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LOGICAL CHARACTERIZATION OF FLUID EQUIVALENCES
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Abstract. We investigate fluid equivalences that allow one to compare
and reduce behaviour of labeled fluid stochastic Petri nets (LFSPNs)
with a single continuous place while preserving their discrete and continu-
ous properties. We propose a linear-time relation of fluid trace equivalence
and its branching-time counterpart, fluid bisimulation equivalence. Both
fluid relations take into account the essential features of the LFSPNs
behaviour, such as functional activity, stochastic timing and fluid flow.
We consider the LFSPNs whose continuous markings have no influence to
the discrete ones, i.e. every discrete marking determines completely both
the set of enabled transitions, their firing rates and the fluid flow rates of
the incoming and outgoing arcs for each continuous place. Moreover, we
require that the discrete part of the LFSPNs should be continuous time
stochastic Petri nets. The underlying stochastic model for the discrete
part of the LFSPNs is continuous time Markov chains (CTMCs). The
performance analysis of the continuous part of LFSPNs is accomplished
via the associated stochastic fluid models (SFMs). We characterize logi-
cally fluid trace and bisimulation equivalences with two novel fluid modal
logics HMLflt and HMLflb, constructed on the basis of the well-known
Hennessy-Milner Logic (HML). These characterizations guarantee that
two LFSPNs are fluid (trace or bisimulation) equivalent iff they satisfy
the same formulas of the respective logic, i.e. they are logically equivalent.
The results imply operational characterizations of the logical equivalences.
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1. Introduction

An important scientific problem that has been often addressed in the last decades
is the design and analysis of parallel systems, which takes into account both qualita-
tive (functional) and quantitative (timed, probabilistic, stochastic) features of their
behaviour. The main goal of the research on this topic is the development of models
and methods respecting performance requirements for concurrent and distributed
systems with time constraints (such as deterministic, nondeterministic and stochas-
tic time delays) to construct, validate and optimize the performability of realistic
large-scale applications: computing systems, networks and software, controllers for
industrial devices, manufacturing lines, vehicle, aircraft and transportation engines.
A fruitful approach to achieving progress in this direction appeared to be a combined
application of the theories of Petri nets, stochastic processes and fluid flow systems
to the specification and analysis of such time-dependent systems with inherent
behavioural stochasticity [51].

1.1. Fluid stochastic Petri nets. In the past, many extensions of stochastic
Petri nets (SPNs) [64, 62, 63, 60, 61, 12, 13] have been developed to specify, model,
simulate and analyze some particular classes of systems, such as computer systems,
communication networks or manufacturing plants. These new formalisms have been
constructed as a response to the needs for more expressive power in describing real-
world systems, and to the requirements for compact models and efficient analysis
techniques. One of the extensions are fluid stochastic Petri nets (FSPNs), capable
of modeling hybrid systems that combine continuous state variables, corresponding
to the fluid levels, with discrete state variables, specifying the token numbers. The
continuous part of the FSPNs allows one to represent the fluid level in continuous
places and fluid flow along continuous arcs. This part can naturally describe continu-
ous variables in physical systems whose behaviour is commonly represented by diffe-
rential equations. Continuous variables may also be used to describe a macroscopic
view of discrete items that appear in large populations, e.g., packets in a computer
network, molecules in a chemical reaction or people in a crowd. The discrete part of
an FSPN is essentially its underlying SPN, obtained from the FSPN by removing all
the fluid-related continuous elements. This part usually models the discrete control
of the continuous process. The control may demonstrate some stochastic behavior
that captures uncertainty about the detailed system behavior.

FSPNs have been proposed in [76, 36, 85] to model stochastic fluid flow systems
[50, 46, 56]. To analyze FSPNs, simulation, numerical and matrix-geometric methods
are widely used [54, 37, 25, 47, 48, 43, 44, 55, 49]. The major problem of FSPNs
is the high complexity of computing their solution, resulting in huge memory and
time requirements while analyzing realistic models. A positive feature of the FSPN
formalism is that it hides from a modeler the technical difficulties with solving diffe-
rential equations for the underlying stochastic processes and that it unifies in one
framework the evolution equations for the discrete and continuous parts of systems.

For every FSPN, the discrete part of its marking is determined by the natural
number of tokens contained in the discrete places. The continuous places of an
FSPN are associated with the non-negative real-valued fluid levels that determine
the continuous part of the FSPN marking. Thus, FSPNs have a hybrid (discrete-
continuous) state space. The discrete part of every hybrid marking of FSPNs is
called discrete marking while the continuous part is called continuous marking. The
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discrete part of each hybrid marking has an influence on the continuous part. For
more general FSPNs, the reverse dependence is possible as well. As a basic model
for constructing labeled FSPNs (LFSPNs), we consider only those FSPNs in which
the continuous parts of markings have no influence on the discrete ones, i.e. such
that every discrete part determines completely both the set of enabled transitions
and the rates of incoming and outgoing arcs for each continuous place [43, 49]. We
also require that the discrete part of LFSPNs should be labeled continuous time
stochastic Petri nets (CTSPNs) [62, 60, 61, 12], to simplify the definitions of the
behavioural equivalences for LFSPNs, as explained in the next subsection.

1.2. Fluid equivalences. In this paper, we investigate the behavioural relations
of fluid trace and bisimulation equivalences that are useful for the comparison
and reduction of the behaviour of LFSPNs with a single continuous place, since
these relations preserve the functionality and performability of their discrete and
continuous parts. The mentioned fluid equivalences have not been considered in the
literature until they have been originally constructed by the authors in [74, 75].
Those papers also contain a survey of the non-behavioural (not respecting the
action names) equivalence notions that have been defined on the related models.
The models include Fluid Process Algebra (FPA) [78, 79], Fluid Extended Process
Algebra (FEPA) [80, 57], heterogenous systems specified by ordinary differential
equations (ODEs) [81], chemical reaction networks (CRNs) [30], Intermediate Drift
Oriented Language (IDOL) [31] and product form queueing networks (QNs) [3].
The most recent results on this subject are forward and backward equivalences
(FE and BE) on the polynomial ODE systems [32] and polynomial dynamical
systems (PDSs) [77], approximate back and forth differential equivalences (ε-BDE
and ε-FDE) for polynomial initial value problem (PIVP) over the ODE variables
[34], syntactic Markovian bisimulation (SMB) equivalence on CRNs with stochastic
CTMC-based semantics [33, 77], and also L-bisimulation equivalence on the polyno-
mials in the variables for systems of polynomial ODEs [27]. Again, all the mentioned
relations are not traditional behavioural equivalences, since FE, BE, ε-BDE, ε-FDE
and L-bisimulation are defined for the ODE system specifications that include no
action symbols while SMB considers species instead of actions.

The definitions of the fluid equivalences should be given at the level of LFSPNs,
but they must use the transition rates of the extracted CTMC. These rates cannot
be easily (i.e. with a simple expression) defined at the level of more general LFSPNs,
whose discrete part is labeled GSPNs. In addition, the action labels of immediate
transitions are lost and their individual probabilities are redistributed while GSPNs
are transformed into CTSPNs. The individual probabilities of immediate transitions
are “dissolved” in the total transition rates between tangible states when vanishing
states are eliminated from SMCs while reducing them to CTMCs. Therefore, to
make the definition of the fluid equivalences less intricate and complex, we have
decided to consider only LFSPNs with labeled CTSPNs as their discrete part.
Then the underlying stochastic process of the discrete part of LFSPNs will be that
of CTSPNs, i.e. CTMCs.

First, we consider a linear-time relation of fluid trace equivalence on LFSPNs.
Linear-time equivalences, unlike branching-time ones, do not respect the points
of choice among several alternative continuations of the system’s behavior. We
require that fluid trace equivalence on discrete markings of two LFSPNs should
be a standard (strong) Markovian trace equivalence. Moreover, the average sojourn
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times in (or the exit rates from) the respective discrete markings should be the same.
Finally, for the two equivalent LFSPNs, the cumulative execution probabilities of all
the paths corresponding to a particular sequence of actions, together with a concrete
sequence of the average sojourn times (exit rates), should be equal. Therefore, our
definition of the trace equivalence on the discrete markings of LFSPNs is similar
to that of ordinary (that with the absolute time counter or with the countdown
timer) Markovian trace equivalence [83] on transition-labeled CTMCs. Ordinary
Markovian trace equivalence and its variants from [83] have been later investigated
and enhanced on interactive Markov chains (IMCs) in [84], on sequential and
concurrent Markovian process calculi SMPC and CMPC in [14, 18, 15, 16, 19], on
Uniform Labeled Transition Systems (ULTraS) in [21, 22, 17], on continuous time
Markov decision processes (CTMDPs) in [66] and on Markov automata (MAs) in
[67]. As for the continuous markings of the two LFSPNs, we further select the paths
with the same extracted action sequence and the same sequence of the extracted
average sojourn times (exit rates) by counting the execution probabilities only of
those paths additionally having the same sequence of extracted potential fluid flow
rates of the respective continuous places (we assume that each compared LFSPN
has only one continuous place) in the corresponding discrete markings.

Second, we consider a branching-time relation of fluid bisimulation equivalence
on LFSPNs. We prove that it is strictly stronger than fluid trace equivalence, i.e. the
former relation generally makes less identifications among the compared LFSPNs
than the latter. We require the fluid bisimulation on the discrete markings of two
LFSPNs to be a standard (strong) Markovian bisimulation. Thus, our definition
of the bisimulation equivalence on the discrete markings of LFSPNs is similar to
that of the performance bisimulation equivalences [28, 29] on labeled CTSPNs
and labeled generalized SPNs (GSPNs) [60, 61, 12, 13], as well as the strong
equivalence from [53] on stochastic process algebra PEPA. All these relations belong
to the family of Markovian bisimulation equivalences, investigated on sequential and
concurrent Markovian process calculi SMPC and CMPC in [14, 18, 15, 16, 19], as
well as on Uniform Labeled Transition Systems (ULTraS) in [21, 22, 17]. As for
the continuous markings, we require that, for every pair of the Markovian bisimilar
discrete markings, the fluid flow rate of the continuous place in the first LFSPN
should coincide with that of the continuous place in the second LFSPN (again, we
compare only LFSPNs with a single continuous place each).

1.3. Logical characterization. A characterization of equivalences via modal lo-
gics is used to change the operational reasoning on systems behaviour by the logical
one that is more appropriate for verification. Moreover, such an interpretation
elucidates the nature of the equivalences, defined in an operational manner. It is
generally accepted that the natural and nice modal characterization of a behavioural
equivalence justifies its relevance. On the other hand, we get an operational charac-
terization of logical equivalences. The importance of modal logical characterization
for behavioural equivalences has been explained in [1], in particular, the resulting
capabilities to express distinguishing formulas for automatic verification of systems
and characteristic formulas for the equivalence classes of processes [2], to demonstra-
te finitariness and algebraicity of behavioural preorders, as well as to give a testing
interpretation of bisimulation equivalence [59]. Logical characterization of bisimula-
tion equivalence guarantees that the validity of all logical formulas is preserved while
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quotienting (by the equivalence) the state space before model checking, thereby
simplifying verification of behavioural properties [9, 69, 24].

In the literature, several logical characterizations of stochastic and Markovian
equivalences have been proposed. In [38, 39], the characterization of strong equiva-
lence has been presented with the logic PMLµ, which is a stochastic extension of
Probabilistic Modal Logic (PML) [59] on probabilistic transitions systems to the
stochastic process algebra PEPA [53]. In [45], a branching time temporal logic has
been described which is an extension of Continuous Stochastic Logic (CSL) [6]
on CTMCs to a wide class of SFMs. The CSL-based logical characterizations of
various stochastic bisimulation equivalences have been reported in [8, 9, 10, 69,
11, 24] on labeled CTMCs, in [40] on labeled continuous time Markov processes
(CTMPs), in [41] on analytic spaces, in [7] on labeled Markov reward models
(MRMs) and in [68] on continuous time Markov decision processes (CTMDPs).
In [65], simulation, bisimulation and simulation distance on semi-Markov decision
processes have been characterized via timed Markovian logic (TML). In [18, 15],
on sequential and concurrent Markovian process calculi SMPC (MPC) and CMPC,
the logical characterizations of Markovian trace and bisimulation equivalences have
been accomplished with the modal logics HMLMTr and HMLMB , based on Hen-
nessy-Milner Logic (HML) [52]. In [19], on (sequential) Markovian process calculus
MPC, the characterizations of Markovian trace and bisimulation equivalences have
been constructed with the HML-based modal logics HMLNPMTr and HMLMB .

