REMARKS ON OSTROVSKY’S THEOREM

ALEXANDER V. OSIPOV

Abstract. In this paper we prove that the condition ‘one-to-one’ of the continuous open-resolvable mapping is necessary in the Ostrovsky theorem (Theorem 1 in [4]). Also we get that the Ostrovsky problem ([6], Problem 2) (Is every continuous open-LC_n function between Polish spaces piecewise open for $n = 2, 3, \ldots$?) has a negative solution for each $n > 1$.

Keywords: open-resolvable function, open function, resolvable set, open-LC_n function, piecewise open function, scatteredly open function.

1. Introduction

By theorem of Jayne and Rogers a function $f : X \mapsto Y$ between Polish spaces is Δ_0^2-measurable iff it is piecewise continuous (see [2, 3]).

The generalization of theorem of Jayne and Rogers to multi-valued functions raises some topological problems for single-valued functions (see [6], Problem 1 and 2).

In the following definitions we will suppose that X is a subspace of the Cantor set \mathbb{C}.

A function $f : X \mapsto Y$ is called piecewise open if X admits a countable, closed and disjoint cover \mathcal{V}, such that for each $V \in \mathcal{V}$ the restriction $f|_V$ is open.

Recall, that a subset E of a metric space X is resolvable [1], if for each nonempty closed in X subset F we have $\text{cl}_X(F \cap E) \cap \text{cl}_X(F \setminus E) \neq E$.

If $E \subset X$ is resolvable, then E is Δ_0^2-set in X and vice versa if the space X is Polish (= separable complete metrizable).

Recall that a subset of X is LC_n-set if it can be written as union of n locally closed in X sets (a set is locally closed if it is an intersection of an open and a closed set). Every LC_n-set (constructible) set is resolvable.
A mapping f is open if it maps open sets onto open ones. More generally, for $n \in \omega$ a mapping f is said to be open-resolvable (open-LC_n) if f maps open set onto resolvable (LC_n-set) ones.

A piecewise open function $f : X \to Y$ is called scatteredly open if, in addition, the cover \mathcal{V} is scattered, that is: for every nonempty subfamily $T \subset \mathcal{V}$ there is a clopen set $G \subset X$ such that $\mathcal{T}_G = \{ T \in T : T \subset G \}$ is a singleton and $T \cap G = \emptyset$ for every $T \in T \setminus \mathcal{T}_G$.

2. Main result

A.V. Ostrovsky proved the following result.

Theorem 1. (Theorem 1 in [4]) Let X and Y be subspaces of the Cantor set \mathbb{C}, and $f : X \to Y$ a continuous bijection. If the image under f of every open set in X is resolvable in Y, then f is scatteredly open, and, hence, f is scattered homeomorphism.

Theorem 2. (Proposition 3.2 in [5]) Every continuous open-LC_1 function $X \to Y$ onto a metrizable crowded space Y is open.

In ([6], Problem 2) A.V. Ostrovsky posed the following

Problem. Is every continuous open-LC_n function between Polish spaces piecewise open for $n = 2, 3, \ldots$?

We prove that

- the condition ‘one-to-one’ of the mapping f in Theorem 1 is necessary.
- Ostrovsky’s problem has a negative solution for $n = 2$ (hence for each $n > 1$).

Example. Let \mathbb{C} be the Cantor set such that $\mathbb{C} \subset [0, 1]$. As usually, we start by deleting the open middle third $\left(\frac{1}{3}, \frac{2}{3} \right)$ from the interval $[0, 1]$, leaving two segments: $P_1 = C_0 = \left[0, \frac{1}{3} \right) \cup \left(\frac{2}{3}, 1 \right]$. Next, the open middle third of each of these remaining segments is deleted, leaving four segments: $P_2 = C_{00} \cup C_{01} \cup C_{20} \cup C_{21} = \left[0, \frac{1}{3} \right) \cup \left(\frac{2}{3}, \frac{1}{3} \right) \cup \left\{ \frac{1}{3} \right\} \cup \left[\frac{1}{3}, 1 \right)$. This process is continued ad infinitum, where the nth set is $P^n = \left(\frac{1}{3} \right) \cup \left(\frac{2}{3} \right) \cup P_{n-1}$ for $n \geq 1$, and $P_0 = \left[0, 1 \right]$.

