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The conference "Dynamics in Siberia” was dedicated to 70th birthday of Valery
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and in Sobolev Institute of Mathematics SB RAS (Novosibirsk) from February 24
to 29, 2020. Members of the program committee were as follows: A.V. Borisov,
ILLA. Dynnikov, A.A. Glutsyuk, A.E. Mironov, I.A. Taimanov and A.Yu. Vesnin.

More than 50 experts on dynamical systems, mathematical physics, geometry
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February 24

09:40 - 10:20
10:25 — 11:05
11:25 — 12:05
12:10 — 12:50

February 25

09:00 — 09:40
09:45 — 10:25
10:45 — 11:25
11:30 — 12:00

February 26

9:00 - 09:40

09:45 — 10:25
10:55 — 11:35
11:40 — 12:20
12:25 - 13:05

February 27

09:00 - 09:40
09:45 - 10:25
10:45 — 11:25
11:30 — 12:10

February 28

THE CONFERENCE "DYNAMICS IN SIBERIA”

PROGRAM (PLENARY TALKS)

V. Kozlov (Moscow). KBagpaTuunbie 3aKOHBI COXPAHEHUS
ypPaBHEHHUI MaTeMaTHIECKON (pu3uKm.

A. Sorrentino (Rome, Italy). Inverse problems and rigidity
questions in Billiard Dynamics.

V. Dragovic (Richardson, TX). Integrable Billiards in the
Minkowski plane and space.

A. Chupakhin (Novosibirsk). On the energy of a hydroelastic
system.

D. Treschev (Moscow). On inclusion of a diffeomorphism into
a flow.

S. Maksymenko (Kiev, Ukraine). Homotopy types of groups of
foliated diffeomorphisms for Morse—-Bott foliations.

A. Slizewska (Bialystok, Poland). A family of integrable
perturbed Kepler systems.

L. Shalom (el Aviv University, Israel). Non—-ordinary Gutkin
billiards.

S. Bolotin (Moscow). IunaMuka GbICTPO-ME/JIEHHBIX TaMUTIb-
TOHOBBIX CHCTEM OKOJIO FOMOKJIMHUYIECKOIO MHOXKECTBA.

M. Hounkonnou (Cotonou, Benin). Geometry and probability
on the noncommutative 2—torus in a magnetic field.

O. Pochinka (Nizhny Novgorod). On paths connecting polar
diffeomorphisms.

A. Borisov (Izhevsk). O6 oaHOil HEOJOHOMHOM CHCTEME,
O6m3KOM K 1mapy YarabIirmHa.

A. Tsiganov (St. Petersburg). On rigid body dynamics in a
magnetic field.

S. Kabanikhin (Nowvosibirsk). Inverse problems for mathematical
models in epidemiology.

N. Kuznetsov (St. Petersburg). Theory of hidden oscillations
and stability of control systems.

S. Dobrokhotov (Moscow). HoBble naTerpasbHble mpecTaBie-
HEUSI KaHOHWYEeCKoro oneparopa MacioBa u 3¢ dexkruBHbIe
ACHMIITOTUKHA B BUJIE CTIETATBHBIX (DYHKIHIA.

S. Tikhomirov (St. Petersburg). Various parabolic equations
with hysteresis.
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9:00 — 09:40
09:45 - 10:25
10:45 — 11:25
11:30 — 12:10
12:15 - 12:55

February 29

09:30 — 10:10
10:15 — 10:55
11:15 — 11:55
12:00 — 12:40

A.V. BORISOV ET AL

V. Nazaikinskii (Moscow). Uniformization and semiclassical
asymptotics for equations with Bessel-type degeneration on
the boundary.

Yu. Kordyukov (Ufa). Quasiclassical approximation for
magnetic monopoles.

V. Vedyushkina (Moscow). Liouville foliation of integrable
billiards on cell complexes.

V. Grines (Nizhny Novgorod). ['eonesudeckue taMuHanyuu u
Xa0TUIeCKas TMHAMUKA Ha MOBEPXHOCTSIX.

A. Plakhov (Portugal). New results in Newton’s aerodynamic
problem for convex bodies.

A. Shafarevich (Moscow). Lagrangian Tori and Quantization
Conditions Corresponding to Spectral Series of the Laplace
Operator on a Surface of Revolution with Conical Points.

A. Gaifullin (Moscow). Redistribution of the combinatorial
curvature and local combinatorial formula for the first
Pontryagin class.

V. Timorin (Moscow). Combinatorial models for spaces of
dendritic polynomials.

Yu. Trakhinin (Nowosibirsk). Structural stability of shock
waves and current—vortex sheets in the solar tachocline.
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PLENARY TALKS

On the energy of a hydroelastic system
M. Mamattukov, A. Khe, D. Parshin, A. Chupakhin (Novosibirsk)

The energy approach to the study of a hydroelastic system consisting of an elastic
blood vessel, viscous fluid flow and an aneurysm has been developed to evaluate the
various energy components of the system:viscous flow dissipation energy,stretching
and bending energies of the aneurysm wall.To calculate the total energy of the
system we developed a computing complex.The performance of the complex has
been tested on model geometric configurations and configurations corresponding
to blood vessels with cerebral aneurysms of real patients and reconstructed by
angiographic images.The calculated values of the Willmore functional caracterizing
the shell bending energy are consistent with analytical data.

Redistribution of the combinatorial curvature and
local combinatorial formula for the first Pontryagin class
A. Gaifullin (Moscow)

The definition of the Pontryagin classes of a manifold substantially uses the
smooth structure on it. However, by a classical result due to Rokhlin and Schwarz
(1957), and independently Thom (1958), rational Pontryagin classes are invariant
under PL homeomorphisms. This result raised a problem on explicit computation
of the rational Pontryagin classes of a manifold from a triangulation of it. In the
context of a smooth manifold with smooth triangulation this problem was solved for
the first Pontryagin class in a famous work of Gabrielov, Gelfand, and Losik (1975).
Nevertheless, their approach gave no answer in a purely combinatorial situation,
i.e., for a triangulated manifold without given smoothing.