The main result of the paper is that we provide fluid trace and bisimulation
equivalences with the logical characterizations, accomplished via formulas of the
specially constructed novel fluid modal logics HMLflt and HMLflb, respectively.
The new logics are based on Hennessy-Milner Logic (HML) [52]. The logical charac-
terizations guarantee that two LFSPNs are fluid (trace or bisimulation) equivalent
iff they satisfy the same formulas of the respective fluid modal logic, i.e. they
are logically equivalent. Thus, instead of comparing LFSPNs operationally, one
may only check the corresponding satisfaction relation. This provides one with
the possibility for logical reasoning on fluid equivalences for LFSPNs. Such an
approach is often more convenient for the purpose of verification. The obtained
results may also be interpreted as operational characterizations of the corresponding
logical equivalences. We have also explored how to adopt (if possible) the testing
interpretations of probabilistic and Markovian equivalences (related to their logical
characterizations) for fluid trace and bisimulation equivalences that are standardly
defined in the operational manner.

The fluid modal logic HMLflt is used to characterize fluid trace equivalence.
Therefore, the interpretation function of the logic has an additional argument, which
is the sequence of the potential fluid flow rates for the single continuous place of an
LFSPN (remember that in the definition of fluid trace equivalence we compare only
LFSPNs, each having exactly one continuous place). In HMLflt, one can express
the properties like “the execution probability of a sequence of actions starting from
a state, with given average sojourn times and potential fluid flow rates in the initial,
intermediate and final states, is equal to a particular value”.

The fluid modal logic HMLflb is intended to characterize fluid bisimulation
equivalence. For this purpose, the logic has a new modality, decorated with the
potential fluid flow rate value for the single continuous place of an LFSPN (again,
remember that in the definition of fluid bisimulation equivalence we consider only
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Fig. 1. The diagram of the production line

LFSPNs, each having a single continuous place). The resulting formula (i.e. the new
modality with the flow rate value) is used to check whether the potential fluid flow
rate in a discrete marking of an LFSPN coincides with a certain value, the fact that
corresponds to a condition from the fluid bisimulation definition. Thus, HMLflb

is able to describe the properties such as “an action can be executed with a given
minimal rate in a state with a given potential fluid flow rate”.

Example 1. For a production line in a food processing or a chemicals plant, we
can verify in HMLflt the probability that the first liquid substance fills (this is
specified by the action f1) the fluid reservoir with the potential flow rate r1 during
the exponentially distributed time period with the average s1; then the second liquid
substance fills (the action f2) the reservoir with the potential flow rate r2 during
the exponentially distributed time period with the average s2; finally, the reservoir is
emptied with the potential flow rate r3 for the exponentially distributed time period
with the average s3.

For the production line mentioned above, we can verify in HMLflb the validity
that the first liquid substance fills (the action f1) the fluid reservoir with the potential
flow rate r1 during the exponentially distributed time period with the minimal rate
λ1 or the second liquid substance fills (the action f2) the reservoir with the same
potential flow rate r1 during the exponentially distributed time period with the
minimal rate λ2. Note that disjunction in HMLflb can be defined standardly, i.e.
via conjunction and negation.

The diagram of the production line is depicted in Figure 1.

1.4. Previous works and outline of the paper. The previous results on the
fluid equivalences can be found in [74, 75], where we have proposed a class of
LFSPNs, for which we have defined fluid trace and bisimulation equivalences and
investigated their interrelations. We have shown that fluid trace equivalence preser-
ves average potential fluid change volume for the transition sequences of every
certain length. We have proved that fluid bisimulation equivalence preserves the
aggregated (by such a bisimulation) probability functions and therefore guarantees
identity of the discrete and continuous performance measures. Moreover, we have
used fluid bisimulation equivalence to simplify the qualitative and quantitative
analysis of LFSPNs by means of quotienting (by the equivalence) the discrete
reachability graph, underlying CTMC and associated SFM. The present paper
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extends those works with the novel logical characterizations of fluid trace and bisi-
mulation equivalences via two original fluid modal logics HMLflt and HMLflb that
take into account the fluid flow in linear and branching time semantics, respectively.

The rest of the paper is organized as follows. In Section 2, we present the
definition and behaviour of LFSPNs. Section 3 explores the discrete part of LFSPNs,
i.e. the derived labeled CTSPNs and their underlying CTMCs. Section 4 investigates
the continuous part of LFSPNs, which is the associated SFMs. In Section 5, we
construct a linear-time relation of fluid trace equivalence for LFSPNs. In Section 6,
we propose a branching-time relation of fluid bisimulation equivalence for LFSPNs
and compare it with the fluid trace one. Section 7 is devoted to the logical characteri-
zation of fluid trace equivalence with the fluid modal logic HMLflt. Section 8
presents the logical characterization of fluid bisimulation equivalence with the fluid
modal logic HMLflb. Section 9 summarizes the results obtained and outlines research
perspectives in this area. The complex and long proofs are moved into Appendix A.

2. Basic concepts of LFSPNs

Let us introduce a class of labeled fluid stochastic Petri nets (LFSPNs), whose
transitions are labeled with action names, used to specify different system activities.
Without labels, LFSPNs are essentially a subclass of FSPNs [54, 43, 49], so that
their discrete part describes CTSPNs [62, 60, 61, 12]. This means that LFSPNs
have no inhibitor arcs, priorities and immediate transitions, which are used in
the standard FSPNs, which are the continuous extension of GSPNs. However,
in many practical applications, the performance analysis of GSPNs is simplified
by transforming them into CTSPNs or reducing their underlying semi-Markov
chains into CTMCs (which are the underlying stochastic process of CTSPNs) by
eliminating vanishing states [61, 12, 13]. Transition labeling in LFSPNs is similar to
the labeling, proposed for CTSPNs in [28]. We also suppose that the firing rates of
transitions and flow rates of the continuous arcs do not depend on the continuous
markings (fluid levels).

Let N be the set of all natural numbers and N≥1 be the set of all positive natural
numbers. Further, let R be the set of all real numbers, R≥0 be the set of all non-
negative real numbers and R>0 be the set of all positive real numbers. The set of all
row vectors of n ∈ N≥1 elements from a set X is defined as Xn = {(x1, . . . , xn) |
xi ∈ X (1 ≤ i ≤ n)}. The set of all mappings from a set X to a set Y is defined as
Y X = {f | f : X → Y }. Let Act = {a, b, . . .} be the set of actions.

First, we present a formal definition of LFSPNs.

Definition 1. A labeled fluid stochastic Petri net (LFSPN) is a tuple
N = (PN , TN ,WN , CN , RN ,ΩN , LN ,MN ), where

• PN = PdN ⊎ PcN is a finite set of discrete and continuous places (⊎ is
disjoint union);

• TN is a finite set of transitions, such that PN ∪ TN ̸= ∅ and PN ∩ TN = ∅;
• WN : (PdN × TN ) ∪ (TN × PdN ) → N is a function providing the weights

of discrete arcs between discrete places and transitions;
• CN ⊆ (PcN × TN ) ∪ (TN × PcN ) is the set of continuous arcs between

continuous places and transitions;
• RN : CN × N|PdN | → R≥0 is a function providing the (fluid) flow rates of

continuous arcs in given discrete markings (the markings are defined later);
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• ΩN : TN ×N|PdN | → R>0 is the transition (firing) rate function associating
transitions with (firing) rates in given discrete markings;

• LN : TN → Act is the transition labeling function assigning actions to
transitions;

• MN = (MN ,0), where MN ∈ N|PdN | and 0 is a row vector of |PcN | values
0, is the initial (discrete-continuous) marking.

Consider in detail the tuple elements from the definition above. Let N be an LFSPN.
Every discrete place pi ∈ PdN may contain discrete tokens, whose number is

represented by a natural number Mi ∈ N (1 ≤ i ≤ |PdN |). Each continuous place
qj ∈ PcN may contain continuous fluid, with the level represented by a non-negative
real number Xj ∈ R≥0 (1 ≤ j ≤ |PcN |). Then the complete hybrid (discrete-
continuous) marking of N is a pair (M,X), where M = (M1, . . . ,M|PdN |) is a
discrete marking and X = (X1, . . . , X|PcN |) is a continuous marking. When needed,
these vectors can also be seen as the mappings M : PdN → N with M(pi) = Mi (1 ≤
i ≤ |PdN |) and X : PcN → R≥0 with X(qj) = Xj (1 ≤ j ≤ |PcN |).

The set of all reachable markings (reachability set) of N is denoted by RS(N).
Then DRS (N) = {M | (M,X) ∈ RS(N)} is the set of all reachable discrete
markings (discrete reachability set) of N . DRS (N) will be formally defined later.
Further, CRS (N) = {X | (M,X) ∈ RS(N)} ⊆ R|PcN |

≥0 is the set of all reachable
continuous markings (continuous reachability set) of N .

Every marking (M,X) ∈ RS(N) evolves in time, hence, we can interpret it as a
stochastic process {(M(δ), X(δ)) | δ ≥ 0}. Then the initial marking of N is that at
the zero time moment, i.e. MN = (MN ,0) = (M(0), X(0)), where X(0) = 0 means
that all the continuous places are initially empty.

Every transition t ∈ TN has an associated positive real-valued instantaneous rate
ΩN (t,M) ∈ R>0, which is a parameter of the exponential distribution governing
the transition delay (being a random variable), when the current discrete marking
is M . Transitions are labeled with actions, each representing a sort of activity that
they model.

Every discrete arc da = (p, t) or da = (t, p), where p ∈ PdN and t ∈ TN ,
connects discrete places and transitions. It has a non-negative integer-valued weight
WN (da) ∈ N assigned, representing its multiplicity. The zero weight indicates that
the corresponding discrete arc does not exist, since its multiplicity is zero in this
case. In the discrete marking M ∈ DRS (N), every continuous arc ca = (q, t) or
ca = (t, q), where q ∈ PcN and t ∈ TN , connects continuous places and transitions.
It has a non-negative real-valued flow rate RN (ca,M) ∈ R≥0 of fluid through ca,
when the current discrete marking is M . The zero flow rate indicates that the fluid
flow along the corresponding continuous arc is stopped in some discrete marking.

The graphical representation of LFSPNs resembles that for standard labeled
Petri nets, but supplemented with the rates or weights, written near the correspon-
ding transitions or arcs. Discrete places are drawn with ordinary circles while
double concentric circles correspond to the continuous ones. The multiplicity of
each discrete place in a discrete marking is represented by the number of tokens,
depicted as black dots within the place. Square boxes with the action names inside
depict transitions and their labels. Discrete arcs are drawn as thin lines with arrows
at the end while continuous arcs should represent pipes, so the latter are depicted by
thick arrowed lines. If the rates are not given in the picture then they are assumed
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to be of no importance in the corresponding examples. The names of places and
transitions are depicted near them when needed.

We now consider the behaviour of LFSPNs.
Let N be an LFSPN and M be a discrete marking of N . A transition t ∈ TN

is enabled in M if ∀p ∈ PdN WN (p, t) ≤ M(p). Let Ena(M) be the set of all
transitions enabled in M . Firings of transitions are atomic operations, and only
single transitions are fired at once. Note that the enabling condition depends only
on the discrete part of N and this condition is the same as for CTSPNs. Firing
of a transition t ∈ Ena(M) changes M to another discrete marking M̃ , such as
∀p ∈ PdN M̃(p) = M(p) − WN (p, t) + WN (t, p), denoted by M

t→λ M̃ , where
λ = ΩN (t,M). We write M

t→ M̃ if ∃λ M
t→λ M̃ and M → M̃ if ∃t M t→ M̃ .

Let us formally define the discrete reachability set of N .

Definition 2. Let N be an LFSPN. The discrete reachability set of N , denoted by
DRS (N), is the minimal set of discrete markings such that

• MN ∈ DRS (N);
• if M ∈ DRS (N) and M → M̃ then M̃ ∈ DRS (N).