The Cantor ternary set contains all points in the interval $[0, 1]$ that are not deleted at any step in this infinite process:

$$\mathbb{C} := \bigcap_{n=1}^{\infty} P_n.$$

Consider the clopen base $\mathcal{B} := \{ C_n = \bigcap_{i=1}^{k} s_i : s_i \in \{ 0, 1 \}, i \in [k] \}$ on \mathbb{C}. We enumerate $\mathcal{B} = \{ B_n : n \in \omega \}$ as $B_1 = C_0 \cap \mathbb{C}$, $B_2 = C_2 \cap \mathbb{C}$, $B_4 = C_{02} \cap \mathbb{C}$, ..., $B_n = C_{s(n)} \cap \mathbb{C}$, ..., where $s(n)$ is the binary representation of the number $n + 1$ without the first digit and the digit 1 must be replaced by 2. Consider the countable dense set $\{ b_n : n \in \omega \}$ such that $b_n \in B_n$, $b_n \neq b_m$ ($n \neq m$) for $n, m \in \omega$.

Let us fix the countable dense set $\{ (a_n, b_n) : n \in \omega \}$ in $\mathbb{C} \times \mathbb{C}$ such that $a_n \neq a_m$ for $n \neq m$, and for each n pick $a_{n,i} \mapsto a_n$ such that $a_{n,i} \neq a_m$, $a_{n,i} \neq a_{m,j}$ for $\langle n, i \rangle \neq \langle m, j \rangle$, and $|a_{n,i} - a_n| < \frac{1}{n}$.

Let $X = \mathbb{C} \setminus \bigcup_{n,i} \{ a_{n,i} \} \times B_n$. Note that X is a G_δ-set in $\mathbb{C} \times \mathbb{C}$. It follows that X is a Polish space.
Let \(\pi|X : X \to C \) be a restriction to \(X \) of the projection \(\pi : C \times C \to C \) onto the first coordinate. Note that \(\pi(X) = C \) because of \(\text{diam} C > \text{diam} B_n \) for any \(n \in \omega \).

Suppose \(X = \bigcup_{n \in \omega} X_n \) is a countable union of closed subsets \(X_n \) of \(X \). By the Baire Category Theorem [1], there is \(X_m \) such that \(V = \text{Int} X_m \neq \emptyset \) because otherwise \(\bigcap_{n=1}^{\infty} (X \setminus X_n) \) is not a dense set in \(X \).

Since the set \(\{(a_n, b_n) : n \in \omega \} \) is dense in \(X \), there are \(n' \in \omega \) and \(W \in B \) such that the point \((a_{n'}, b_{n'}) \in ((W \times B_{n'}) \cap X) \subseteq V \). Since the set \(\{(a_n, b_n) : n \in \omega \} \) is dense in \((W \times B_{n'}) \cap X\), choose \(n'' \in \omega \) such that \(n'' > n' \) and \((a_{n''}, b_{n''}) \in ((W \times B_{n''}) \cap X) \subseteq (W \times B_{n''}) \cap X \). Then \(\pi|X_m : X_m \to \pi(X_m) \) is not open at \((a_{n''}, b_{n''})\) because of \(\pi((W \times B_{n''}) \cap X) \) does not contain \(\{(a_{n''}, i) : i \in \omega \} \) and hence it is not an open subset of \(\pi(X_m) \). Therefore \(\pi|X \) is not piecewise open and hence it is not scatteredly open.

Let \(U \subseteq C \times C \) be open. We have to check that \(\pi(U \cap X) \subseteq \Delta_0^0 \).

