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Abstract. An algorithm based on the spectral-difference method for
numerical solution of the dynamic problem for porous media is proposed.
We consider a linear two-dimensional problem in the form of dynamic
equations in terms of displacement components described by three elastic
parameters. The governing equations are based on conservation laws and
consistent with the thermodynamics conditions. The medium is assumed
to be isotropic and two-dimensional-inhomogeneous with respect to the
spatial coordinates. To numerically solve the problem, we propose a
method based on the joint use of the Laguerre integral transformation
with respect to time and the finite difference approximation with respect
to spatial coordinates. A description of the numerical implementation
of the proposed method is given and its features are analyzed in the
calculations. The efficiency of applying the Laguerre transformation and
its difference from the Fourier transform for solving the direct dynamic
seismic problems is discussed. Numerical results of the simulation of the
seismic wave propagation fields for the test medium model are presented.
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1. Introduction

The simulation of the physical properties of a porous medium and their related
investigations of fluid flows in porous structures conventionally occupy one of impor-
tant places among modern problems of computational mathematics and mathemati-
cal modeling.

On the one hand, this is due to the fact that porous can be a structure of a
variety of natural and artificial materials: soils and soil, plant and animal tissues,
fibrous, powder and foamed metal, ceramic, polymer and composite materials. On
the other hand, this is due to the complexity both of theoretical, and experimental
analysis of the internal structure of a porous medium. Without taking into account
such a complexity it is impossible to predict and assess the effectiveness of applying
porous materials in the new and modernized technological processes.

The use of models of porous structures strongly affected the development of
many areas of scientific research: the theory of filtration and energy, mechanics
and materials sciences, medicine and biology, agriculture and earths sciences. As
mathematical models the Frenkel-Biot type models are generally used [1, 2]. A
characteristic feature of the latter is the availability of additional secondary longi-
tudinal wave. In the Frenkel-Biot type theory, velocities of the propagation of such
waves is a function of four elastic parameters for given values of the physical
parameters of a medium [1, 2]. In 1989, V.N. Dorovsky [3], based on the first
common physical principles, constructed a nonlinear mathematical model for porous
media. Just as in the Frenkel-Biot theory, in the Dorovsky model there are three
types of sound oscillations: transverse and two types of longitudinal oscillations.
In contrast to models of the Frenkel-Bio type, in the Dorovsky linearized model a
medium is described by three elastic parameters [4, 5]. These elastic parameters
are in a one-to-one manner expressed by three velocities of elastic vibrations. This
circumstance is important for the numerical modeling of the propagation of elastic
waves in porous media, when velocity distributions of acoustic waves, the relations
of the physical density of the enclosing medium to the liquid saturating it and the
value of the porosity coefficient are known.

In this paper, we solve a system of linearized dynamic equations for the two-
dimensional problem of the seismic waves propagation in porous media [4-7]. The
initial system is written down in terms of the matrix displacements, the displacements
of a saturating liquid. In the numerical solution of the specified problem, the method
of combining the Laguerre analytical transform with respect to time and a finite
difference method with respect to space is employed. This method of solving the
dynamic problems of the elasticity theory was first considered in [8, 9], and then
developed for the viscoelasticity problems [10, 11]. The proposed method of solution
can be regarded as an analog to the well-known spectral-difference method based
on the Fourier spectral transforms, only instead of the frequency ω we have the
parameter m , i.e. the degree of the Laguerre polynomials. However, in contrast
to the Fourier transform, the use of the Laguerre integral transform with respect
to time makes it possible to reduce the original problem to solving a system of
equations in which the separation parameter is present only in the right-hand side
of the equations and has a recurrent dependence. As opposed to the finite difference
method, when using the spectral method with the analytical transformation we can
reduce the original problem to the solution of a differential system of equations in
which there are derivatives only with respect to the spatial coordinates. This allows
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us to apply well-known stable difference schemes for a subsequent solution to similar
systems. This approach is effective in solving non-stationary dynamic problems for
porous media. However the presence of the secondary wave with a low velocity
results in an increase in the amount of calculation when using explicit difference
schemes.