Let us now define the discrete reachability graph of N .

Definition 3. Let N be an LFSPN. The discrete reachability graph of N is a
labeled transition system DRG(N) = (SN ,LN , TN , sN ), where

• the set of states is SN = DRS (N);
• the set of labels is LN = TN × R>0;
• the set of transitions is TN ={(M, (t, λ), M̃) |M, M̃ ∈DRS (N), M

t→λ M̃};
• the initial state is sN = MN .

Example 2. In Figure 2, the LFSPNs N and N ′ are presented. As we shall see
in Section 5, they are fluid trace equivalent, denoted by N ≡fl N

′. For instance,
LFSPN N has the discrete places p1 (with 1 token inside at the initial discrete
marking) and p2 (with 0 tokens inside at the initial discrete marking); continuous
place q; transitions t1 (with the firing rate 2 at any discrete marking), t2 and t3 (both
with the same firing rate 1 at any discrete marking); discrete arcs (p1, t1), (t1, p2),
(p2, t2), (p2, t3), (t2, p1) and (t3, p1) (all with the same weight 1); continuous arcs
(t1, q) (with the flow rate 5 at any discrete marking), (q, t1) (with the flow rate 4
at any discrete marking), (t2, q) (with the flow rate 1 at any discrete marking),
(q, t2), (t3, q) (both with the same flow rate 2 at any discrete marking) and (q, t3)
(with the flow rate 3 at any discrete marking).

We have DRS (N) = {M1,M2}, where M1 = (1, 0), M2 = (0, 1), and DRS (N ′) =
{M ′

1,M
′
2,M

′
3}, where M ′

1 = (1, 0, 0), M ′
2 = (0, 1, 0), M ′

3 = (0, 0, 1). In Figure 3,
the discrete reachability graphs DRG(N) and DRG(N ′) are depicted.

3. Discrete part of LFSPNs

We have restricted the class of FSPNs underlying LFSPNs to those whose discrete
part is CTSPNs, since the performance analysis of standard FSPNs with GSPNs
as the discrete part is finally based on the CTMCs which are extracted from the
underlying semi-Markov chains (SMCs) of the GSPNs by removing vanishing states.
Let us now consider the behaviour of the discrete part of LFSPNs, which is labeled
CTSPNs.
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Fig. 3. The discrete reachability graphs of the fluid trace
equivalent LFSPNs

For an LFSPN N , a continuous random variable ξ(M) is associated with every
discrete marking M ∈ DRS (N). The variable captures a residence (sojourn) time
in M . We adopt the race semantics, in which the fastest stochastic transition (i.e.
that with the minimal exponentially distributed firing delay) fires first. Hence, the
probability distribution function (PDF) of the sojourn time in M is that of the
minimal firing delay of transitions from Ena(M). Since exponential distributions
are closed under minimum, the sojourn time in M is (again) exponentially distribu-
ted with a parameter that is called the exit rate from the discrete marking M ,
defined as

RE(M) =
∑

t∈Ena(M)

ΩN (t,M).

Note that we may have RE(M) = 0, meaning that there is no exit from M , if
it is a terminal discrete marking, i.e. there are no transitions from it to different
discrete markings.

Hence, the PDF of the sojourn time in M (the probability of the residence time
in M being less than δ) is Fξ(M)(δ) = P(ξ(M) < δ) = 1− e−RE(M)δ (δ ≥ 0). Then
the probability density function of the residence time in M (the limit probability of
staying in M at the time δ) is fξ(M)(δ) = lim∆→0

Fξ(M)(δ+∆)−Fξ(M)(δ)

∆ =
dFξ(M)(δ)

dδ =

RE(M)e−RE(M)δ (δ ≥ 0). The mean value (average, expectation) formula for the
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exponential distribution allows us to calculate the average sojourn time in M as
M(ξ(M)) =

∫∞
0

δfξ(M)(δ)dδ = 1
RE(M) .

The average sojourn time in the discrete marking M is

SJ (M) =
1∑

t∈Ena(M) ΩN (t,M)
=

1

RE(M)
.

The average sojourn time vector SJ of N has the elements SJ (M), M ∈
DRS (N).

Note that we may have SJ (M) = ∞, meaning that we stay in M forever, if it is
a terminal discrete marking.

To evaluate performance with the use of the discrete part of N , we should
investigate the stochastic process associated with it. The process is the underlying
continuous time Markov chain, denoted by CTMC (N).

Let M, M̃ ∈ DRS (N). The rate of moving from M to M̃ by firing any transition is

RM(M, M̃) =
∑

{t|M t→M̃}

ΩN (t,M).

Definition 4. Let N be an LFSPN. The underlying continuous time Markov chain
(CTMC) of N , denoted by CTMC (N), has the state space DRS (N), the initial
state MN and the transitions M →λ M̃ , if M → M̃ , where λ = RM(M, M̃).

Isomorphism is a coincidence of systems up to renaming their components or
states. Let ≃ denote isomorphism between CTMCs that binds their initial states.

Definition 5. Let N be an LFSPN. The elements Qij (1 ≤ i, j ≤ n = |DRS (N)|)
of the transition rate matrix (TRM), also called infinitesimal generator, Q for
CTMC (N) are defined as

Qij =

{
RM(Mi,Mj), i ̸= j;
−
∑

{k|1≤k≤n, k ̸=i} RM(Mi,Mk), i = j.

The transient probability mass function (PMF) φ(δ) = (φ1(δ), . . . , φn(δ)) for
CTMC (N) is calculated via matrix exponent as

φ(δ) = φ(0)eQδ,

where φ(0) = (φ1(0), . . . , φn(0)) is the initial PMF, defined as

φi(0) =

{
1, Mi = MN ;
0, otherwise.

The steady-state PMF φ = (φ1, . . . , φn) for CTMC (N) is a solution of the linear
equation system {

φQ = 0
φ1T = 1

,

where 0 is a row vector of n values 0 and 1 is that of n values 1.
Note that the vector φ exists and is unique, if CTMC (N) is ergodic. Then

CTMC (N) has a single steady state, and we have φ = limδ→∞ φ(δ).
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Fig. 4. The underlying CTMCs of the fluid trace equivalent LFSPNs

Example 3. Consider the LFSPNs N and N ′ in Figure 2. In Figure 4, the
underlying CTMCs CTMC (N) and CTMC (N ′) are drawn.

The average sojourn time vectors of N and N ′ are

SJ =

(
1

2
,
1

2

)
, SJ ′ =

(
1

2
,
1

2
,
1

2

)
.

The TRMs Q and Q′ for CTMC (N) and CTMC (N ′) are

Q =

(
−2 2
2 −2

)
, Q′ =

 −2 1 1
2 −2 0
2 0 −2

 .

The steady-state PMFs for CTMC (N) and CTMC (N ′) are

φ =

(
1

2
,
1

2

)
, φ′ =

(
1

2
,
1

4
,
1

4

)
.

4. Continuous part of LFSPNs

We now consider the impact the discrete part of LFSPNs has on their continuous
part, which is stochastic fluid models (SFMs). We investigate LFSPNs with a single
continuous place, since our subsequent definitions of the fluid equivalences assume
that fact.

Let N be an LFSPN such that PcN = {q} and M(δ) ∈ DRS (N) be its discrete
marking at the time δ ≥ 0. Every continuous arc ca = (q, t) or ca = (t, q), where
t ∈ TN , changes the fluid level in the continuous place q at the time δ with the
flow rate RN (ca,M(δ)). This means that in the discrete marking M(δ) fluid can
leave q along the continuous arc (q, t) with the rate RN ((q, t),M(δ)) and can enter
q along the continuous arc (t, q) with the rate RN ((t, q),M(δ)) for every transition
t ∈ Ena(M(δ)).

The potential rate of the fluid level change (fluid flow rate) for the continuous
place q in the discrete marking M(δ) is

RP (M(δ)) =
∑

{t∈Ena(M(δ))|(t,q)∈CN}

RN ((t, q),M(δ))−
∑

{t∈Ena(M(δ))|(q,t)∈CN}

RN ((q, t),M(δ)).

Let X(δ) be the fluid level in q at the time δ. It is clear that the fluid level
in a continuous place can never be negative. Therefore, X(δ) satisfies the following
ordinary differential equation describing the actual fluid flow rate for the continuous
place q in the marking (M(δ), X(δ)):
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RA(M(δ), X(δ)) =
dX(δ)

dδ
=

{
max{RP (M(δ)), 0}, X(δ) = 0;
RP (M(δ)), X(δ) > 0.

In the first case considered in the definition above, we have X(δ) = 0. In this case,
if RP (M(δ)) ≥ 0 then the fluid level is growing and the derivative is equal to the
potential rate. Otherwise, if RP (M(δ)) < 0 then we should prevent the fluid level
from crossing the lower boundary (zero) by stopping the fluid flow. In the second
case, X(δ) > 0 and the derivative is assumed to be equal to the potential rate.

Note that dX(δ)
dδ is a piecewise constant function of X(δ) during the time periods

when M(δ) remains unchanged. Hence, for each different “constant” segment we
have dX(δ)

dδ = RP (M(δ)) or dX(δ)
dδ = 0 and, therefore, we can suppose that within

each such segment RP (M(δ)) or 0 are the actual fluid flow rates for the continuous
place q in the marking (M(δ), X(δ)). While constructing differential equations that
describe the behaviour of SFMs associated with LFSPNs, we are interested only in
the segments where dX(δ)

dδ = RP (M(δ)). The SFMs behaviour within the remaining
segments, where dX(δ)

dδ = 0, is completely described by the buffer empty probability
function that collects the probability mass at the lower boundary.

Definition 6. Let N be an LFSPN. The elements Rij (1 ≤ i, j ≤ n = |DRS (N)|)
of the fluid rate matrix (FRM) R for the continuous place q are defined as

Rij =

{
RP (Mi), i = j;
0, i ̸= j.

The underlying SFMs of LFSPNs are the first order, infinite buffer, homogeneous
Markov fluid models [43, 49]. The discrete part of the SFM derived from an LFSPN
N is the CTMC CTMC (N) with the TRM Q. The evolution of the continuous part
of the SFM (fluid flow drift) is described by the FRM R.

Let us consider the stationary behaviour of the SFM associated with an LFSPN
N . We do not discuss here in detail the conditions under which the steady state
for the associated SFM exists and is unique, since this topic has been extensively
explored in [54, 43, 49]. Particularly, according to [54, 49], the steady-state PDF
exists (i.e. the transient functions approach their stationary values, as the time
parameter δ tends to infinity in the transient equations), when the associated SFM
is a Markov fluid model, whose fluid flow drift (described by the matrix R) and
transition rates (described by the matrix Q) are fluid level independent, and the
following stability condition holds:

FluidF low(q) =
n∑

i=1

φiRP (Mi) = φR1T < 0,

stating that the steady-state mean potential fluid flow rate for the continuous place
q is negative. Stable infinite buffer models usually converge, hence, the existing
steady-state PDF is also unique in this case.

Definition 7. Let N be an LFSPN and (M(δ), X(δ)) ∈ RS(N) be its marking at
the time δ ≥ 0. The following steady-state probability functions are obtained from
the transient ones by taking the limit δ → ∞.

• φi=limδ→∞ P(M(δ)=Mi) is the steady-state discrete marking probability;
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• ℓi = limδ→∞ P(X(δ) = 0, M(δ) = Mi) is the steady-state buffer empty
probability (probability mass at the lower boundary);

• Fi(x) = limδ→∞ P(X(δ) < x, M(δ) = Mi) is the steady-state fluid probabi-
lity distribution function;

• fi(x) =
dFi(x)

dx = limh→0
Fi(x+h)−Fi(x)

h =

limδ→∞ limh→0
P(x<X(δ)<x+h, M(δ)=Mi)

h is the steady-state fluid probability
density function.

Let φ, ℓ, F (x), f(x) be the row vectors with the elements φi, ℓi, Fi(x), fi(x), respec-
tively (1 ≤ i ≤ n).

By the total probability law for the stationary behaviour, we have

ℓ+

∫ ∞

0+

f(x)dx = φ.

The ordinary differential equations describing the stationary behaviour are

dF (x)

dx
R = F (x)Q, x > 0;

df(x)

dx
R = f(x)Q, x > 0.