In 2004, the author suggested another approach based on the usage of bistellar
moves, and constructed purely combinatorial local formulae for the first rational
Pontryagin class of a triangulated manifold. More precisely, this result gave explicit
description of all local combinatorial formulae for the first rational Pontryagin class,
but no choice of a particular local formula was made. Recently, Gorodkov and the
author have constructed effectively a particular local combinatorial formula for the
first rational Pontryagin class. The key ingredient is the study of the redistribution
of the combinatorial Gaussian curvature of a triangulated 2-sphere under bistellar
moves.

The talk is based on a joint work with Denis Gorodkov.

leonesnyeckyne JaMUHANUY M XaOTHYeCKas JUHAMMKA HA [IOBEPXHOCTIX
B. I'punec (Huotenuti Hoszopod)

JIoKJ1a 1 TTOCBSIIEH OMUCAHUIO B3ANMOCBs3€il MEXK /Iy CBONCTBAMHU T€0IE3UIECKIX
JAMWHANWA U THHAMUAKON MOTOKOB, caoeHni n auddeoMopdu3MOB HA OPHUEHTHPY-
€MbIX 3aMKHYTBIX [TOBEPXHOCTSAX PO/ OOJIBIIEro HyJIsl.

Byner nokazano, Kak HETPUBUAJIbHBIE I'€OJIE3UYECKIE JIAMUHAIIMU €CTECTBEHHbIM
00pa30M MOSBJSIOTCS TTPY OMUCAHWH TOTOKOB M CJIOEHWI, 00JIaIAI0NINX CBONCTBOM
TPAH3UTUBHOCTH, U MO3BOJIAIOT KJIACCUMUIUPOBATH Takue 00beKThl. COOTBETCTBY-
forye pesysabrarhl Obumn norydensl B cepun pabor C.X. Apancona, B.3. T'puneca
u E.B. ZKyxombl ¢ ucnonb3osanuem uzieit A. Beitnsa u /1.B. Anocosa, kacamomuxcst
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U3YYEHUST ACUMIITOTHIECKUX CBOWCTB HE3aMKHYTHIX KPUBbLIX 0€3 caMorepecedeHuit
MOCPECTBOM MCCIEIOBAHUS UX ACUMITOTHYECKOTO MOBEJICHUS HA yYHUBEPCATHHOMN
HAKPbIBAIOLIEH [MOBEPXHOCTH, ABJIAIOLIEICA €BKJIMIOBON IIJIOCKOCTBIO JJid TOpPa U
TJIOCKOCTBIO JI0OAUeBCKOTO /TSI MMOBEPXHOCTEH OTPHUIIATENIHHOM IHIepOoBOil XapaK-
repuctuku (cM. [1], [2], A1 3HAKOMCTBA € OCHOBHBIMH TMOHSATHSIMH TeOPEMaMU U
CCBIIIKAMM).

Kpowme Toro, Gyzer mokazaHo, 94TO HAJIWYUE XAOTUIECKON JIMHAMHUKUA y TOMEO-
Mopdu3Ma U3 33JAHHOIO FOMOTOMUYECKOrO KJIACCA CBA3AHO C CYIIECTBOBAHUEM HA,
[HOBEPXHOCTH MAPbl TPAHCEPCAIBHBIX EOJIE3UICCKUX JTAMUHAIMN, KaxK/as U3 KO-
TOPBIX COCTOUT M3 PEKYPPEHTHBIX HE3AMKHYTHIX reofe3ndeckux. Hajwmuwe Takoit
napbl TPAHCBEPCAIBHBIX JIAMUHAIH SBJISETCS KJIFOYOM K TOMOJIOIMYECKOM KJIacCu-
bUKAINN HETPUBUATBHBIX DA3UCHBIX MHOYKECTB, B YACTHOCTH, OJHOMEPHBIX ATTPAK-
TOPOB U peneiepos, moaydennoii B cepuu pabor P.B. Ilneikuna, B.3. I'puneca u
A. 1O. 2Kuposa (cm. [3], [4] Anist 3HAKOMCTBA € OCHOBHBIMY IIOHATUSME T€OPEMaMU
M CCBIJIKAMM).

Byner Takke mpejacraBiieH HeJaBHUI pe3yabTaT aBTopa nokmaana w E.JI. Ky-
penkoBa (K rirybOKOMY COXKaJIeHUI0, Tparudecku norubmemy 5 asrycra 2019 roza)
0 KJIACCUDUKAIMK COBEPIIIEHHBIX ATTPAKTOPOB HA MOBEPXHOCTAX OTPUIATETHHOMN
KPUBU3HbBI TIOCPEJICTBOM IICEBIO0AHOCOBCKUX MOMEOMOP(U3MOB € OTMEYEHHBIM MHO-
2KECTBOM C€/JIOBBIX IIEPUOJMYECKUX ToueK [5], [6].

Baazodaprocms. JIoKIaz TOATOTOBIEH TpW (DUHAHCOBOI TOMIEpKKE MeIyHa-
POIHOM jTabopaTopuu AUHAMUYIECKUX cucTeM u mpuiaoxkeruit HUY BIIIS u rpamra
Munucrepcrsa Hayku u Bbiciiero oopazosanus P® (cornamenue Ne 075-15-2019-
1931).
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Geometry and probability on the noncommutative
2—torus in a magnetic field
M. Hounkonnou (Cotonou, Benin)

This talk addresses the geometric and probabilistic properties of a noncomutative
2- torus in a magnetic field. We study the volume invariance, integrated scalar
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curvature and volume form by using the operator method of perturbation by inner
derivation of the magnetic Laplacian operator in the noncommutative 2—torus.