2. Statement of the problem

Let the half-plane x2 > 0 be filled with a porous medium of a saturated liquid.
The propagation of elastic oscillations in a porous medium saturated with liquid in
the reversible hydrodynamic approximation is described by a system of equations
[12, 13]:

(1) Ü− c2s ∆U− a1∇divU+ a2∇divV = F,

(2) V̈ − a4∇divV + a3∇divU = F,

where ρ = ρl + ρs; ρs is the partial density of a solid of an enclosing medium with
elastic vibrations by a given displacement vector U; ρl is the partial density of the
saturating fluid with oscillations by a given displacement vector V; F is the mass
force; cs is the velocity of transverse waves; ak (k = 1,2,3,4) are the coefficients
determined from the equation of state which are the functions of wave propagation
velocities [5, 13-16]:
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cp1 and cp2 are the velocities of fast and slow longitudinal waves, respectively. The
above system of equations is the result of the linearization of the complete nonlinear
system of equations, obtained in [3, 5].

The problem is solved with zero initial data

(3) U|t=0 = U̇|t=0 = 0,

(4) V|t=0 = V̇|t=0 = 0,

and the boundary conditions on a free surface in the plane x2 = 0

(5) σ22 + P |x2=0 = σ12|x2=0 =
ρl
ρ0

P

∣∣∣∣
x2=0

= 0,

where the pore pressure and the stress tensor are determined by formulas

(6) P = (K − ρρs α) divU− ρρl α divV ,

(7) σik = µ

(
∂Uk

∂xi
+

∂Ui

∂xk

)
+ λ̃δikdivU−

(
1− K

αρ

)
δik P .

In formulas (6), (7), δik is the Kronecker symbol, λ̃ = λ−K2/(ρ2 α).
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Let us note that when the porosity disappears then with allowance for ρ2α3 →
Ks/ρ

f
s [5], where Ks and ρfs , respectively, are the modulus of the triaxial compression

and the density of a homogeneous elastic isotropic body, formula (7) goes to the
relations of Hooke’s law of a homogeneous elastic isotropic body [17].

3. Solution Algorithm

To solve the initial-boundary value problem (1) - (5) we apply the Laguerre
integral transform with respect to time:

(8) W⃗m(x1, x2) =

∞∫
0

W⃗ (x1, x2, t)(ht)
−α

2 lαm(ht)d(ht),

with the inversion formulas

(9) W⃗ (x1, x2, t) = (ht)
α
2

∞∑
m=0

m!

(m+ α)!
W⃗m(x1, x2)l

α
m(ht),

where lαm(ht) is the Laguerre function.
The Laguerre functions lαm(ht) are expressed in terms of the classical orthonormal

Laguerre polynomials Lα
m(ht) [8]. In this paper, we choose the parameter α to be

integer and positive, hence:

lαm(ht) = (ht)
α
2 e−

ht
2 Lα

m(ht).

For the first and the second derivatives of the Laguerre polynomials, we have the
following formulas:

∂

∂ t
Lα
m(ht) = −h

m−1∑
k=0

Lα
k (ht) ,

∂2

∂ t2
Lα
m(ht) = h2

m−2∑
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(m− k − 1)Lα
k (ht).

It is easy to see that in order to satisfy the initial conditions of the problem it
is sufficient to set the value α ≥ 2. Moreover, in these formulas we introduce the
shift parameter h > 0, whose meaning and effectiveness are discussed in detail in
[10, 11].

As a result of the transformation conducted, the original problem (1) - (5) reduces
to a two-dimensional spatial differential problem in the spectral domain, which is
written as:

(10)
h2

4
Um − c2s ∆Um − a1∇divUm + a2∇divVm = fmF− h2

m−1∑
j=0

(m− j)Um
j ,

(11)
h2

4
Vm − a4∇divVm + a3∇divUm = fmF− h2

m−1∑
j=0

(m− j)Vm
j ,

with the boundary conditions

(12) σm
22 + Pm|x2=0 = σm

12|x2=0 =
ρl
ρ0

Pm

∣∣∣∣
x2=0

= 0,

where the pore pressure and the stress tensor are determined by the following
formulas:

(13) Pm = (K − ρρs α) divU
m − ρρl α divVm ,
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(14) σm
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In equations (10) - (14), fm are the coefficients of the Laguerre expansion of the
time function f(t) in the source, and Um, Vm, σm

ik , Pm are the coefficients of the
Laguerre expansion of the corresponding field components. The superscript m for
all the components means the coefficient number in the Laguerre expansion. It is
easy to see that the value of m is explicitly present only in the right-hand side of
the equations in the form of a recurrence relation for all components of the field.