Note that we have dF (x)
dx = f(x), F (0) = ℓ, F (∞) = φ.

The ordinary differential equation for the steady-state buffer empty probabilities
(stationary lower boundary conditions) are

f(0)R = ℓQ.

The stationary lower boundary constraint is: if Rii = RP (Mi) > 0 then Fi(0) =
ℓi = 0 (1 ≤ i ≤ n).

The stationary normalizing condition is

ℓ1T +

∫ ∞

0+

f(x)dx1T = 1,

where 1 is a row vector of n values 1.
The solutions of the equations for F (x) and f(x) in the form of matrix exponent

are F (x) = ℓexQR−1

and f(x) = ℓQR−1exQR−1

, respectively. Since the steady-
state existence implies boundedness of the SFM associated with an LFSPN and
we do not have a finite upper fluid level bound, the positive eigenvalues of QR−1

must be excluded. Moreover, R−1 does not exist if for some i (1 ≤ i ≤ n) we have
Rii = 0. These difficulties are avoided in the alternative solution method for F (x),
called spectral decomposition [76, 54, 43, 49, 46, 74, 75].

Example 4. Consider the LFSPNs N and N ′ in Figure 2.
The FRMs R and R′ for the SFM of N and N ′ are

R =

(
1 0
0 −2

)
, R′ =

 1 0 0
0 −2 0
0 0 −2

 .
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The stability conditions for the SFMs of N and N ′ are fulfilled: FluidF low(q) =∑2
i=1 φiRP (Mi) =

1
2 ·1+

1
2 (−2) = − 1

2 < 0 and FluidF low(q′)=
∑3

j=1 φ
′
jRP (M ′

j)=
1
2 · 1 + 1

4 (−2) + 1
4 (−2) = −1

2 < 0.
The steady-state fluid PDFs for the SFMs of N and N ′ are

F (x) =

(
1

2
− 1

2
e−x,

1

2
− 1

4
e−x

)
, F ′(x) =

(
1

2
− 1

2
e−x,

1

4
− 1

8
e−x,

1

4
− 1

8
e−x

)
.

The steady-state fluid probability density functions for the SFMs of N and N ′ are

f(x) =
dF (x)

dx
=

(
1

2
e−x,

1

4
e−x

)
, f ′(x) =

dF ′(x)

dx
=

(
1

2
e−x,

1

8
e−x,

1

8
e−x

)
.

The steady-state buffer empty probabilities for the SFMs of N and N ′ are

ℓ = F (0) =

(
0,

1

4

)
, ℓ′ = F ′(0) =

(
0,

1

8
,
1

8

)
.

One can see that F (∞) =
(
1
2 ,

1
2

)
= φ and F ′(∞) =

(
1
2 ,

1
4 ,

1
4

)
= φ′. Note also that

f(0) =
(
1
2 ,

1
4

)
and it holds f(0)R =

(
1
2 ,−

1
2

)
= ℓQ. Analogously, f ′(0) =

(
1
2 ,

1
8 ,

1
8

)
and we have f ′(0)R′ =

(
1
2 ,−

1
4 ,−

1
4

)
= ℓ′Q′.

5. Fluid trace equivalence

Trace equivalences are the least discriminating ones. In the trace semantics, the
behavior of a system is associated with the set of all possible sequences of actions, i.e.
the protocols of work or computations. The points of choice of an external observer
between several extensions of a particular computation are not taken into account.

The formal definition of fluid trace equivalence resembles that of ordinary Marko-
vian trace equivalence, proposed on transition-labeled CTMCs in [83], on sequential
and concurrent Markovian process calculi SMPC and CMPC in [14, 18, 15, 16, 19]
and on Uniform Labeled Transition Systems (ULTraS) in [21, 22, 17]. While defining
fluid trace equivalence, we additionally have to take into account the fluid flow
rates in the corresponding discrete markings of two compared LFSPNs. Hence, in
order to construct fluid trace equivalence, we should determine how to calculate
the cumulative execution probabilities of all the specific (selected) paths. A path in
the discrete reachability graph of an LFSPN is a sequence of its discrete markings
and transitions that is generated by some firing sequence in the LFSPN.

First, we should multiply the transition firing probabilities for all the transitions
along the paths starting in the initial discrete marking of the LFSPN. The resulting
product will be the execution probability of the path. Second, we should sum the
path execution probabilities for all the selected paths corresponding to the same
sequence of actions, moreover, to the same sequence of the average sojourn times
and the same sequence of the potential fluid flow rates in all the discrete markings
participating the paths. We suppose that each LFSPN has exactly one continuous
place. The resulting sum will be the cumulative execution probability of the selected
paths corresponding to some fluid stochastic trace. A fluid stochastic trace is a
pair with the first element being the triple of the correlated sequences of actions,
average sojourn times and potential fluid flow rates, and the second element being
the execution probability of the triple. Each element of the triple guarantees that
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fluid trace equivalence respects the following important aspects of the LFSPNs
behaviour: functional activity, stochastic timing and fluid flow.

Fluid trace equivalence can also be defined using Markovian trace machine
(MTM) from [83] (featuring the action display, time display and reset button),
enhanced with an additional display showing the potential fluid flow rate in the
current state. Such an enhanced black box tester will be called fluid stochastic trace
machine (FSTM), to be in disposal of the external observer. Remember that the
action display shows the latest action whose execution (being instantaneous after
an exponentially timed delay) has led to the current state. The time display shows
either global time (absolute time counter) or an upper bound for the remaining
local time (countdown timer) before the next action occurrence. Pressing the reset
button terminates the current run and starts another one, so that the length of
each run can be controlled.

In our setting, each such run corresponds to (can be extracted from) some
sequence of transition firings started in the initial discrete marking of an LFSPN.
After infinitely many runs of the FSTM we shall be able to calculate the probabilities
of the correlated sequences of actions, time values and potential fluid flow rates.
Then two LFSPNs are fluid trace equivalent if the mentioned probabilities coincide
for all possible triples of that kind, called observations. As demonstrated in [83],
implementing absolute or countdown timer results in the same equivalence. More-
over, it appeared to be enough collecting the average sojourn times in the states
between which the actions occur, instead of using the timers. The latter approach
gives an alternative to the testing with MTM. Such a viewpoint to the linear-
time behaviour also substantially simplifies definitions and proofs related to the
Markovian trace equivalences, so we have decided to adopt that approach for
LFSPNs, as an alternative to the experiments with FSTM.

Note that CTMC (N) can be interpreted as a semi-Markov chain (SMC) [58],
denoted by SMC (N), which is analyzed by extracting from it the embedded (absor-
bing) discrete time Markov chain (EDTMC) corresponding to N , denoted by
EDTMC (N). The construction of the latter is analogous to that applied in the
context of GSPNs in [60, 61, 12, 13]. EDTMC (N) only describes the state changes
of SMC (N) while ignoring its time characteristics. Thus, to construct the EDTMC,
we should abstract from all time aspects of behaviour of the SMC, i.e. from the
sojourn time in its states. It is well-known that every SMC is fully described by
the EDTMC and the state sojourn time distributions (the latter can be specified
by the vector of PDFs of residence time in the states) [51].

We first propose some helpful definitions of the probability functions for the
transition firings and discrete marking changes. Let N be an LFSPN, M, M̃ ∈
DRS (N) be its discrete markings and t ∈ Ena(M).

The (time-abstract) probability that the transition t fires in M is

PT (t,M) =
ΩN (t,M)∑

u∈Ena(M) ΩN (u,M)
=

ΩN (t,M)

RE(M)
= SJ (M)ΩN (t,M).

We have ∀M ∈ N|PdN | ∑
t∈Ena(M) PT (t,M)=

∑
t∈Ena(M)

ΩN (t,M)∑
u∈Ena(M) ΩN (u,M) =∑

t∈Ena(M) ΩN (t,M)∑
u∈Ena(M) ΩN (u,M) = 1, i.e. PT (t,M) defines a probability distribution.

The probability to move from M to M̃ by firing any transition is
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PM(M, M̃) =
∑

{t|M t→M̃}

PT (t,M) =

∑
{t|M t→M̃} ΩN (t)

RE(M)
= SJ (M) ·

∑
{t|M t→M̃}

ΩN (t).

We write M →P M̃ , if M → M̃ , where P = PM(M, M̃). We have ∀M ∈ N|PdN |∑
{M̃ |M→M̃} PM(M, M̃) =

∑
{M̃ |M→M̃}

∑
{t|M t→M̃} PT (t,M) =∑

t∈Ena(M) PT (t,M) = 1, i.e. PM(M, M̃) defines a probability distribution.

Definition 8. Let N be an LFSPN. The embedded (absorbing) discrete time
Markov chain (EDTMC) of N , denoted by EDTMC (N), has the state space
DRS (N), the initial state MN and the transitions M →P M̃ , if M → M̃ , where
P = PM(M, M̃).

The underlying SMC of N , denoted by SMC (N), has the EDTMC EDTMC (N)
and the sojourn time in every M ∈ DRS (N) is exponentially distributed with the
parameter RE(M).

Since the sojourn time in every M ∈ DRS (N) is exponentially distributed, we
have SMC (N) = CTMC (N).

Definition 9. Let N be an LFSPN. The elements Pij (1 ≤ i, j ≤ n = |DRS (N)|) of
the (one-step) transition probability matrix (TPM) P for EDTMC (N) are defined as

Pij =

{
PM(Mi,Mj), Mi → Mj ;
0, otherwise.

Let X be a set, n ∈ N≥1 and xi ∈ X (1 ≤ i ≤ n). Then χ = x1 · · ·xn is a
finite sequence over X of length |χ| = n. When X is a set on numbers, we usually
write χ = x1 ◦ · · · ◦ xn, to avoid confusion because of mixing up the operations
of concatenation of sequences (◦) and multiplication of numbers (·). The empty
sequence ε of length |ε| = 0 is an extra case. Let X∗ denote the set of all finite
sequences (including the empty one) over X.

Let MN = M0
t1→ M1

t2→ · · · tn→ Mn (n ∈ N) be a finite sequence of transition
firings starting in the initial discrete marking MN and called firing sequence in N .
The firing sequence generates the path M0t1M1t2 · · · tnMn in the discrete reachabili-
ty graph DRG(N). Since the first discrete marking MN = M0 of the path is
fixed, one can see that the (finite) transition sequence ϑ = t1 · · · tn in N uniquely
determines the discrete marking sequence M0 · · ·Mn, ending with the last discrete
marking Mn of the mentioned path in DRG(N). Hence, to refer the paths, one
can simply use the transition sequences extracted from them as shown above. The
empty transition sequence ε refers to the path M0, consisting of one discrete marking
(which is then the first and last one of the path).

Definition 10. Let N be an LFSPN. The set of all (finite) transition sequences in
N is defined as

TranSeq(N) = {ϑ | ϑ = ε or ϑ = t1 · · · tn, MN = M0
t1→ M1

t2→ · · · tn→ Mn}.

Let ϑ = t1 · · · tn ∈ TranSeq(N) and MN = M0
t1→ M1

t2→ · · · tn→ Mn. The
probability to execute the transition sequence ϑ is
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PT (ϑ) =
n∏

i=1

PT (ti,Mi−1).

For ϑ = ε we define PT (ε) = 1. The following lemma shows that PT (ϑ) defines
a probability distribution.

Lemma 1. [75] Let N be an LFSPN. Then ∀n ∈ N∑
{ϑ∈TranSeq(N)||ϑ|=n}

PT (ϑ) = 1.

Proof. See Appendix A.1. �
Let ϑ = t1 · · · tn ∈ TranSeq(N) be a transition sequence in N and MN = M0

t1→
M1

t2→ · · · tn→ Mn. The action sequence of ϑ is LN (ϑ) = LN (t1) · · ·LN (tn) ∈ Act∗,
i.e. it is the sequence of actions which label the transitions of that transition
sequence. For ϑ = ε we define LN (ε) = ε. Further, the average sojourn time
sequence of ϑ = t1 · · · tn is SJ (ϑ) = SJ (M0) ◦ · · · ◦ SJ (Mn) ∈ R∗

>0, i.e. it is the
sequence of average sojourn times in the discrete markings of the path to which ϑ
refers. For ϑ = ε we define SJ (ε) = SJ (M0). Similarly, the (potential) fluid flow
rate sequence of ϑ = t1 · · · tn is RP (ϑ) = RP (M0) ◦ · · · ◦ RP (Mn) ∈ R∗, i.e. it is
the sequence of (potential) fluid flow rates in the discrete markings of the path to
which ϑ refers. For ϑ = ε we define RP (ε) = RP (M0).

