed for the extraction from T the “supplementary information” (including
the transition functions between various numberings of stays: the absolute, relative,
machine and local ones; having these functions, we can determine machine routes
through the nodes of network G∗, as well as the sequence of special stays) and
— the time for checking the correctness of the given variant of T . As can be seen
from the description of (lines 5,6) in Section 4.3, the total running time of all
those procedures is linear in s, or, subject to the constraints on the total number
of stays (specified in a given pre-schedule P), is polynomial of m and g. Thus, it is
“majorized” by the exponent value of B(T).

80 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

The checking of a variant of RSS on its feasibility reduces to the verification
of satisfiability of the non-simultaneity requirement to related operations at each
special node vν . By Lemma 3.7, to perform such a verification, it is sufficient to
compute and compare segment coordinates of related special operations. Quite
clear that the running time of these procedures is bounded above by a polynomial
function PRSS(m, g) of m and g, which provides the same bound on T (RSS).

Finally, by Lemma 3.6, the running time of the solution of problem ILP ′(P)
does not exceed

T (ILP) ≤ 2O(s log s).

Substituting to formula (8) the bounds on all its components and multiplying the
result by |I|, we obtain the final bound on the bit running time of the algorithm:

T (A) = O(TMP)·|I| ≤ 2O(gsnm
2 logm+s log s)·|I| ≤ 2O(gsnm

2 logm+m(m+g) logmg)·|I|�
We are now ready to prove the main theorem.

Theorem 4.5. For any instance of problem ROS∗-UET , algorithm A constructs
its optimal schedule. The bound on the running time of the algorithm (derived in
Lemma 4.11) is parameterized with respect to the parameter m + g, and is linear
(for fixed values of m and g) in the input length under its compact encoding.

Proof. The algorithm for constructing the optimal schedule for a given instance of
problem ROS∗-UET is based on the following two facts.
1) Due to Corollary 3.2, the optimum of any instance of the ROS∗-UET problem
exists and can be represented in the form C(S∗) = L(∆)

.
= C̄ + ∆ − 1, where

∆ ∈ [m], and C̄ is the lower bound on the optimum derived in Proposition 3.2.
2) By Lemma 3.10, a complete feasible schedule S of length C(S) ≤ L(∆) exists
for a given ∆ ∈ [m], if and only if Sol′(∆) ̸= ∅.

Thus, to find the optimum for a given instance of problem ROS∗-UET , it is
sufficient to find the minimum ∆ ∈ [m] for which Sol′(∆) ̸= ∅. To that end, in
turn, it is sufficient to look through the values ∆ ∈ [m] in the increasing order, for
each value of ∆ enumerate all pre-schedules P ∈ P(∆), and for each P to check
the existence (or non-existence) of a feasible solution of problem ILP ′(P). (For
checking this property, the algorithm of (author?) [8] can be used.) The very first
pre-schedule P ∈ P(∆) found, for which Sol′(P) ̸= ∅, provides the desired value
of the optimum (C(S∗) = L(∆)). To construct the optimal schedule itself, it is
sufficient to take the solution ⟨X,Y ⟩ found for problem ILP ′(P) (and specifying
a semi-schedule) and extend it up to a complete schedule S by finding (for each
non-special node) a feasible local schedule of jobs located at that node (the schedule
should be consistent with the solution ⟨X,Y ⟩). The existence of such a schedule
at each non-special node is guaranteed by Lemma 3.8. For its construction, it is
sufficient to use Procedure 1 applied in the proof of Lemma 3.8, while the feasibility
of the complete schedule S was shown in the proof of Lemma 3.10.

Thus, the algorithm working by the above scheme guarantees constructing an
optimal schedule for any given instance of problem ROS∗-UET . The only point
at which such an algorithm does not meet our requirements is its running time.
Indeed, the running time of Procedure 1 at a node vν can be estimated by the
amount O(mnν log nν). At that, the length of the input (in the compact encoding
scheme) amounts only O(log nν), which provides no possibility to bound the running
time of the algorithm by a linear function of the input length (for fixed m and g).

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 81

As shown in Lemma 3.9, the desired property can be obtained via the application
of another algorithm (called there “Procedure 2”) of constructing a local schedule
of jobs at a non-special node. A polynomial running time of that procedure is
provided due to quite a simple form of the schedule under construction, thanks
to which the time resources needed for the unique presentation of that schedule
become comparable with the input length in the compact encoding (accurate to
its multiplication by a function of m and g). The truth, for the existence of such
a feasible schedule, it is required that the non-special node would contain a large
enough number of jobs (more exactly, it must be nν ≥ 2s(ν) jobs; we call such
nodes “absolutely-non-special”, or “ANS-nodes”). As a result, after the application
of Procedure 2 for ANS-nodes (and Procedure 1 for the remaining non-special nodes,
called “semi-special”), we obtain the desired bound on the running time of the whole
algorithm. Theorem 4.5 is proved. �

5. Discussion

As we made certain above, the time required for computing the schedule in the
form provided by Procedure 2 is bounded by a function of m and g multiplied by
the input length in the compact encoding. However, the question arises: is this
information sufficient for a practical realization of this schedule?