Construct for every point \((a, b) \in U \cap X \) sets \(W(a) \) and \(B(b) \) such that
- \(a \in W(a) \in B \), \(b \in B(b) \in B \) and \((W(a) \times B(b)) \cap X \subseteq U \).
- If \(a \neq a_m \) for any \(m \in \omega \), then \(\pi((W(a) \times B(b)) \cap X) = W(a) \).
- If \(a = a_m \) for some \(m \in \omega \), then \(\pi((W(a) \times B(b)) \cap X) = W(a) \) \(\{a_m, j : j \in \omega \} \) for some subsequence \(\{a_{m, i} : j \in \omega \} \subseteq \{a_{m, i} : i \in \omega \} \).

Case 1. Let \(a \neq a_m \) and \(a \neq a_{m, i} \) for any \(m, i \in \omega \). One can choose \(W, (B(b) = B_{n'} \in B \) such that \(a \in W, b \in B(b), (W \times B(b)) \cap X \subseteq U \). Since \(a \neq a_m \), for any \(m \in \omega \), then there exists \(W(a) \in B \) such that \(a \in W(a) \subseteq W \) and \(W(a) \cap \{a_{i, j} : j \in \omega \} \subseteq \{a_{m, i} : i \in \omega \} \).

Case 2. Let \(a = a_m \) for some \(m, i \in \omega \). One can choose \(W, (B(b) = B_{n'} \in B \) such that \(a \in W, b \in B(b), (W \times B(b)) \cap X \subseteq U \).

If \(m > n' \) then there exists \(a \in W(a) \in B \) such that \(a \in W(a) \subseteq W \) and \(W(a) \cap \{a_{i, j} : j \in \omega \} \subseteq \{a_{m, i} : i \in \omega \} \).

Case 3. Let \(a = a_m \) for some \(m \in \omega \). Analogously to Case 1, we can choose \(B(b) \in B \) such that \(B(b) \cap B_n \neq \emptyset \) for all \(n > n' > m \), and \(W(a) \in B \) can choose such that \(W(a) \cap \{a_{i, j} : j \in \omega \} \subseteq \{a_{m, i} : i \in \omega \} \).

Then \(W(a) \cap \pi((W(a) \times B(b)) \cap X) \subseteq \{a_{m, i} : i \in \omega \} \) and hence \(\pi((W(a) \times B(b)) \cap X) = W(a) \) \(\{a_{m, i} : j \in \omega \} \subseteq W_a \cup \{a_m \} \) where \(W_a = W(a) \setminus \{a_m \} \cup \{a_{m, i} : j \in \omega \} \) is open in \(C \).

Thus

\[
\pi(U \cap X) = \bigcup_{(a, b) \in U \cap X} \pi((W(a) \times B(b)) \cap X) = \bigcup_{(a, b) \in U \cap X, a \neq a} W(a) \cup \bigcup_{(a, b) \in U \cap X, a = a_m} W(a) \cup \{a_m \}.
\]

By definition of the clopen base \(B \), \(\pi(U \cap X) = S \cup D \) where

\[
S = \bigcup_{(a, b) \in U \cap X, a \neq a_m} W(a) \cup \bigcup_{(a, b) \in U \cap X, a = a_m} W(a)
\]
is an open set in C and $D = \{a_{m_k} : k \in \omega\}$ is a discrete in itself set such that $S \cap D = \emptyset$. Indeed, by Case 3, for every $a_{m_k} \in D$ there is $W(a_{m_k}) \in \mathcal{B}$ such that $a_{m_k} \in W(a_{m_k})$ and $W(a_{m_k}) \cap \{a_{m_i} : i \in \omega, i \neq k\} = \emptyset$. It follows that D is discrete in itself. Hence $\pi(U \cap X)$ is Δ^0_2. Since $\pi(X) = C$ is Polish, the mapping $\pi|X$ is continuous open-resolvable.

Note that $\pi(U \cap X) = S \cup \left(\bigcup_{(a,b) \in U \cap X} W((a)) \right) \cap D$. It follows that $\pi(U \cap X)$ is LC_2-set and hence $\pi|X$ is open-LC_2.

References

Alexander Vladimirovich Osipov
Ural Federal University,
Ural State University of Economics
Krasovskii Institute of Mathematics and Mechanics,
16, S.Kovalevskay str.,
Yekaterinburg, 620990, Russia
E-mail address: oab@list.ru