Then, we analyze the magnetic stochastic process describing the motion of a
particle subject to a uniform magnetic field on this manifold, and discuss the related
main properties.

Quasiclassical approximation for magnetic monopoles
Yu. Kordyukov (Ufa)

We construct a quasiclassical approximation to describe the eigenvalues of the
magnetic Laplacian on a compact Riemannian manifold in the case when the
magnetic field form is not exact. For this, we apply the multi-dimensional WKB
method in the form of Maslov canonical operator. In this case, the canonical
operator takes values in sections of a nontrivial line bundle. As an example, we
consider the Dirac magnetic monopole on the two—dimensional sphere.

This is joint work with Iskander A. Taimanov.

Theory of hidden oscillations and stability of control systems

N. Kuznetsov (Nizhny Novgorod)

The development of the theory of absolute stability, the theory of bifurcations,
the theory of chaos, and new computing technologies made it possible to take a fresh
look at a number of well-known theoretical and practical problems in the analysis
of multidimensional control systems, which led to the emergence of the theory of
hidden oscillations which represents the genesis of the modern era of Andronov’s
theory of oscillations. For the engineering dynamical models the importance of
identifying hidden oscillations is related with the classical problems of determining
the exact boundaries of global stability and identifying classes of models for which
the necessary and sufficient conditions for global stability coincide. This lecture
is devoted to well-known theoretical and engineering problems in which hidden
oscillations (their absence or presence and location) play an important role.

Homotopy Types of Groups of Foliated Diffeomorphisms
for Morse—Bott Foliations
S. Maksymenko, O. Khohliyk (Ukraine)

Let f: M — R be a Morse-Bott function on a smooth closed manifold M. Thus
the set C' of critical points of f is a disjoint union of finitely many submanifolds
C1,...,Ck such that f is “non—degenerate on C in transversal directions”. Denote by
F be a singular foliation on M consisting of C, ..., Cj and connected components
of the sets f~1(y) \ C.

Let also D(F) be the group of diffeomorphisms of M, leaving invariant each leaf
of F, D(F, C) be its subgroups consisting of diffeomorphisms fixed on C, and D(C)
be the group of diffeomorphisms of C. Notice that there is a natural restriction to
C homomorphism

r: D(F) — D(O), r(h) = hlc,

with kernel D(F, C).
Theorem 1. [3] The map r is a locally trivial fibration over its image r(D(F)).
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This statement is a foliated analogue of well-known results by J.Cerf [1],
R.Palais [5], and E. Lima [4].
In particular, we have exact sequence of homotopy groups of that fibration:

e — WkDid(.F, C) — 7Tk’Did(]:) — Wijd(C) — Tk—lpid(]:a C) —r e
e — Wlpid(C) — 7T()D(.F, C) — 7TOD(.7:) — WUD(C),

where subscript id means the corresponding identity path component.

Thus a knowledge about homotopy types of D(F,C) and D(C) would give some
information about the homotopy type of D(F).

In the present talk, we will show how to further simplify the group D(F,C).

Let N C M be a tubular neighborhood of C, p : N — C be a vector
bundle projection, and U be an open neighborhood of C' consisting of such that
C Cc U Cc U C N. Denote by D'"(F,C) the subgroup of D(F,C) consisting
of diffeomorphisms h such that h(p~'(x) N U) C p~'(z) and the restriction
h:p~Y(z)NU — p~!(z) is a linear map.

In other words, each h € D(F,C) is linear on fibres of p near C.

Theorem 2. The inclusion D" (F,C) C D(F,C) is a homotopy equivalence.

This theorem is a foliated and parametric variant of another well-known result
that each diffeomorphism of R™ fixing the origin it isotopic to its linear part, e.g.
(2], Chapter 4, Theorem 5.3)

We will discuss application of Theorem 2 to computation the homotopy type of
D(F).
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Uniformization and semiclassical asymptotics for equations
with Bessel-type degeneration on the boundary

V. Nazaikinskii (Moscow)

Let X be a compact C*° manifold with smooth boundary 0X, and let D(x)
be a smooth function on X such that D(z) > 0 in X° = X, 9X, D(z) = 0 on
0X, and VD(z) # 0 on 0X,. Consider an operator L on X of the form L =
—(V,D(x)A(x)V) in local coordinates, where the matrix A =7 A = (Aj)T e €
C(X) is real and positive definite up to the boundary. We consider the Cauchy
problem for the wave equation u;; + Lu = 0 degenerating on the boundary as
well as the eigenvalue problem Lu = w?u for the operator L. In applications (e.g.,
to tsunami waves generated by a localized source, waves trapped by the coast, or
seiches), these problems contain a small (or large) parameter, and so it is natural
to use the semiclassical approximation. However, the standard scheme of Maslov’s
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canonical operator does not apply here because of the degeneration, and therefore,
the author and his colleagues have earlier constructed asymptotic solutions of these
problems by introducing a nonstandard phase space ® and a modified canonical
operator.

Here we suggest a completely different approach to the construction of
semiclassical asymptotics in the above-mentioned problems based on an idea
resembling that of Leray’s uniformization for differential equations on complex—
analytic manifolds. Namely, we construct a closed manifold M with an action of
the group S' and a smooth projection 7 : M — X ~ M/S!. This projection
permits one to lift the problems in question to M, thus obtaining problems whose
asymptotic solutions can be written out by standard methods. The solutions of the
original problems are just the fiberwise constant solutions of these new problems.
The nonstandard phase space ® arises in this approach as the simplest version
of the Marsden—-Weinstein symplectic reduction of T*M by the action of S*. The
surprisingly simple implementation of this approach provides a complete analysis
of asymptotic solutions of the original problems and simple efficient formulas for
these solutions.

The talk is based on joint work with S.Yu. Dobrokhotov.

Thanks. The research was supported by the Russian Science Foundation under
grant no. 16-11-10282.