On the one hand, an important feature of this schedule is that all machines should
maintain the same cyclic order of processing the jobs at each ANS-node. On the
other hand, we need not compute a job order in the algorithm, since any job
numbering fits our schedule. To our mind, a possible practical implementation of
this schedule (at which all machines are able to maintain the same cyclic order of
jobs at a given node) could look as follows.

We can assume that there is a node administrator who knows the numbering
of the objects at his node (at that, he need not know the schedule). In turn, each
machine “knows” the index of the job/object at this node that should be processed
(by that machine) first, and knows the index of each next job. Every time that a
machine is to start a new (next in turn) job, it calls the index of that job to the
administrator, and the latter shows where the object with this index is located.

As can be seen, this scheme works perfectly, but requires nν requests by each
machine to the node administrator, which is, clearly, not a polynomial of the
encoding length of the information on the objects at that node (the latter is
proportionate to log nν). Is this critical for evaluating the efficiency of our algorithm?
We believe not, because:

(a) this number of requests (linear in nν) is inevitable (minimum possible)
regardless of the form of presentation of the schedule, since the machines, even
knowing the indices of all jobs that are to be performed, do not know the correspon-
dence between those indices and real objects;

(b) we need not take into account the time spent by the machines on those
requests, since this time is spent not in the process of calculating the schedule, but
in that of its practical implementation (when, already the processing of jobs by
each machine takes time linear in the number of jobs).

6. Conclusion

This paper presents the first FPT -algorithm of constructing a complete optimal
schedule for the routing Open Shop problem with unit execution times of operations

82 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

(denoted as ROS-UET). The algorithm allows one to build optimal schedules of
processing jobs by machines (and find the corresponding machine routes through the
nodes of the transportation network) in time linearly dependent on |I| (the encoding
length of the input in its compact encoding), provided that all “critical” problem
parameters (such as the number of machines and the number of active nodes of the
transportation network) are bounded by constants. In fact, a somewhat stronger
result is obtained: the polynomial-time solvability of the problem by the algorithm
presented also holds for increasing values of critical parameters (it is sufficient to
bound each of those parameters by a function not greater than (log |I|)1/4).

It would be interesting to find out the limits of possible extension of the result
obtained (namely, of the possibility for constructing an exact FPT -algorithm) to
more general problems of that type under some (maybe, other) constraints on
critical parameters: the number of machines, the number of active nodes of the
network, and the execution times of operations. In the present paper, we have
investigated the version of constraints on processing times of operations, in which
all operations are of the same unit length. As possible variants of weakening the
above constraints, the following cases could be considered:
1) the ROS-UETMO problem (“UET with missed operations”), which allows missing
operations of machines on some objects; consequently, each machine may have its
“personal” set of active nodes, and therefore, its own optimal route through the
network;
2) the ROS-BET problem (with “bounded execution times”), in which the execution
times of all operations are bounded by a constant;
3) the ROS-BNDET problem (“bounded number of different execution times”),
which allows arbitrarily large operation processing times, but the number of diffe-
rent operation processing times is bounded by a constant.

Each of the above problems can be generalized by extending its “route component”,
so that the travel time of a machine through an edge becomes dependent on the
machine (which is natural for those problems in which different job executors use
different means of transport; in the problem setting due to Zhu & Wilhelm (2006)
[19], this corresponds to the case when the setup times of a machine depend not
only on the pair of consequent jobs processed by that machine, but also depend
on the machine). Such extensions can be marked by “MDTT” (“machine dependent
travel times”). For example, the ROS-UETMO problem will be converted to “ROS-
MDTT-UETMO”.

Another direction of possible generalization of the results obtained is replacing
the classical Open Shop by a generalized Open Shop (GOS), in which the number
of operations on each object is a parameter independent of the number of machines
(thereby admitting several operations of one executor on one object).