Definition 11. Let N be an LFSPN and (σ, ς, ϱ) ∈ Act∗ × R∗
>0 × R∗. The set of

(σ, ς, ϱ)-selected (finite) transition sequences in N is defined as

TranSeq(N,M, σ, ς, ϱ) =

{
ϑ ∈ TranSeq(N,M)

∣∣∣∣ LN (ϑ) = σ, SJ (M,ϑ) = ς,
RP (M,ϑ) = ϱ

}
.

Let TranSeq(N, σ, ς, ϱ) ̸= ∅. Then the triple (σ, ς, ϱ), together with its execution
probability, which is the cumulative execution probability of all the paths from
which the triple is extracted (as described above), constitute a fluid stochastic trace
of the LFSPN N . Fluid stochastic traces are formally introduced below, followed
by the (first) definition of fluid stochastic trace equivalence.

Definition 12. A (finite) fluid stochastic trace of an LFSPN N is a pair
((σ, ς, ϱ), PT (σ, ς, ϱ)), where TranSeq(N, σ, ς, ϱ) ̸= ∅ and the (cumulative) probabi-
lity to execute (σ, ς, ϱ)-selected transition sequences is

PT (σ, ς, ϱ) =
∑

ϑ∈TranSeq(N,σ,ς,ϱ)

PT (ϑ).

We denote the set of all fluid stochastic traces of an LFSPN N by
FluStochTraces(N). Two LFSPNs N and N ′ are fluid trace equivalent, denoted
by N ≡fl N

′, if

FluStochTraces(N) = FluStochTraces(N ′).

By Lemma 1, we have
∀n ∈ N

∑
{(σ,ς,ϱ)||σ|=n} PT (σ, ς, ϱ) =

∑
{(σ,ς,ϱ)||σ|=n}

∑
ϑ∈TranSeq(N,σ,ς,ϱ) PT (ϑ) =
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(σ,ς,ϱ)

∑
{ϑ∈TranSeq(N,σ,ς,ϱ)||ϑ|=n} PT (ϑ) =

∑
{ϑ∈TranSeq(N)||ϑ|=n} PT (ϑ) = 1, i.e.

PT (σ, ς, ϱ) defines a probability distribution.
The following (second) definition of fluid stochastic trace equivalence does not

use fluid stochastic traces.

Definition 13. Two LFSPNs N and N ′ are fluid trace equivalent, denoted by
N ≡fl N

′, if ∀(σ, ς, ϱ) ∈ Act∗ × R∗
>0 × R∗ we have∑

ϑ∈TranSeq(N,σ,ς,ϱ)

PT (ϑ) =
∑

ϑ′∈TranSeq(N ′,σ,ς,ϱ)

PT (ϑ′).

Note that in the definition of TranSeq(N, σ, ς, ϱ), as well as in Definitions 12
and 13, for ϑ ∈ T ∗

N , we may use the exit rate sequences RE(ϑ) = RE(M0) ◦
· · · ◦ RE(Mn) ∈ R∗

≥0 instead of average sojourn time sequences ς = SJ (ϑ) =

SJ (M0) ◦ · · · ◦ SJ (Mn) ∈ R∗
>0, since we have ∀M ∈ DRS (N) SJ (M) = 1

RE(M) and
∀M ∈ DRS (N) ∀M ′ ∈ DRS (N ′) SJ (M) = SJ (M ′) ⇔ RE(M) = RE(M ′).

Note also that our notion of fluid trace equivalence is based rather on that of
Markovian trace equivalence from [83], since there the average sojourn times in
the states “surrounding” the actions of the corresponding traces of the equivalent
processes should coincide while in the definition of the mentioned equivalence from
[14, 18, 15, 16, 19], the shorter average sojourn time may simulate the longer one.
If we would adopt such a simulation then the smaller average potential fluid change
volume (the product of the average sojourn time and potential fluid flow rate)
would model the bigger one, since the potential fluid flow rate remains constant
while residing in a discrete marking. Since we observe no intuition behind that
modeling, we do not use it.

In [21, 22, 17], the following two types of Markovian trace equivalence have been
proposed. The state-to-state Markovian trace equivalence requires coincidence of
average sojourn times in all corresponding discrete markings of the paths. The
end-to-end Markovian trace equivalence demands that only the sums of average
sojourn times for all corresponding discrete markings of the paths should be equal.
As a basis for constructing fluid trace equivalence, we have taken the state-to-state
relation, since the constant potential fluid flow rate in the discrete markings may
differ with their change (moreover, the actual fluid flow rate function may become
discontinuous when the lower fluid boundary for a continuous place is reached in
some discrete marking). Then, while summing the potential fluid flow rates for all
discrete markings of a path, an important information is lost.

Example 5. Consider the LFSPNs N and N ′ in Figure 2, such that N ≡fl N
′.

In Figure 5, the EDTMCs EDTMC (N) and EDTMC (N ′) are presented.
The TPMs P and P′ for EDTMC (N) and EDTMC (N ′) are

P =

(
0 1
1 0

)
, P′ =

 0 1
2

1
2

1 0 0
1 0 0

 .

We have t1t2 ∈ TranSeq
(
N, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
and t1t3 ∈ TranSeq (N, ac,

1
2 ◦ 1

2 ◦ 1
2 , 1 ◦ (−2) ◦ 1

)
. We also get t′1t′3 ∈ TranSeq

(
N ′, ab, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)

and t′2t
′
4 ∈ TranSeq

(
N ′, ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
. It holds that PT (t1t2) =

PT (t1t3) = 1 · 1
2 = 1

2 and PT (t′1t
′
3) = PT (t′2t

′
4) = 1

2 · 1 = 1
2 . Then we have the
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✠

❄

✛

Fig. 5. The EDTMCs of the fluid trace equivalent LFSPNs

equality FluStochTraces(N) = {
((
ε, 1

2 , 1
)
, 1
)
,
((
a, 1

2 ◦ 1
2 , 1 ◦ (−2)

)
, 1
)
,((

ab, 1
2 ◦ 1

2 ◦ 1
2 , 1 ◦ (−2) ◦ 1) , 1

2

)
,
((
ac, 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1
)
, 1
2

)
, . . .} =

FluStochTraces(N ′).

6. Fluid bisimulation equivalence

Bisimulation equivalences respect particular points of choice in the behavior of a
system. To define fluid bisimulation equivalence, we have to consider a bisimulation
being an equivalence relation that partitions the states of the union of the discrete
reachability graphs DRG(N) and DRG(N ′) of the LFSPNs N and N ′. For N and
N ′ to be bisimulation equivalent the initial states MN and MN ′ of their discrete
reachability graphs should be related by a bisimulation having the following transfer
property: if two states are related then in each of them the same actions can occur,
leading with the identical overall rate from each of the two states to the same
equivalence class for every such action.

The novelty of the fluid bisimulation definition with respect to that of the
Markovian bisimulations from [28, 53, 14, 18, 15, 16, 19, 21, 22, 17] is that, for each
pair of bisimilar discrete markings of N and N ′, we require coincidence of the fluid
flow rates of the continuous places of N and N ′ in these two discrete markings. Thus,
fluid bisimulation equivalence takes into account functional activity, stochastic ti-
ming and fluid flow, like fluid trace equivalence does.

In [59, 82], it has been shown that probabilistic bisimulation equivalence coincides
with probabilistic testing one on reactive probabilistic transition systems (for each
state, the probabilities of its outgoing transitions by the same action are summed
to one) under the image-finiteness or the minimal probability assumption. The
probabilistic testing there is based on collecting the probabilities of observing or not
observing actions while applying to a reactive probabilistic process each observation
(execution experience) of a (possibly branching) test process with a goal to calculate
the observation probability.

For Markovian bisimulation equivalence, such a testing characterization does
not yet exist. Two identical variants of Markovian testing equivalence have been
proposed in [20] on EMPAct, a sublanguage for continuous time Markovian proces-
ses of the Markovian process algebra EMPA, and in [14] on (sequential) Markovian
process calculus MPC. The Markovian testing there is based on summing either the
average sojourn times or actual (exponentially distributed) delays in the states of
each computation to calculate its duration, which should be not greater than a
given amount of time. It has been proved that Markovian testing equivalence is
strictly coarser than Markovian bisimulation one.
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Fluid bisimulation equivalence on LFSPNs is a natural enhancement of Markovi-
an bisimulation equivalence by adding the identity condition for the fluid flow rates
in the related states. The same condition may be imposed on Markovian testing
equivalence to get fluid testing equivalence on LFSPNs. Then, following [20, 14],
it will be easy to prove that fluid testing equivalence is strictly weaker than fluid
bisimulation equivalence. Thus, unlike fluid trace equivalence, fluid bisimulation
equivalence cannot be tested by an external observer using the mentioned fluid
testing approach and it should be defined in an operational manner.

We first propose some helpful extensions of the rate functions for the discrete
marking changes and for the fluid flow in continuous places. Let N be an LFSPN
and H ⊆ DRS (N). Then, for each M ∈ DRS (N) and a ∈ Act, we write M

a→λ H,
where λ = RMa(M,H) is the overall rate to move from M into the set of discrete
markings H by action a, defined as

RMa(M,H) =
∑

{t|∃M̃∈H M
t→M̃, LN (t)=a}

ΩN (t,M).

We write M
a→ H if ∃λ M

a→λ H. Further, we write M →λ H if ∃a M
a→ H,

where λ = RM(M,H) is the overall rate to move from M into the set of discrete
markings H by any actions, defined as

RM(M,H) =
∑

{t|∃M̃∈H M
t→M̃}

ΩN (t,M).

To construct a fluid bisimulation between LFSPNs N and N ′, we should consider
the “composite” set of their discrete markings DRS (N) ∪ DRS (N ′), since we have
to identify the rates to come from any two equivalent discrete markings into the
same “composite” equivalence class (with respect to the fluid bisimulation). Note
that, for N ̸= N ′, transitions starting from the discrete markings of DRS (N) (or
DRS (N ′)) always lead to those from the same set, since DRS (N) ∩DRS (N ′) = ∅,
and this allows us to “mix” the sets of discrete markings in the definition of fluid
bisimulation.

Let PcN = {q} and PcN ′ = {q′}. Then for M ∈ DRS (N) (or for M ′ ∈
DRS (N ′)) we denote by RP (M) (or by RP (M ′)) the fluid level change rate for
the continuous place q (or for the corresponding one q′), i.e. the argument discrete
marking determines for which of the two continuous places, q or q′, the flow rate
function RP is taken.

Definition 14. Let N and N ′ be LFSPNs such that PcN = {q}, P cN ′ = {q′}. An
equivalence relation R ⊆ (DRS (N)∪DRS (N ′))2 is a fluid bisimulation between N
and N ′, denoted by R : N↔flN

′, if:

(1) (MN ,MN ′) ∈ R.
(2) (M1,M2) ∈ R ⇒ RP (M1) = RP (M2), ∀H ∈ (DRS (N) ∪DRS (N ′))/R,

∀a ∈ Act

M1
a→λ H ⇔ M2

a→λ H.

Two LFSPNs N and N ′ are fluid bisimulation equivalent, denoted by N↔flN
′, if

∃R : N↔flN
′.
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Let Rfl(N,N ′) =
∪
{R | R : N↔flN

′} be the union of all fluid bisimulations
between N and N ′. The following proposition proves that Rfl(N,N ′) is also an
equivalence and Rfl(N,N ′) : N↔flN

′.

Proposition 1. [74, 75] Let N and N ′ be LFSPNs and N↔flN
′. Then Rfl(N,N ′)

is the largest fluid bisimulation between N and N ′.

Proof. Analogous to that of Proposition 8.2.1 from [53], which establishes the
result for strong equivalence. �

We now intend to compare the introduced fluid equivalences to discover their
interrelations. The following theorem demonstrates that fluid bisimulation equiva-
lence is strictly stronger than fluid trace one.