New results in Newton’s aerodynamic problem for convex bodies

A. Plakhov (Portugal)

We prove two conjectures in Newton’s aerodynamic problem stated in 1995 and
1993, respectively:
(a) the slope of the graph of an optimal function at its upper part equals 1;
(b) an optimal function equals zero at the boundary of its domain.
The proof of conjecture (a) utilizes the notion of surface area measure of a convex
body.

O nyTsax, coemuusgmX nojaspubie auddeomopdusmbl
O.B. Howunka (Huotcrnui Hoszopod)

Hoasprowm dugdeomopdpusmom Ha n—MHOrooOpa3uu HasbiBaeTcs auddeomop-
dm3m Mopca—Cwmeiia, UMerONuii B TOYHOCTH OIWH CTOK W OJWH MCTOYHHK. U3
Teopun Mopca u3BeCTHO, 4TO Takue AuddeoMopdU3MbI CYIMIECTBYIOT Ha JIOOBIX
MHOroobpasusax. B Hacrosimem qok/ae OyayT H310KEHbI Pe3yIbTaThl, KACAIOIITHECS
MTOCTPOEHUST YCTOWUMBBIX YT, COEIUHSIIONINX TOIApHBIE TuddeomMopdU3MbI HA JAH-
HOM MHOroobpasuu. IIpocreiitum mossipabiv guddeomopdu3mMom sBjsgercsa aud-
deomopdusm ncTOUHUK—CTOK HA n—cdepe. Bymer mokazamo, 4To miist cdepsr, pas3-
MEpPHOCTH MeHbIIei 4, TAKyI0 AyTy MOXKHO IMOCTPOUTDH 6€3 On@ypPKAIMOHHBIX TOYEK
[1], [2]- Toraa, kak HauuHAsE C PA3MEPHOCTH 7, CYLIECTBYIOT HOJspHbIE Judbdeomop-
Gu3MbI HE COEIMHSIONIMEC HUKAKON J1yroil, n3—3a HAJIUYUS PA3ITUIHbIX TJIAJIKUX
CTPYKTYD Ha MHOTOMepHOI cdepe [2]. Takzke Gyaer MOKa3aHO, YTO HA TIOBEPXHOCTH
C HETPUBHUAJIBHON (DYHIAMEHTAIBHOM I'PYIIO, JII00bIe W30TOMHBIE TOJIsIPHbIE Aud-
deoMopdPu3MbI COETUHAIOTCS YCTOWINBOI AyToif, OMHAKO 3T AyTa B OOIIEM CIydae
conepkuT 6npPypKATTMOHHBIE TOUKH.
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Baageodaprocms. ABrop wacTuaHO moaepkan Jlaboparopueil TMHAMAYIECKUX CH-
crem u npuioxkenunit HUY BIITD, MunucrepcTBa HAYKH U BBICIIETO 0OPA3OBAHUS
P®, norosop Ne 075-15-2019-1931.
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Lagrangian Tori and Quantization Conditions Corresponding
to Spectral Series of the Laplace Operator on a Surface
of Revolution with Conical Points
A. Shafarevich (Moscow)

Semiclassical spectral series of the Laplace operator on a two—dimensional surface
of revolution with a conical point are described. It is shown that in many cases
asymptotic eigenvalues can be calculated from the quantization conditions on
special Lagrangian tori, with the Maslov index of such tori being replaced by a
real invariant expressed in terms of the cone apex angle.

A family of integrable perturbed Kepler systems
A. Slizewska (Bialystok, Poland)

We consider a family of perturbed 3—dimensional Kepler systems. We show that
Hamilton equations of this systems are integrated by quadratures. Their solutions
for some subcases are given explicitly in terms of Jacobi elliptic functions.

Based on the paper A. Odzijewicz, A. Slizewska, E. Wawreniuk, A family of
integrable perturbed Kepler systems, RUSS J MATH PHYS 26 (2019), no. 3, 368
383.

Inverse problems and rigidity questions in Billiard Dynamics
A.Sorrentino (Rome, Italy)

A mathematical billiard is a system describing the inertial motion of a point
mass inside a domain, with elastic reflections at the boundary. The study of the
associated dynamics is profoundly intertwined with the geometric properties of the
domain (e.g. the shape of the billiard table): while it is evident how the shape
determines the dynamics, a more subtle and difficult question is to which extent
the knowledge of the dynamics allows one to reconstruct the shape of the domain.
This translates into many intriguing unanswered questions and difficult conjectures
that have been the focus of very active research over the last decades. In this talk I
shall describe several of these questions, with particular emphasis on recent results
obtained in collaborations with Guan Huang and Vadim Kaloshin, related to the
classification of integrable billiards (also known as Birkhoff conjecture), and to the
possibility of inferring dynamical information on the billiard map from its Length
Spectrum (i.e., the lengths of its periodic orbits). This talk is based on joint works
with Guan Huang and Vadim Kaloshin.
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Structural stability of shock waves and
current—vortex sheets in the solar tachocline
Yu. Trakhinin (Novosibirsk)

The equations of shallow water magnetohydrodynamics (SMHD) were proposed
by Gilman [1] for studying the global dynamics of the solar tachocline which is
a thing transition layer between the Sun’s radiative interior and the dikerentially
rotating outer convective zone. The tachocline is believed to play a crucial role in
the dynamo that maintains magnetic activity in the Sun. We study the structural
stability of shock waves and current-vortex sheets in SMHD in the sense of
the local-in—time existence and uniqueness of discontinuous solutions satisfying
corresponding jump conditions. The equations of SMHD form a symmetric
hyperbolic system which is formally analogous to the system of 2D compressible
elastodynamics for particular nonphysical deformations. Using this analogy and
the recent results in [2] for shock waves in 2D compressible elastodynamics, we
prove that shock waves in SMHD are structurally stable if and only if the fluid
height increases across the shock front. For current—vortex sheets the fluid height is
continuous whereas the tangential components of the velocity and the magnetic field
may have a jump. Applying a so—called secondary symmetrization of the symmetric
system of SMHD equations, we find a condition sufficient for the structural stability
of current—vortex sheets.
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[1] P.A. Gilman, Magnetohydrodynamic "shallow water"equations for the solar
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On rigid body dynamics in a magnetic field
A. Tsiganov (St. Petersburg)