References

[1] A. Allahverdi, C. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling
problems with setup times or costs, European Journal of Operational Research,
187:3 (2008), 985–1032; doi: 10.1016/j.ejor.2006.06.060 MR2378326

[2] R. van Bevern, A.V. Pyatkin, Completing partial schedules for Open Shop with
unit processing times and routing, In: Proceedings of the 11th International
Computer Science Symposium in Russia (CSR’16), Springer, Lecture Notes

AN ALGORITHM WITH PARAMETERIZED COMPLEXITY 83

in Computer Science, 9691 (2016), 73–87; doi: 10.1007/978-3-319-34171-2_6;
MR3533846

[3] R. van Bevern, R. Niedermeier, M. Sorge, M. Weller, The complexity of
arc routing problems, In: A. Corberan and G. Laporte (eds.) Arc Routing:
Problems, Methods, and Applications, MOS-SIAM Series on Optimization, 20
(2014), SIAM-MOS, 19–52; doi: 10.1137/1.9781611973679.ch2

[4] R. van Bevern, C. Komusiewicz, M. Sorge, A parameterized approximation
algorithm for the mixed and windy capacitated arc routing problem: Theory
and experiments, Networks, 70:3 (2017), 262–278; doi: 10.1002/net.21742;
MR3702528

[5] H.J. Böckenhauer, J. Hromkovič, J. Kneis, J. Kupke, The parameterized
approximability of TSP with deadlines, Theory of Computing Systems, 41:3
(2007), 431–444; doi: 10.1007/s00224-007-1347-x; MR2352540

[6] R. Cole, K. Ost, S. Schirra, Edge-coloring bipartite multigraphs in O(E logD)
time, Combinatorica, 21:1 (2001), 5–12; doi: 10.1007/s004930170002;
MR1805711

[7] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015; doi:
10.1007/978-3-319-21275-3; MR3380745

[8] A. Frank, E. Tardos, An application of simultaneous diophantine
approximation in combinatorial optimization, Combinatorica, 7:1 (1987),
49–65; doi: 10.1007/BF02579200; MR0905151

[9] T. Gonzalez, S. Sahni, Open shop scheduling to minimize finish time, Journal
of the ACM, 23:4 (1976), 665–679; doi: 10.1145/321978.321985; MR0429089

[10] G. Gutin, M. Jones, M. Wahlström, The mixed chinese postman problem
parameterized by pathwidth and treedepth, SIAM Journal on Discrete
Mathematics, 30:4 (2016), 2177–2205; doi: 10.1137/15M1034337; MR3576563

[11] G. Gutin, M. Jones, B. Sheng, Parameterized complexity of the k-arc chinese
postman problem, Journal of Computer and System Sciences, 84 (2017), 107–
119; doi: 10.1016/j.jcss.2016.07.006; MR3570171

[12] G. Gutin, M. Wahlström, A. Yeo, Rural Postman parameterized by the number
of components of required edges, Journal of Computer and System Sciences,
83:1 (2017), 121–131; doi: 10.1016/j.jcss.2016.06.001; MR3546865

[13] P.N. Klein, D. Marx, A subexponential parameterized algorithm for Subset
TSP on planar graphs, In: Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’14), Society for Industrial and
Applied Mathematics, (2014), 1812–1830; doi: 10.1137/1.9781611973402.131;
MR3376491

[14] E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys, Sequencing and
scheduling: algorithms and complexity, In: Handbooks in operations research
and management science, Logistics of production and inventory, 4, North
Holland, Amsterdam, (1993), 445–522; doi: 10.1016/S0927-0507(05)80189-6

[15] D. Lokshtanov, New methods in parameterized algorithms and complexity, PhD
thesis, University of Bergen, Norway, (2009).

[16] M. Mnich, R. van Bevern, Parameterized complexity of machine scheduling:
15 open problems, Computers and Operations Research, (2018), in press; doi:
10.1016/j.cor.2018.07.020

84 R.A. VAN BEVERN, A.V. PYATKIN, S.V. SEVASTYANOV

[17] C.H. Papadimitriou, K. Steiglitz, Combinatorial optimization: algorithms and
complexity, Dover Publications, Inc., Mineola. New York, (1998). MR1637890

[18] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sevast’janov,
D. Shmoys, Short shop schedules, Operations Research, 45:2 (1997), 288–294;
doi: 10.1287/opre.45.2.288; MR1644998

[19] X. Zhu, W.E. Wilhelm, Scheduling and lot sizing with sequence-dependent
setup: A literature review, IIE Transactions, 38:11 (2006), 987–1007; doi:
10.1080/07408170600559706

René A. van Bevern
Novosibirsk National Research University,
1, str. Pirogova,
Novosibirsk, 630090, Russia
E-mail address: rvb@nsu.ru

Artem V. Pyatkin
Sobolev Institute of Mathematics,
4, pr. Koptyuga,
Novosibirsk, 630090, Russia
E-mail address: artem@math.nsc.ru

Sergey Sevastyanov
Sobolev Institute of Mathematics,
4, pr. Koptyuga,
Novosibirsk, 630090, Russia
E-mail address: seva@math.nsc.ru