Theorem 1. [75] For LFSPNs N and N ′ the following strict implication holds:

N↔flN
′ ⇒ N ≡fl N

′.

Proof. Let us check the validity of the implication.
• The implication ↔fl →≡fl is valid by Proposition 2 from [75].

Let us see that the implication is strict, i.e. the reverse one does not work, by
the following counterexample.

• In Figure 2, N ≡fl N
′, but N↔/ flN

′, since only in the LFSPN N ′ an action
a can be executed so (by firing the transition t′2) that no action b can occur
afterwards. �

Example 6. In Figure 6, the LFSPNs N and N ′ are presented with N↔flN
′. The

only difference between the respective LFSPNs in Figure 2 and in Figure 6 is that
the transitions t3 and t′4 are labeled with action c in the former, instead of action b
in the latter.

Therefore, the following notions coincide for the respective LFSPNs in Figure
2 and those in Figure 6: the discrete reachability sets DRS (N) and DRS (N ′);
the discrete reachability graphs DRG(N) and DRG(N ′); the underlying CTMCs
CTMC (N) and CTMC (N ′); the average sojourn time vectors SJ and SJ ′ of N
and N ′; the TRMs Q and Q′, the steady-state PMFs φ and φ′ for CTMC (N)
and CTMC (N ′); the TPMs P and P′ for EDTMC (N) and EDTMC (N ′); the
FRMs R and R′, the steady-state fluid PDFs F (x) and F ′(x), the steady-state
fluid probability density functions f(x) and f ′(x), the steady-state buffer empty
probabilities ℓ and ℓ′ for the SFMs of N and N ′.

We have (DRS (N) ∪DRS (N ′))/Rfl(N,N ′) = {H1,H2}, where H1 = {M1,M
′
1},

H2 = {M2,M
′
2,M

′
3}.

7. Logic HMLflt

The modal logic HMLNPMTr has been introduced in [18, 15, 19] (called
HMLMTr in [18, 15]) on (sequential) and concurrent Markovian process calculi
SMPC (called MPC in [18, 19]) and CMPC for logical interpretation of Markovian
trace equivalence. HMLNPMTr is based on the logic HML [52], to which a new
interpretation function has been added that takes as arguments a process state and
a sum or a sequence of the average sojourn times.

We now propose a novel fluid modal logic HMLflt for the characterization of
fluid trace equivalence. For this, we extend the interpretation function of
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Fig. 6. Fluid bisimulation equivalent LFSPNs

HMLNPMTr with an additional argument, which is the sequence of the potential
fluid flow rates for the single continuous place of an LFSPN (remember that in the
definition of fluid trace equivalence we compare only LFSPNs, each having exactly
one continuous place).

Note that Markovian trace equivalence and the corresponding interpretation
function for HMLMTr in [18] are defined by summing up the average sojourn
times in the process states. In our definition of fluid trace equivalence, we consider
sequences of the average sojourn times in the discrete markings of LFSPNs. Hence,
our fluid extension of HMLNPMTr is based rather on the definitions from [15, 19],
where the latter approach (i.e. the sequences instead of sums) has been presented.

Definition 15. Let ⊤ denote the truth and a ∈ Act. A formula of HMLflt is
defined as follows:

Φ ::= ⊤ | ⟨a⟩Φ.
HMLflt denotes the set of all formulas of the logic HMLflt.
The interpretation function measures the probability with which a formula of

HMLflt is satisfied in a discrete marking during the exponentially distributed time
periods with given averages when the potential fluid flow rates have particular values.

Definition 16. Let N be an LFSPN and M ∈ DRS (N). The interpretation
function [[ ]]flt : HMLflt → (DRS (N)× R∗

>0 × R∗ → [0; 1]) is defined as follows:

(1) [[⊤]]flt(M, ς, ϱ) =

{
0, (ς ̸= SJ (M)) ∨ (ϱ ̸= RP (M));
1, (ς = SJ (M)) ∧ (ϱ = RP (M));

(2) [[⟨a⟩Φ]]flt(M, ς, ϱ)=



0, (ς = ε) ∨ (ϱ = ε)∨
((ς = s ◦ ς̂) ∧ (SJ (M) ̸= s))∨
((ϱ = r ◦ ϱ̂) ∧ (RP (M) ̸= r));∑

{t|M t→M̃, LN (t)=a}

PT (t,M)[[Φ]]flt(M̃, ς̂, ϱ̂), (ς = s ◦ ς̂)∧
(ϱ = r ◦ ϱ̂)∧

(SJ (M) = s) ∧ (RP (M) = r).

Thus, the interpretation is formally defined as a function from the formulas
(essentially specifying the sequences of actions) to the functions assigning a probabi-
lity to each triple consisting of a discrete marking (from which a given action
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sequence starts), together with the coordinated sequences of the average sojourn
times and potential fluid flow rates (both starting in that discrete marking). As a
result, the interpretation gives a probability to each set of (σ, ς, ϱ)-selected transition
sequences starting in a (possibly non-initial) discrete marking (such sets will be
formalized later).

Note that the item 1 in the definition above describes the situation when only the
empty transition sequence should start in the discrete marking M to reach the state
(which is M itself), described by the identically true formula. Since we have just a
single (mentioned) true state, it remains to check that second and third arguments
of the interpretation function are the sequences of length one, as well as that they
are equal to the average sojourn time and fluid flow rate in M , respectively.

Definition 17. Let N be an LFSPN. Then we define [[Φ]]flt(N, ς, ϱ) =
[[Φ]]flt(MN , ς, ϱ). Two LFSPNs N and N ′ are logically equivalent in HMLflt,
denoted by N =HMLflt

N ′, if ∀Φ ∈ HMLflt ∀ς ∈ R∗
>0 ∀ϱ ∈ R∗ [[Φ]]flt(N, ς, ϱ) =

[[Φ]]flt(N
′, ς, ϱ).

Let N be an LFSPN and M ∈ DRS (N), a ∈ Act. The set of discrete markings
reached from M by execution of action a, called the image set, is defined as
Image(M,a) = {M̃ | M

t→ M̃, LN (t) = a}. An LFSPN N is an image-finite
one, if ∀M ∈ DRS (N) ∀a ∈ Act |Image(M,a)| < ∞.

The following lemma states that all LFSPNs (whose transition sets are finite by
definition) are image-finite.

Lemma 2. Every LFSPN is image-finite.

Proof. Follows from the inherent image-finiteness of (discrete) Petri nets. �
In order to get the intended logical characterization, we need in some auxiliary

definitions considering the transition sequences starting not just in the initial discre-
te marking of an LFSPN, but in any reachable one.

Definition 18. Let N be an LFSPN and M ∈ DRS (N). The set of all (finite)
transition sequences in N starting in the discrete marking M is defined as

TranSeq(N,M) = {ϑ | ϑ = ε or ϑ = t1 · · · tn, M = M0
t1→ M1

t2→ · · · tn→ Mn}.

Let ϑ = t1 · · · tn ∈ TranSeq(N,M) and M = M0
t1→ M1

t2→ · · · tn→ Mn. The proba-
bility to execute the transition sequence ϑ starting in the discrete marking M is

PT (M,ϑ) =
n∏

i=1

PT (ti,Mi−1).

For ϑ = ε we define PT (M, ε) = 1.
Let ϑ = t1 · · · tn ∈ TranSeq(N,M) and M = M0

t1→ M1
t2→ · · · tn→ Mn. The

action sequence of ϑ is LN (ϑ) = LN (t1) · · ·LN (tn) ∈ Act∗. We also define LN (ε) =
ε. The average sojourn time sequence of ϑ = t1 · · · tn is SJ (M,ϑ) = SJ (M0) ◦ · · · ◦
SJ (Mn) ∈ R∗

>0. We also define SJ (M, ε) = SJ (M0). The (potential) fluid flow rate
sequence of ϑ = t1 · · · tn is RP (M,ϑ) = RP (M0) ◦ · · · ◦ RP (Mn) ∈ R∗. We also
define RP (M, ε) = RP (M0).

Definition 19. Let N be an LFSPN, M ∈ DRS (N) and (σ, ς, ϱ) ∈ Act∗×R∗
>0×R∗.

The set of (σ, ς, ϱ)-selected (finite) transition sequences in N starting in the discrete
marking M is defined as
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TranSeq(N,M, σ, ς, ϱ) =

{
ϑ ∈ TranSeq(N,M)

∣∣∣∣ LN (ϑ) = σ, SJ (M,ϑ) = ς,
RP (M,ϑ) = ϱ

}
.

The (cumulative) probability to execute (σ, ς, ϱ)-selected transition sequences star-
ting in the discrete marking M is

PT (M,σ, ς, ϱ) =
∑

ϑ∈TranSeq(N,M,σ,ς,ϱ)

PT (M,ϑ).

The following lemma provides a recursive definition of PT (M,σ, ς, ϱ) that will
be used later in the proofs.

Lemma 3. Let N be an LFSPN and M ∈ DRS (N). Then for all (σ, ς, ϱ) ∈ Act∗×
R∗

>0 × R∗ such that σ = a · σ̂, ς = s ◦ ς̂ , ϱ = r ◦ ϱ̂, where a ∈ Act, s ∈ R>0, r ∈
R, we have

PT (M,σ, ς, ϱ) =
∑

{t|M t→M̃, LN (t)=a, SJ(M)=s, RP (M)=r}

PT (t,M)PT (M̃, σ̂, ς̂ , ϱ̂).

Proof. See Appendix A.2. �
The following propositions show that there exists a bijective correspondence

between fluid stochastic traces of LFSPNs and formulas of HMLflt, by proving
that the probabilities of the triples (σ, ς, ϱ) ∈ Act∗ × R∗

>0 × R∗ coincide in the net
and logical frameworks.

Proposition 2. Let N be an LFSPN. Then for each σ ∈ Act∗ there exists Φσ ∈
HMLflt such that ∀M ∈ DRS (N) ∀ς ∈ R∗

>0 ∀ϱ ∈ R∗

[[Φσ]]flt(M, ς, ϱ) = PT (M,σ, ς, ϱ).

Proof. See Appendix A.3. �
Proposition 3. Let N be an LFSPN. Then for each Φ ∈ HMLflt there exists
σΦ ∈ Act∗ such that ∀M ∈ DRS (N) ∀ς ∈ R∗

>0 ∀ϱ ∈ R∗

PT (M,σΦ, ς, ϱ) = [[Φ]]flt(M, ς, ϱ).

Proof. See Appendix A.4. �
The following theorem provides fluid trace equivalence with the logical characteri-

zation within HMLflt.

Theorem 2. For LFSPNs N and N ′

N ≡fl N
′ ⇔ N =HMLflt

N ′.

Proof. The result follows from Proposition 2 and Proposition 3, which establish
a bijective correspondence between fluid stochastic traces of LFSPNs and formulas
of HMLflt. �

Thus, in the trace semantics, we obtained a logical characterization of the fluid
behavioural equivalence or, symmetrically, an operational characterization of the
fluid modal logic equivalence.
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Example 7. Consider the LFSPNs N and N ′ in Figure 2, for which it holds
N ≡fl N ′, hence, N =HMLflt

N ′. In particular, for Φ = ⟨{a}⟩⟨{b}⟩⊤ we have
σΦ = a · b and [[Φ]]flt(MN , 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1) = PT (t1t2) = 1 · 1
2 = 1

2 = 1 · 1
2 =

PT (t′1t
′
3) = [[Φ]]flt(MN ′ , 1

2 ◦ 1
2 ◦ 1

2 , 1 ◦ (−2) ◦ 1). Thus, N and N ′ have the same
probability 1

2 of the following evolution from their initial discrete markings: while
the action a is ready for execution, the single continuous place of each LFSPN is
filled with the potential flow rate 1 during the exponentially distributed time period
with the average 1

2 ; then, while the action b is ready for execution, the continuous
place of each LFSPN is filled with the potential flow rate −2 (i.e. the place is
actually emptied with the potential flow rate 2) during the exponentially distributed
time period with the average 1

2 ; finally, the continuous place of each LFSPN is filled
with the potential flow rate 1 for the exponentially distributed time period with the
average 1

2 .