When a magnetic field is applied to a charged dielectric rigid body, it starts
to spin and uniform precession frequency of the magnetic top is not the Larmor
frequency but involves in addition terms depending on higher powers of the
magnetic field (quadratic Zeeman effect). When a magnetic field is applied to
a ferromagnetic rigid body, it starts to spin (Einstein-de Haas effect). When a
magnetic field is applied to a superconducting rigid body, it also starts to spin
(gyromagnetic effect), and when a normal metal in a magnetic field becomes
superconducting and expels the magnetic field (Meissner effect) the body also starts
to spin. All these effects play a key role in modern astrophysics, in the physics
of molecular and atomic magnets, macro, micro and nano magneto—mechanical
systems, spintronics, ultrafast magnetism and so on.

We plan to discuss integrable Hamiltonian and non—Hamiltonian systems of
classical mechanics appearing in a few existing phenomenological theories of rigid
body dynamics in a magnetic field starting with the work of V.V. Kozlov (1985).
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Liouville foliation of integrable billiards on cell complexes

V. Vediuskina (Moscow)

Integrable systems with two degrees of freedom on isoenergy three—dimensional
surfaces are classified by invariants, the so—called "marked molecules". Recently, an
important class of billiard books has been discovered — billiards on cell complexes
glued from planar billiard sheets. In the particular case, when the complex is an
orientable manifold, such a billiard is the so—called topological billiard. It turned
out that such billiards (topological and books) are Liouville equivalent to many
interesting integrable systems in mechanics and symplectic geometry (that is, such
equivalent systems have the same closures of almost all integral trajectories).
Relying on the results already obtained, A.T. Fomenko formulated a conjecture
of 6 points, the first of which has already been proved, and in the rest interesting
progress has been obtained. We give the first 3 points.

Conjecture A (atoms). Any bifurcations of two—dimensional Liouville tori in
an isoenergy 3—manifold of any integrable non—degenerate system with two degrees
of freedom are modeled using integrable billiards.

Conjecture B (coarse molecules). Any coarse molecules defining the set of
all integrable systems up to coarse Liouville equivalence are modeled by integrable
billiards.

Conjecture C (marked molecules). Many Liouville foliations of non—
degenerate integrable systems on isoenergy 3—surfaces are fiberwise homeomorphic
(i.e., Liouville equivalent) to the corresponding foliations of some topological
billiard.

Any answer to these conjecture is interesting. For example, if it turns out
that not all “marked molecules” are realized by billiards, then it is useful to
describe the class of realized systems. This will reveal topological obstacles that
distinguish between realizable and unrealizable Liouville foliations. It will become
clear which non—-degenerate integrable systems are Liouville equivalent to integrable
billiards, and which are not. The talk will present current results on the proof (or
refutation) of these conjectures. So, in particular, conjecture B is proved "almost
completely namely, a proof is obtained for molecules consisting of the so—called
atoms without asterisks describing bifurcations with orientable separatrix diagrams.
It will also be said that integrable geodesic flows on orientable two—dimensional
Liouville surfaces are equivalent to suitable topological billiards.
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SHORT TALKS

Invariants of winding—numbers
in dynamics of flux lines and its visualization
P. Akhmet’ev (Troitsk), O. Cépas (France)

Winding loops in models with local constraints have a natural integer dynamics
consisting in the evolution of their integer winding numbers. The dynamics in this
case, known as Kempe moves, results in disconnected stable and unstable sectors
[1]. Using Pontryagin-Thom construction, we show that the stable invariant Io, is
charged by the stable homotopy group of spheres Il; and is visualized as right—left
configurations of winding loops on the immersed Konstantinov torus [2]. The stable
invariant I3, which is defined for each chiral sector of I by a polynomial of the
degree 6, see [1], is also visualized as (higher) right—left configurations for dynamics
on characteristic surfaces in the 3D homogeneous space S®/Q, Q = +1, +i, +j, +k.
We will show that examples with I3 are charged by the elements +4 (mod 16) in
2—component of the stable homotopy group of spheres oII; = Z/16.
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Forecasting Limiting Dynamics in the Shapovalov Model
of a Mid-Size Firm
T. A. Alezeeva (Novosibirsk), N. V. Kuznetsov, Iu. A. Polshchikova

Understanding and predicting of the behavior of complex systems is one of the
important tasks of current research in various fields [1]. The events of the last
decade have demonstrated the danger of unpredictable development of economic
and financial systems, which can lead to systemic failures or the collapse of the
global financial-economic system. One of the main tasks in the study of financial and
economic processes is forecasting and analysis of their dynamics. Within this task
one could pose such important research questions as determining the qualitative
properties of the dynamics (stable, unstable, deterministic chaotic, or stochastic
process) as well as estimating its quantitative indicators: dimension, entropy, and
correlation characteristics [2, 3, 4].

In this paper, we develop analytical methods [5, 6, 7, 8] for the study of
deterministic dynamical systems based on Lyapunov stability theory and chaos
theory. These methods make it possible not only to obtain analytical stability
criteria and estimate limiting behavior (localization of self-excited and hidden
attractors, study of multistability), but also to overcome the difficulties related
to implementing reliable numerical analysis of quantitative indicators (such as
Lyapunov exponents and Lyapunov dimension). We demonstrate the effectiveness
of the proposed methods using as example the "mid-size firm"model suggested
recently by V.I. Shapovalov [9].
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On the Connected Components of Fractal Cubes
D. Drozdov (Gorno—Altaisk)

Take a set D C {0,1,...,n — 1}*, 2 < #D < n* and call it a digit set. For any
digit set there is unique non-empty compact set F' C R* such that F = £2. The
set F'is called a fractal k-cube.