To solve problem (10) - (14), we use a finite difference approximation of the
derivatives with respect to the spatial coordinates with second order of accuracy. For
this, in the calculation domain, we introduce a difference grid with a discretization
step ∆x with respect to both spatial coordinates. We define the required components
of the vector of the solution at the nodes of this grid. To approximate equations
(10), (11) at the upper boundary we use the boundary conditions (12). For the
lateral and the lower boundaries, the boundary conditions of the first or of the
second kind for the corresponding components are given.

As a result of the finite difference approximation of the problem, we obtain a
system of linear algebraic equations. We represent the required solution vector W⃗
in the following form:

W⃗m = (V⃗ m
0 , V⃗ m

1 , ..., V⃗ m
K , V⃗ m

K+1, ..., V⃗
m
K+N )T ,

V⃗ m
i+j = (um

1 (i∆x, j∆x), um
2 (i∆x, j∆x), vm1 (i∆x, j∆x), vm2 (i∆x, j∆x))T ,

where i = 0, ...,K is the number of nodes along the coordinate x1 and j = 0, ..., N
is the number of nodes along the coordinate x2.

Then, a given system of linear algebraic equations in the vector form can be
written down as:

(15) (A∆ +
h2

4
E) W⃗m = F⃗m−1

∆ .

On the main diagonal of the matrix of system (15), the components appear in the
equations of the system as summands having the parameter h as a co-factor. We
should note that at the expense of the appropriate choice of the parameter h, there
appears a possibility to substantially improve the conditioning of the matrix of the
system. Having solved the system of linear algebraic equations (15), we can define
the spectral values for all components of the wave field W⃗ (m). Then, using the
Laguerre transform inversion formula (9), we obtain the solution of the original
problem (1) - (5).

In the Laguerre analytical transform formula (9) for the determination of the
values of functions by their expansion coefficients, a sum with an infinite limit is
used. In the numerical implementation, the necessary condition is to determine the
required number of terms in a series to be summed for constructing a solution with
a given accuracy. The number of the Laguerre harmonics required for the definition
of functions by formula (9), depends on a given signal in the source f(t), the choice
of the parameter h, and the values of the time interval of the simulated wave field.
The way of how one can determine the required number of harmonics and choose
the optimal value of the parameter h, is considered in detail in [8-11].
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4. Numerical results

The calculation results of the wave field for different media models are presented
in Figures 1 - 3. The first model is a medium consisting of three homogeneous layers:
the upper layer is an elastic medium; the lower left layer is a porous medium; the
lower right layer is an elastic medium. The physical characteristics of the layers
were given by the following:

(1) the upper elastic layer ρ = 1200 kg/m 3, cp = 1400 m/s, cs = 1000 m/s;
(2) the lower right porous layer ρs = 1500 kg/m 3, ρl = 1000 kg/m 3, cp1 = 1900

m/s, cp2 = 400 m/sec, cs = 1300 m/s, d = 0.1;
(3) the lower left elastic layer ρ = 1500 kg/m 3, cp = 1900 m/s, cs = 1300

m/s.
The thickness of the upper elastic layer is 600 m. The vertical interface between the
lower porous layer and the elastic one passes along the line x = 700 m. The wave
field was simulated from the expansion center point source with the coordinates
x0 = 700 m, z0 = 500 m, located in the upper elastic layer.

The time signal in the source was set in the form of the Puzyrev pulse:

(16) f(t) = exp

(
−2π fo(t− t0)

2

γ2

)
sin(2π f0(t− t0)),

where γ = 4, f0 = 30 Hz, t0 = 0.05 s.
The results of numerical calculations of the wave field for the given model are

shown in Figure 1. This figure represents a snapshot of the wave field for the
vertical displacement component Uz(x, z) at a fixed instant of time for T = 0.4
seconds. It can be seen from the figure that in the lower left porous layer there is a
secondary longitudinal wave cp2 = 400 m/s, while only one longitudinal wave and
one transverse wave propagate in the right elastic layer .