8. Logic HMLflb

The modal logic HMLMB has been introduced in [15, 19] on sequential and
concurrent Markovian process calculi SMPC (called MPC in [19]) and CPMC for
logical interpretation of Markovian bisimulation equivalence. HMLMB is based on
the logic HML [52], in which the diamond operator was decorated with the rate
lower bound. Hence, HMLMB can also be seen as a modification of the logic PML
[59], where the probability lower bound that decorates the diamond operator was
replaced with the rate lower bound.

We now propose a novel fluid modal logic HMLflb for the characterization of
fluid bisimulation equivalence. For this, we add to HMLMB a new modality ≀r,
where r ∈ R is the potential fluid flow rate value for the single continuous place
of an LFSPN (remember that in the definition of fluid bisimulation equivalence
we compare only LFSPNs, each having exactly one continuous place). The formula
≀r is used to check whether the potential fluid flow rate in a discrete marking of
an LFSPN equals r. Finding this fact refers to a particular condition from the
fluid bisimulation definition. Thus, ≀r can be seen as a supplement to the PML
and HMLMB formula ∇a, where a ∈ Act, since ∇a is used to check whether the
transitions labeled with the action a cannot be fired in a state (discrete marking).
Finding this fact violates the bisimulation transfer property.

Definition 20. Let ⊤ denote the truth and a ∈ Act, r ∈ R, λ ∈ R>0. A formula
of HMLflb is defined as follows:

Φ ::= ⊤ | ¬Φ | Φ ∧ Φ | ∇a | ≀r | ⟨a⟩λΦ.

We define ⟨a⟩Φ = ∃λ ⟨a⟩λΦ and Φ ∨Ψ = ¬(¬Φ ∧ ¬Ψ).
HMLflb denotes the set of all formulas of the logic HMLflb.
The satisfaction relation is used to verify the validity of a formula of HMLflb

in a discrete marking.

Definition 21. Let N be a LFSPN and M ∈ DRS (N). The satisfaction relation
|=flb⊆ DRS (N)×HMLflb is defined as follows:

(1) M |=flb ⊤ — always;
(2) M |=flb ¬Φ, if M ̸|=N Φ;
(3) M |=flb Φ ∧Ψ, if M |=N Φ and M |=N Ψ;
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(4) M |=flb ∇a, if it does not hold that M a→ DRS (N);
(5) M |=flb ≀r, if RP (M) = r;
(6) M |=flb ⟨a⟩λΦ, if ∃H ⊆ DRS (N) M

a→µ H, µ ≥ λ and ∀M̃ ∈ H M̃ |=flb Φ.

Note that ⟨a⟩µΦ implies ⟨a⟩λΦ, if µ ≥ λ.

Definition 22. Let N be an LFSPN. Then we write N |=flb Φ, if MN |=flb Φ.
LFSPNs N and N ′ are logically equivalent in HMLflb, denoted by N =HMLflb

N ′,
if ∀Φ ∈ HMLflb N |=flb Φ ⇔ N ′ |=flb Φ.

The following theorem provides fluid bisimulation equivalence with the logical
characterization within HMLflb.

Theorem 3. For LFSPNs N and N ′

N↔flN
′ ⇔ N =HMLflb

N ′.

Proof. See Appendix A.5. �
Thus, in the bisimulation semantics, we obtained a logical characterization of the

fluid behavioural equivalence or, symmetrically, an operational characterization of
the fluid modal logic equivalence.

Example 8. Consider the LFSPNs N and N ′ in Figure 2, for which N↔/ flN
′,

hence, N ̸=HMLflb
N ′. Indeed, for Φ = ⟨a⟩2⟨b⟩1⊤ we have N |=flb Φ, but N ′ ̸|=flb

Φ, since only in N ′ action a can occur so that action b cannot occur afterwards.
Take now the LFSPNs N and N ′ in Figure 6, for which N↔flN

′, hence,
N =HMLflb

N ′. In particular, for Ψ = ≀1∧⟨a⟩2(≀−2∧⟨b⟩2⊤) we have N |=flb Ψ and
N ′ |=flb Ψ. Thus, for N and N ′ the following evolution from their initial discrete
markings is valid: while the action a is ready for execution, the single continuous
place of each LFSPN is filled with the potential flow rate 1 during the exponentially
distributed time period with the minimal rate 2; then, while the action b is ready
for execution, the continuous place of each LFSPN is filled with the potential flow
rate −2 (i.e. the place is actually emptied with the potential flow rate 2) during the
exponentially distributed time period with the minimal rate 2.

9. Conclusion

In this paper, we have investigated two behavioural equivalences that preserve
the qualitative and quantitative behavior of LFSPNs with a single continuous place,
related to both their discrete part (labeled CTSPNs and the underlying CTMCs)
and continuous part (the associated SFMs). We have considered on LFSPNs a
linear-time relation of fluid trace equivalence and a branching-time relation of fluid
bisimulation equivalence. Both equivalences respect functional activity, stochastic
timing and fluid flow in the behaviour of LFSPNs.

9.1. Fluid logical characterizations. As the main result, we have characterized
logically fluid trace and bisimulation equivalences with two novel fluid modal logics
HMLflt and HMLflb. The characterizations give rise to better understanding of
the basic features of the equivalences. In [18, 19], the local and global approaches to
the temporal aspects of computations were explained. The local approach considers
such aspects at the level of the individual actions in the computations while the
global approach does it at the level of global computations. In the local case, the
temporal parameters should be in the modal operators and the interpretation of
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Table 1. Behavioural aspects of LFSPNs in the logical modalities
and interpretations

Fluid Semantics type Functional activity Stochastic timing Fluid flow

modal logic (lin./branch. time) (action occurrences) (transition rates) (fluid rates)

HMLflt ⊤ ⟨a⟩ [[·]]flt(M, ς, ϱ) [[·]]flt(M, ς,ϱ)
HMLflb ⊤, ¬, ∧ ∇a, ⟨a⟩λ ⟨a⟩λ ≀r

the formulas should be qualitative, i.e. it should return the truth value if a formula
is satisfied. In the global case, the temporal parameters should not be present
in the syntax and the interpretation of the formulas should be quantitative, i.e.
it should give a value that measures how much (in which degree) a formula is
satisfied. We have used the global approach in HMLflt and the local approach in
HMLflb. Table 1 demonstrates how the modalities and interpretation functions
of the logics HMLflt and HMLflb respect the following behavioural aspects of
LFSPNs: semantics type (linear or branching time), functional activity (consisting
in the action occurrences), stochastic timing (specified by the transition rates) and
fluid flow (defined by the fluid rates). In case of the composite constructions, the
variables describing particular aspects of behaviour are printed in bold font.

According to [1], we have demonstrated that the fluid equivalences are reasonable
notions, by constructing their natural and mathematically elegant modal characteri-
zations. In addition, the characterizations offer a possibility for the logical reasoning
on resemblance of the fluid behaviour, while before it was only possible in the
operational manner, as the following example shows.

Example 9. Consider the LFSPNs N and N ′ in Figure 7 that model the production
line from Example 1, for which N↔flN

′. Since LFSPNs have an interleaving
semantics due to the continuous time approach and the race condition applied to
transition firings, the parallel execution of actions (here in N) is modeled by the
sequential non-determinism (in N ′). Fluid bisimulation equivalence is an interlea-
ving relation constructed in conformance with the LFSPNs semantics. In the initial
discrete marking MN , we now can specify and verify formally the properties descri-
bed there: the probability given by the interpretation [[⟨f1⟩⟨f2⟩⊤]]flt(MN , s1s2s3,

r1r2(−r3)) = λ1

λ1+λ2
in HMLflt and the validity of the satisfaction MN |=flb

≀r1 ∧ (⟨f1⟩λ1⊤ ∨ ⟨f2⟩λ2⊤) in HMLflb, where s1 = 1
λ1+λ2

, s2 = 1
λ2
, s3 = 1

λ3
, r1 =

w1 + w2, r2 = w1, r3 = w3. The same holds for the LFSPN N ′, since we have
N↔flN

′, hence, also N ≡fl N
′.

A possible continuation of the presented work may be characterization of the fluid
equivalences via more expressive logics, such as the CSL fluid extensions resembling
the temporal logic for SFMs [45].

Moreover, by applying the theory from [50, 56], we can consider fluid equivalences
of the LFSPNs with the level-dependent functions specifying transition firing rates
and (piecewise-constant) fluid flow rates of continuous arcs. The associated SFM
of each such extended LFSPN will be described by the TRM Q(x) (variable x
denotes a fluid level value) with the non-diagonal elements RM(Mi,Mj , x) (1 ≤
i, j ≤ n, x ∈ [0;+∞)), and also by the FRM R(x) with the diagonal elements
RP (Mi, x) (1 ≤ i ≤ n, x ∈ [0;+∞)), the latter being fluid level-independent
functions within intervals between the boundaries, where fluid probability mass
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Fig. 7. The LFSPNs of the production line

may be created. For the model stability, the fluid flow rate must be negative in
the last interval that is also the only infinite range. The matrices Q(x) and R(x)
are used to build the ODE systems in those intervals for the probability density
functions, so that the lumping approach may be applied. Then our results on the
interrelations and quotienting will be also valid for the “level-sensitive” versions of
the fluid equivalences. The corresponding fluid modal logics may be constructed
for their characterization, by imposing fluid level dependence to the interpretation
function of HMLflt and those modalities of HMLflb, which respect the transition
and flow rates.

9.2. Fluid place bisimulations. In the future, we also plan to define a fluid place
bisimulation relation that connects “similar” continuous places of LFSPNs, like place
bisimulations [5, 4, 71, 72, 73] relate discrete places of (standard) Petri nets. The
lifting of the relation to the discrete-continuous LFSPN markings (with discrete
markings treated as the multisets of places) will respect both the fluid distribution
among the related continuous places and the rates of fluid flow through them. For
this purpose, we should introduce a novel notion of the multiset analogue with non-
negative real-valued multiplicities of the elements. While multiset is a mapping from
a countable set to all natural numbers, we need a more sophisticated mapping from
the set of continuous places to all non-negative real numbers, corresponding to the
associated fluid levels. Such an extension of the multiset notion may use the results
of [23, 70], concerning hybrid sets (the multiplicities of the elements are arbitrary
integers) and fuzzy multisets (the multiplicities belong to the interval [0;1]). In this
way, both the initial amount of fluid and its transit flow rate in each discrete marking
may be distributed among several continuous places of an LFSPN, such that all of
them are bisimilar to a particular continuous place of the equivalent LFSPN.

The interesting point here is that fluid distributed among several bisimilar conti-
nuous places should be taken as the fluid contained in a single continuous place,
resulting from aggregating those “constituent” continuous places with the use of fluid
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place bisimulation. Then the fluid level in the “aggregate” continuous place will be
a sum of the fluid levels in the “constituent” continuous places. The probability
density function for the sum of random variables representing the fluid levels in
the “constituent” continuous places is defined via convolution operation. In this
approach, we should avoid or treat correctly the situations when the fluid flow in
the “aggregate” continuous place becomes suddenly non-continuous. This happens
when some of the “constituent” continuous places are emptied while the others still
contain a positive amount of fluid. Obviously, such a discontinuity is a result of
applying the aggregation since it is not caused by either reaching the lower fluid
boundary (zero fluid level) or change of the current discrete marking.

After doing this, it would be rather interesting to provide fluid place bisimulation
equivalences with logical characterizations by constructing new fluid “place” logics,
whose modalities are capable to specify “aggregate” fluid flow rates, i.e. the sums
of the rates for the equivalent continuous places.

Appendix A. Proofs

A.1. Proof of Lemma 1. We prove by induction on the transition sequences
length n.

• n = 0
By definition, ∑{ϑ∈TranSeq(N)||ϑ|=0} PT (ϑ)=PT (ε)=1.