Along each fractal cube we consider its Z*- periodic extension H = F + Z* and its
complement H¢ =R*\ H.

If k =2 then F is a fractal square. It was proved in [2] for fractal squares, that
either
(A) H€ has a bounded component, which is equivalent to: F' contains a non-trivial
component that is not a line segment; or
(B) H€ has an unbounded component, and F' is either totally disconnected or all
its non-trivial components are parallel line segments.

We consider fractal cubes in R?, and prove the following
Theorem 1. There is a fractal cube F' C R? such that H® is connected and
H is an uncountable union of unbounded components, each being invariant with

respect to Z3-translations.

Since all components K, of F' are not line segments, the equivalence (A) of [2]
does not hold. From the other side, the set H€ is connected and unbounded, but
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all components of F are not line segments, so (B) does not work too.

Theorem 2. The set Q@ C C(R?) of connected components K, of F is a
self-similar set generated by two contractions Ty and Ty of the hyperspace C(R?).
There is a Holder homeomorphism ¢ : Q) — C/3 of the set Q to the middle-third
Cantor set C'y;3 which induces the isomorphism of self-similar structures on these
sets.

We prove the following estimates for the dimension of the components K :

Theorem 3. For any a € {0,1}>
@B(KQ) = j‘oz IOgS 13+ (1 - ;\a) 10g5 447
dimp(Ka) = A, logs 13 + (1 — A,
If « is preperiodic, then

dimg (Ky) = dimp (o) = Ao logs 13 + (1 — Ay) logs 44.

) logy 44.
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On analytic projective billiards with open sets of triangular orbits

C. Fierobe (Lyon, France)

This talk will present a generalization of billards called projective billards. In such
billards, the law of reflexion is not defined by the usual orthogonal symetries with
respect to the tangent lines of the billard tables. Instead, the curves defining the
billard tables are endowed with a field of lines, giving place to another reflexion law
at each point of the borders. Playing on these tables, we can therefore investigate
the same questions as for the usual billards, and for example try to answer Ivrii’s
conjecture: are there billard tables on which one can find a two—dimensionnal set
of periodic orbits? Even more, is it possible to classify such tables? I will present a
result for triangular periodic orbits, and try to show how analytic geometry can be
useful in such theory.

Conformal Invariance of the Zero—Vorticity
Lagrangian Path in 2D Turbulence
V. N. Grebenev (Novosibirsk), M. Wac Lawczyk, M. Oberlack

It was clearly validated experimentally in [1] that the zero—vorticity isolines in
2D turbulence belongs to the class of conformal invariant SLEj (Schram-Lowner
evolution) curves with & = 6. The diffusion coefficient k classifies the conformally
invariant random curves. With this motivation, we performed a Lie group analysis
in [2] of the first equation (i.e. for the evolution of the 1-point probability density
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function (PDF) fi(2(1),w(),t)) of the inviscid Lundgren-Monin-Novikov (LMN)
equations for 2D vorticity fields. We proved that the conformal group (CG) is
broken for the 1-point PDF but the CG is recovered for the equation restricted on
the characteristics with zero—vorticity. As for the zero—vorticity isolines, it implicitly
leads to their CG invariance. The main focus of the present work is directed to a
Lie group analysis of the characteristic equations of the inviscid LMN hierarchy
truncated to the first equation. With this, the CG invariance of the characteristics
with zero—vorticity is explicitly derived. Actually, this chain describes the motion
of Lagrangian fluid particles that are moving within the conditionally averaged
velocity fields.We also show the CG invariance of the separation and coincidence
properties of the PDFs. Besides the derivation of the CG invariance of the zero—
vorticity isolines, we demonstrate that the infinitesimal operator admitted by the
characteristic equations forms a Lie algebra which is the Witt algebra, whose central
extension represents exactly the Virasoro algebra. The numerical value of the central
charge ¢ occurring here could not be calculated exactly without additional impact
into the mathematical tools. But from the previous DNS results performed by
Bernard et al the value ¢ = 0 is given and corresponds to k = 6 for the SLE}.
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Inhomogeneous distribution of characteristics in ideal crystal
M. A. Guzev (Viadivostok)

We consider an ideal crystal system as a uniform harmonic chain of particles.
The exact solution for the particle system is presented. To analyze non-stationary
thermal effects in an ideal crystal the temperature is calculated as a measure of
the averaged kinetic energy of the particles. The corresponding energy averaging
is performed over the initial velocities of the particles, provided that they obey
the Boltzmann principle. Over a small time interval, the temperature was shown
to depend monotonically on the number of particles. This means that the non-
uniformity of thermal characteristics distribution, i.e. dependence on the number
of particles, occurs in the system without additional assumptions about the
structure of the initial conditions on a macroscopic scale. The obtained formula
for the distribution of kinetic energy is presented through Bessel functions. The
functional dependence on the number of particles was shown to appear in the
index of Bessel functions, and the parity of the number of particles affects the
temperature distribution. The distribution of the kinetic energy for a large time
was asymptotically analyzed as well.