As the second model, a three-layer medium with a thin layer in the middle was
set. Two cases were considered. In the first case, a wave field for a thin porous layer
was simulated, in the second case a thin elastic layer of the same thickness was
specified. Physical characteristics of the medium with a porous layer were set by
the following:

(1) the upper and the lower elastic layers ρ = 1200 kg/m 3, cp = 1500 m/s,
cs = 1000 m/s;

(2) the average porous layer ρs = 1500 kg/m3, ρl = 1000 kg/m3, cp1 = 2000
m/s, cp2 = 400 m/s, cs = 1300 m/s, d = 0.1.

The thickness of the upper layer is 700 m. The thickness of the middle layer is 10
m. In the case of a thin elastic layer, cp = cp1 , ρ = ρs and cs = 1300 m/s. The wave
field was simulated from the point source of the center-of-expansion type with the
coordinates x0 = 650 m, z0 = 650 m, located in the upper elastic layer. The time
signal in the source was set in the form of the Puzyrev pulse by formula (16).

The results of numerical calculations of the wave field for a given medium model
are shown in Figure 2. This figure presents snapshots of the wave field for the vertical
displacement component Uz(x, z) at a fixed instant of time T = 0.4 seconds. Left -
for the thin porous layer. Right - for the thin elastic layer. It can be seen from the
figure that in the case of a thin porous layer there are waves generated by multiple
reflection of the secondary (slow) longitudinal wave in a thin porous layer, whose
thickness is approximately one spatial length of this wave.
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Fig. 1. A snapshot of the wave field for the vertical displacement
component Uz(x, z) at the time instant T = 0.4 seconds. The layer
interfaces are shown as a solid line.

Fig. 2. A snapshot of the wave field for the vertical displacement
component Uz(x, z) at the time instant T = 0.4 seconds. Left -
with a thin porous layer, right - with an elastic layer.

In the next case, the medium model was specified as the one consisting of three
homogeneous layers: the upper elastic layer, the middle porous layer, the lower
elastic layer. Physical characteristics of the medium were given by the following:

(1) the upper elastic layer ρ = 1500 kg/m 3, cp = 2000 m/s, cs = 1300 m/s;
(2) the average porous layer ρs = 1500 kg/m3, ρl = 1000 kg/m3, cp1 = 1600

m/s, cp2 = 400 m/s, cs = 1100 m/s, the porosity coefficient d = 0.1;
(3) the lower elastic half-space ρ = 2000 kg/m 3, cp = 2000 m/s, cs = 1300

m/s.
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The thickness of the upper layer is 1.7 km. The thickness of the middle layer
is 2.6 km. The wave field was simulated from a point source of the center type
extension with the coordinates x0 = 2.5 km, z0 = 3.5 km, located in a porous
layer. The time signal in the source was given in the form of the Puzyrev pulse by
formula (16). The carrier frequency of the signal in the source is f0 = 10 Hz.

Fig. 3. A snapshot of the wave field for the bias component
Uz(x, z). Left - at the time instant T = 1.2 seconds, right - at
the time instant T = 1.6 seconds.

The results of numerical calculations of the wave field for the given medium
model are shown in Figure 3. This figure presents snapshots of the wave field for
the vertical component of the displacement velocity uz(x, z) at fixed instants of
time. Left - at the time instant T = 1.2 seconds, right - at the time instant T =
1.6 seconds. It can be seen from the figure that the given source generates in a
porous medium two types of longitudinal waves P1 and P2, which propagate with
the velocities cp1 and cp2 , respectively.

5. Conclusion

The algorithm proposed is an analog of the well-known spectral methods for
solving dynamic problems. However, unlike the classical transformations of Fourier
and Laplace, the application of the Laguerre transform brings about a system of
equations in which the harmonic separation parameter is present only in the right-
hand side in the recurrent form. As a result, in the reduced problem the matrix of
the system of linear algebraic equations has a good conditionality, which makes it
possible to use efficient methods for solving such systems. The analysis of the test
calculations reveals the stability of the algorithm presented even for the medium
models with drastically contrast interfaces between layers or the medium models
containing thin layers comparable with spatial wavelength.
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