• n → n+ 1
By distributivity law for multiplication and addition, and since

∀M∈N|PdN | ∑
t∈Ena(M) PT (t,M)=1, we get ∑{ϑ∈TranSeq(N)||ϑ|=n+1} PT (ϑ)=∑

{t1,...,tn,tn+1|MN=M0
t1→M1

t2→···
tn→Mn

tn+1→ Mn+1}

∏n+1
i=1 PT (ti,Mi−1)=∑

{t1,...,tn|MN=M0
t1→M1

t2→···
tn→Mn}

∑
{tn+1|Mn

tn+1→ Mn+1}

∏n
i=1 PT (ti,Mi−1)PT (tn+1,Mn)=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···

tn→Mn}

(∏n
i=1PT (ti,Mi−1)

∑
{tn+1|Mn

tn+1→ Mn+1}
PT (tn+1,Mn)

)
=

∑
{t1,...,tn|MN=M0

t1→M1
t2→···

tn→Mn}

∏n
i=1 PT (ti,Mi−1)·1=1. �

A.2. Proof of Lemma 3. We have PT (M,σ, ς, ϱ)=
∑

ϑ∈TranSeq(N,M,σ,ς,ϱ)

PT (M,ϑ)=

∑
{t1,...,tn|M=M0

t1→M1
t2→···tn→Mn, LN (t1···tn)=σ, SJ(M0,t1···tn)=ς, RP (M0,t1···tn)=ϱ}

n∏
i=1

PT (ti,Mi−1)=

∑
{t1|M=M0

t1→M1, LN (t1)=a, SJ(M0)=s, RP (M0)=r}∑
{t2,...,tn|M1

t2→M2
t3→···tn→Mn, LN (t2···tn)=σ̂, SJ(M1,t2···tn)=ς̂, RP (M1,t2···tn)=ϱ̂}

PT (t1,M0)
n∏

i=2

PT (ti,Mi−1)=

∑
{t1|M=M0

t1→M1, LN (t1)=a, SJ(M0)=s, RP (M0)=r}

PT (t1,M0)

 ∑
{t2,...,tn|M1

t2→M2
t3→···tn→Mn, LN (t2···tn)=σ̂, SJ(M1,t2···tn)=ς̂, RP (M1,t2···tn)=ϱ̂}

n∏
i=2

PT (ti,Mi−1)

=
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∑
{t1|M=M0

t1→M1, LN (t1)=a, SJ(M0)=s, RP (M0)=r}

PT (t1,M0)PT (M1, σ̂, ς̂ , ϱ̂).

Let us now take t = t1 and M̃ = M1. Then we have proved the lemma. �

A.3. Proof of Proposition 2. We prove by induction on the length n of the
action sequence σ.

• n = 0
We have |σ| = 0, hence, σ = ε. In this case, we take Φσ = ⊤. Let

M ∈ DRS (N), ς ∈ R∗
>0, ϱ ∈ R∗.

If (ς ̸= SJ (M)) ∨ (ϱ ̸= RP (M)) then TranSeq(N,M, σ, ς, ϱ) = ∅ and

[[Φσ]]flt(M, ς, ϱ) = 0 = PT (M,σ, ς, ϱ).

Otherwise, if (ς = SJ (M))∧(ϱ = RP (M)) then TranSeq(N,M, σ, ς, ϱ) =
{ε} and

[[Φσ]]flt(M, ς, ϱ) = 1 = PT (M,σ, ς, ϱ).

• n → n+ 1
We have |σ| = n+1, hence, σ = a · σ̂, where a ∈ Act and |σ̂| = n. In this

case, we take Φσ = ⟨a⟩Φσ̂, where the induction hypothesis holds for σ̂ and
Φσ̂. Let M ∈ DRS (N), ς ∈ R∗

>0, ϱ ∈ R∗.
If no transition labeled with action a is enabled in M or (ς = ε) ∨ (ϱ =

ε) ∨ ((ς = s ◦ ς̂) ∧ (SJ (M) ̸= s)) ∨ ((ϱ = r ◦ ϱ̂) ∧ (RP (M) ̸= r)) then
TranSeq(N,M, σ, ς, ϱ) = ∅ and

[[Φσ]]flt(M, ς, ϱ) = 0 = PT (M,σ, ς, ϱ).

Otherwise, if transitions labeled with action a are enabled in M and
(ς = s ◦ ς̂) ∧ (SJ (M) = s) ∧ (ϱ = r ◦ ϱ̂) ∧ (RP (M) = r) then
TranSeq(N,M, σ, ς, ϱ) ̸= ∅ and

[[Φσ]]flt(M, ς, ϱ) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)[[Φσ̂]]flt(M̃, ς̂, ϱ̂),

as well as

PT (M,σ, ς, ϱ) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)PT (M̃, σ̂, ς̂ , ϱ̂).

By the induction hypothesis, for all discrete markings M̃ reachable from
M by firing transitions labeled with action a we have

[[Φσ̂]]flt(M̃, ς̂, ϱ̂) = PT (M̃, σ̂, ς̂ , ϱ̂),

thus, we have proved the proposition. �
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A.4. Proof of Proposition 3. We prove by induction on the syntactical structure
of the logical formula Φ.

• Φ = ⊤
In this case, we take σΦ = ε. Let M ∈ DRS (N), ς ∈ R∗

>0, ϱ ∈ R∗.
If (ς ̸= SJ (M)) ∨ (ϱ ̸= RP (M)) then TranSeq(N,M, σ, ς, ϱ) = ∅ and

PT (M,σ, ς, ϱ) = 0 = [[Φσ]]flt(M, ς, ϱ).

Otherwise, if (ς = SJ (M))∧(ϱ = RP (M)) then TranSeq(N,M, σ, ς, ϱ) =
{ε} and

PT (M,σ, ς, ϱ) = 1 = [[Φσ]]flt(M, ς, ϱ).

• Φ = ⟨a⟩Φ
In this case, we take σΦ = a · σΦ̂, where the induction hypothesis holds

for Φ̂ and σΦ̂. Let M ∈ DRS (N), ς ∈ R∗
>0, ϱ ∈ R∗.

If no transition labeled with action a is enabled in M or (ς = ε) ∨ (ϱ =
ε) ∨ ((ς = s ◦ ς̂) ∧ (SJ (M) ̸= s)) ∨ ((ϱ = r ◦ ϱ̂) ∧ (RP (M) ̸= r)) then
TranSeq(N,M, σ, ς, ϱ) = ∅ and

PT (M,σ, ς, ϱ) = 0 = [[Φσ]]flt(M, ς, ϱ).

Otherwise, if transitions labeled with action a are enabled in M and
(ς = s ◦ ς̂) ∧ (SJ (M) = s) ∧ (ϱ = r ◦ ϱ̂) ∧ (RP (M) = r) then
TranSeq(N,M, σ, ς, ϱ) ̸= ∅ and

PT (M,σΦ, ς, ϱ) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)PT (M̃, σΦ̂, ς̂ , ϱ̂),

as well as

[[Φ]]flt(M, ς, ϱ) =
∑

{t|M t→M̃, LN (t)=a}

PT (t,M)[[Φ̂]]flt(M̃, ς̂, ϱ̂).

By the induction hypothesis, for all discrete markings M̃ reachable from
M by firing transitions labeled with action a we have

PT (M̃, σΦ̂, ς̂ , ϱ̂) = [[Φ̂]]flt(M̃, ς̂, ϱ̂),

thus, we have proved the proposition. �

A.5. Proof of Theorem 3. Our reasoning is based on the proofs of Theorem
6.4 from [59] about characterization of probabilistic bisimulation equivalence for
probabilistic transition systems and Theorem 1 from [38] about characterization of
strong equivalence for PEPA. The differences are the LFSPNs context, and that we
also respect the fluid flow rates in the discrete markings with the satisfaction check
for the formulas ≀r, r ∈ R, as presented below.

(⇐) Let us define the equivalence relation R = {(M1,M2) ∈ (DRS (N) ∪
DRS (N ′))2 | ∀Φ ∈ HMLflb M1 |=flb Φ ⇔ M2 |=flb Φ}. We have (MN ,MN ′) ∈ R.
Let us prove that R is a fluid bisimulation.
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Assume that MN
a→λ H ∈ (DRS (N) ∪DRS (N ′))/R. Let MN ′

a→λ′
1
M ′

1, . . . ,

MN ′
a→λ′

i
M ′

i , MN ′
a→λ′

i+1
M ′

i+1, . . . ,MN ′
a→λ′

n
M ′

n be the changes of the discrete
marking MN ′ as a result of executing the action a. Since the LFSPN N ′ is image-
finite one by Lemma 2, the number of such changes is finite. The discrete marking
changes are ordered so that M ′

1, . . . ,M
′
i ∈ H and M ′

i+1, . . . ,M
′
n ̸∈ H.

Then ∃Φi+1, . . . ,Φn ∈ HMLflb such that ∀j (i+1 ≤ j ≤ n) ∀M ∈ HM |=flb Φj ,
but M ′

j ̸|=flb Φj . We have MN |=flb ⟨a⟩λ(∧n
j=i+1Φj) and MN ′ |=flb ⟨a⟩λ′(∧n

j=i+1Φj),
where λ′ =

∑i
j=1 λ

′
j .

Assume that λ > λ′. Then MN ′ ̸|=flb ⟨a⟩λ(∧n
j=i+1Φj), which contradicts to

(MN ,MN ′) ∈ R. Hence, λ ≤ λ′. Consequently, MN ′
a→λ′ H, where λ ≤ λ′. By

symmetry of R, we have λ ≥ λ′. Thus, λ = λ′, and R is a fluid bisimulation.
(⇒) Let for LFSPNs N and N ′ we have N↔flN

′. Then ∃R : N↔flN
′ and

(MN ,MN ′) ∈ R. It is sufficient to consider only the cases ∇a, ≀r and ⟨a⟩λΦ, since
the remaining cases are trivial.

The case ∇a.
Assume that MN |=flb ∇a. Then it does not hold that MN

a→ DRS (N). Hence,
there exist no t and M̃ such that MN

t→ M̃ and LN (t) = a. Since summing by the
empty index set produces zero, the transitions from each discrete marking always
lead to the discrete markings of the discrete reachability set to which that discrete
marking belongs and (MN ,MN ′) ∈ R, we get
0 =

∑
{t|∃M̃∈DRS(N) MN

t→M̃, LN (t)=a} ΩN (t,MN ) = RMa(MN ,DRS (N)) =

RMa(MN ,DRS (N) ∪DRS (N ′)) =
∑

H∈(DRS(N)∪DRS(N ′))/R
RMa(MN ,H) =∑

H∈(DRS(N)∪DRS(N ′))/R
RMa(MN ′ ,H) = RMa(MN ′ ,DRS (N) ∪DRS (N ′)) =

RMa(MN ′ ,DRS (N ′)) =
∑

{t′|∃M̃ ′∈DRS(N ′) MN′
t′→M̃ ′, LN′ (t′)=a}

ΩN ′(t′,MN ′).

Hence, there exist no t′ and M̃ ′ such that MN ′
t′→ M̃ ′ and LN ′(t′) = a. Thus, it

does not hold that MN ′
a→ DRS (N ′) and we have MN ′ |=flb ∇a.

The case ≀r.
Assume that MN |=flb ≀r. Then, respecting that (MN ,MN ′) ∈ R, we get

r = RP (MN ) = RP (MN ′), hence, MN ′ |=flb ≀r.
The case ⟨a⟩λΦ.
Assume that MN |=flb ⟨a⟩λΦ. Then ∃H ⊆ DRS (N) such that MN

a→µ H, µ ≥ λ

and ∀M ∈ H M |=flb Φ. Let us define H̃ =
∪
{H ∈ (DRS (N) ∪ DRS (N ′))/R |

H ∩ H ̸= ∅}. Then ∀M̃ ∈ H̃ ∃M ∈ H (M, M̃) ∈ R. Since ∀M ∈ H M |=flb Φ, we
have ∀M̃ ∈ H̃M̃ |=flb Φ by the induction hypothesis.

Since H ⊆ H̃, we get MN
a→µ̃ H̃, µ̃ ≥ µ. Since H̃ is the union of the equivalence

classes with respect to R, we have (MN ,MN ′) ∈ R implies MN ′
a→µ̃ H̃. Since

µ̃ ≥ µ ≥ λ, we get MN ′ |=flb ⟨a⟩λΦ. Therefore, N ′ satisfies all the formulas which
N does. By symmetry of R, N satisfies all the formulas which N ′ does. Thus, the
sets of satisfiable formulas for N and N ′ coincide. �
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