Thanks. The investigation on the basis2 was carried out at the expense of
the grant Agreement No.19-19-00408 of the Russian Science Foundation (project
No0.19-19-00408).
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OO6rekanue npensTcrBUii IMOTOKOM
TAXKEJON HeCXKMMAaeMOi >KUJKOCTHU
C. Kambaa (Yaan-Bamop, Monzoausa)

Yucnennoe kondopmHoe oTobparkenue, ¢ npumenennem merona Kydapesa, mos-
BOJISIET TIOJTyYUTh JIMHAU TOKA IIPU OOTEKAHWH PA3JIMYHOrO POJA HpensTcTBHil [3].
DTOT Ke Crnocod MOXKHO MPUMEHHUTH U K HE MEHee HHTEPECHOMY CJIydaro, KOTIa 10~
TOK BOJIbI TJIyOMHBI h JIBUZKETCsl M0 HepoBHOMY JHY co ckopoctbio C. CBobosHas
MOBEPXHOCTH YKUIKOCTH B CJIydYae TAKOTO MOTOKA, MPEICTABIseT cOOON Hem3BeCT-
HYI0O KPUBYIO JIMHUIO, BUJ KOTOPON HYYKHO HAWTH MPHU YCJIOBUHU, YTO JTABJICHUE HA,
Hell moCTOSTHHO. B KavecTBe MPaKTHYECKOTO MPUJIOKEHHS MOYKHO PacCMaTpPUBATH
TEeYEHUS BOJIBI, HAIPUMED, B PEKe TeKyIeil 10 KaMHsM ¥ epekaTam. Mbl, KOHEUHO,
HE UMeeM BO3MOXKHOCTH PEIIATh TAKyIo 33Jady TOYHO, TAK KAK 3TO TPYIHAS Ma-
TeMaTuYecKas 1pobiieMa 0 CTPYHHOM TEeYeHUH [0/ BJusHUEeM CUibl Tskectu. Ona
JI0 CHX TIOD €Ille HEe PEeIeHa, XOTs ObLIO MHOTO TMOMBITOK €€ PEIUTh, B TOM YHUCJIE
U BEJINKUMU MaTeMaTWKaMu, TakuMmu Hampumep kak Crokc, Peseit, Jlesu—YuBura,
Crpyuk, Hekpacos, ZKykosckuii [2], u ap. VI310KeHue MHOIMMX MHTEPECHBIX CIIOCO-
6oB perennst MoxkHO Haiitu B kuure JI.H. Cperenckoro [2].

Maremarndeckas MOCTAHOBKA, 33/Ia9U COCTOUT B OLPEIEICHUN TOTEHIIUAIA CKO-
pocti (x,y), KOTOpHIil yIOBIeTBOpsieT ypapHenmio Jlammaca ;o + 4y = 0 B ropn-
30HTAIBLHON MOJIOCE, OTPAHMYEHHON HUKHUM W BepXHUM Kpagmu. Hukuamit kpait
COOTBETCTBYET HEPOBHOMY JIHY MOTOKA, W HA, HEM [OJIXKHO BBITOJIHATHCS YCIOBUE
He mporekanus: , = 0. Ha BepxHeM Kpae MoJIOCHI T€YEHUsl TOJPKHO BBIIOTHATE-
Cs yCJIOBHE ITOCTOSHCTBA JTABJIEHHS, KOTOPOE mMeeT OoJiee CIOXKHBIN Bua. IToObI
HAWTH MPUOINIKEHHOE PEITIEHNE MBI, KK OOBITHO TPUMEHSIEM TIOCTYJIATHI JIMHEHHON
TEOpUM BOJH [1], COrJIACHO KOTOPHIM TPAHWYHOE yCJIOBHe Ha BepxHeil (CBOGOIHOIN)
PPAHUIIE TIOJIOCHI UMEET BHI:

0? g 0 -
@ + ﬁﬁiyb:h =0.
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On the 3D consistency of Grassmann extended lattice systems
S. Konstantinou—Rizos (Yaroslavl)

In this talk, we formulate a “Grassmann extension” scheme for constructing
noncommutative (Grassmann) extensions of systems of PDEs together with their
associated Yang-Baxter maps. As illustrative examples, we use the discrete
potential KdV equation and a discrete Boussinesq system. We present some novel,
noncommutative systems of difference equations of KdV and Boussinesq type.



A.86 A.V. BORISOV ET AL

Action-Angle Duality for a Poisson—Lie Deformation
of the Trigonometric BCn Sutherland System
I Marshall (Moscow)

The property of action—angle duality was first brought to light in a systematic
way by Ruijsenaars. The method of Hamiltonian reduction reveals a natural
mechanism for how such a phenomenon can arise. I will give a general overview
of this and present as a special case the new result, obtained together with Laszlo
Feher, referred to in the title of my talk.

Characteristic Lie algebras of hyperbolic systems
D. Millionshchikov (Moscow)

The concept of characteristic Lie algebra x(f) of a hyperbolic system of PDE
(1) u;y:fi(ul,...,u”),i:1,...,n,

was introduced by Leznov, Smirnov, Shabat and Yamilov [5, 3]. Consider a vector
field

0 0 0 0 0
X(f)==—=f"— +D(f*)=—— + D*(f*)=— + - + D" (f*)=— + ...
() =gy =1 g + DU g + D2 g o+ D) e +
A Lie algebra x(f) generated by n + 1 vector fields X(f),%,...,a%,is called

characteristic Lie algebra of the hyperbolic system (1) [3, 5]. An important step in
the study of hyperbolic nonlinear Liouville-type systems was made in [2, 3] where
exponential hyperbolic systems were considered

(2) uiy:e”j,pj:aj1u1+-~~+ajnu”,jzl,...,n.

It pas proved in [2] that if A = (a;;) is a non—degenerate Cartan matrix then
the corresponding exponential hyperbolic system (2) is Darboux—integrable and the
corresponding characteristic Lie algebra x(f) is solvable and finite-dimensional. A
Degenerate (generalized) Cartan matrix A leads to a different kind of integrability,
integrability in the sense of the inverse scattering problem, and the corresponding
characteristic Lie algebra is infinite—dimensional of slow—growth.

In [4] it was shown that for n = 1 the natural growth functions of the
characteristic Lie algebras x(sinhu) and x(e* + e~2%) grow with average speeds
% and % respectively.

Recently Fedor Pokrovsky proved that in the case of i—? in general position and
Co, C1 # 0 the characteristic Lie algebra X(C’oeAO“ + Cle>‘1“) will be isomorphic to
the free Lie algebra £(2) of two generators. The last statement is not trivial if we
take into account the result by Kirillov and Kontsevich [1]. They proved that the
Lie algebra generated by two smooth vector fields f (u)% and g(u)a% on the real
line R is always not free.
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Conjugacy of orientation preserving Morse—Smale diffeomorphisms graphs
A. Morozov (Nizhny Novgorod)

In the present paper we consider preserving orientation Morse-Smale
diffeomorphisms on surfaces. We will consider class M S(M?) o.p. Morse-Smale
diffeomorfisms on M? - smooth closed connected orientamle 2-dimensional
manifold. Using the combinatorics theory and theory of knots and links we will
show, that conjugacy of two graphs G, G’ built on the two mapping f, f’ is enough
to say, that f, f’ are conjugated.

Definition 1 (Orientable heteroclinic intersections). Let f € MS(M?), o;,0; —
saddle points of diffeomorphism f, such that W3 N w3 # (). For any heteroclinic
point x € W5 N W;‘] define an ordered pair of vectors (GY,U3), where:

o Uy — the tangent vector to the unstable manifold of the point o; at the point

x;
e S — the tangent vector to the stable manifold of the point o; at the point

T.
Heteroclinics intersections of diffeomorphism f called orientable, if an ordered
pairs of vectors (UY,T3) set the same orientation of the bearing surface M?2.

Otherwise heteroclinic intersection is called non-orientable.

Using , introduced by S. Smale [3], partial orderliness relation < we shatter ¥
(the set of periodic mapping orbits of f) on a subset X; as follows:

e Yy — the set of all stable orbits w;

e 3; — the set of all saddle orbits o;, such W does not contain heteroclinic
points.

e Y5 — the set of remaining saddle orbits of the system.

e Y5 — the set of all unstable orbits «

Sets ¥; is ordered in the following way:

Yo <Y1 <Yo<X3

Let G is class of maps f, such f : M? — M? - orientation preserving
Morse—Smale diffeomorphism on smooth closed connected orientable 2—dimensional
manifold.

In papers [1] and [2] shown, that beh(f) = 1 (have finite number of heteroclinic
orbits). In present paper we will show that the classification is reduced to the
combinatorial problem of distinguishing graphs.

Set that Ay = %o U Wy — is the attractor of the system, then Ry = X3 U W3,
— repeller of the system. In paper [4] shown, that the chosen sets are the attractor
and repeller of the system respectively.
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Set that Vy = M2\ (A URy), then make factorization we get the quotient spase
Vi = V¢/f. Let n — the number of tori of which is consist the quotient space V; [,
i. e. Vf = zgllf/;

Let is introduce the canonical projection py : Vy — Vf, such ps(L") = L,
pf(L®) = ﬁs, where L%, L® — families of unstable and stable separatrices.

Also for any f € G exist scheme Sy = (Vf,ﬁ“, ﬁs) From paper |[] follows, that
[, f' € G are topologically conjugatd < Sy is equivalent to S/

Now we can put each scheme in accordance with the graph. We define the graph
P as folloyvsz o

ilgllBi(Vfl’ L, LY) — the set of vertices of a graph to which we add one vertex for

each separatrix of ﬁs, L* and one vertex 0i, that denoting belonging to the torus.
E(Vf, f/f, f/z“) — the set containing edges of several types:

e Edges corresponding to connectivity components of V; \ W, that connect
vertices corresponding to separatrices ﬁf

e Edges corresponding to connectivity components of V; \ W}, that connect
vertices corresponding to separatrices I:;‘

e Edges corresponding to connectivity components of W2 \ o(o € ¥;), that
connect vertices corresponding to separatrices f/s, which can also belong to
different tori.

e Edges corresponding to connectivity components of W¥\ o(where o € ¥s),
that connect vertices corresponding to separatrices ﬁs, which can also
belong to different tori.

e Edges that connect all vertices of the set Bi(f/;, ﬁf, IAJ?) and vertex g;.

Theorem 1. If f topologically conjugated to f', then graphs P and P’ are
isomorphic
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Pemrenue 33—eit nmpobiaemsbl Ilanunca—IIsro
JJIs TpaaueHTHO—TIon00HbIX nuddeomopdusmMoB aByMepHOi cdepbl
E. B. Hosdpunosa (Huoicnuii Hoszopod)

[Tpobaema cyuiecrBoBanus Jyru ¢ He 6osiee, 4eM CUETHbIM (KOHEUYHbIM) 4UCJIOM
OudypKaImii, COeIUHAIONIEH CTPYKTYPHO yCTORUMBbIe cucreMbl (cucrembr Mopca—
Cwmeiinia) Ha MHOroOOpa3WgAX BOLLIA B CHMCOK msaTuiaecatu mpobseM Iamuca—IIbio
[6] mon HoMepom 33. Hacrosituuii JOK/Ia1 TIOCBSIIEH PEIEHUO STON POOIeMbI it
rpaneHTHO—TIONO0HBIX auddeoMopdu3MoB AByMEPHOT chephl.
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B 1976 roxy III. Heioxaycom, k. ITamncom, @. Takencom [3] 6b170 BBEIEHO
MOHATHE YCTONYUBOU IOYyI'U, COCJIUHAIONIEH ABE CTPYKTYPHO YCTOWYHUBBIE CUCTEMBI
Ha MHOrOOGpa3uu. Takas Jiyra He MEHSI€T CBOMX KAYE€CTBEHHBIX CBOWCTB IIPU MAJIOM
mesestennn. B tom xe roxy II1. Heioxayc n M. Ileitimoro [4] moka3amu cymmecTBo-
BaHUe NpOCTOi Ayru (comeprKalieii JIuib s1eMeHTapHble OudypKaIun) MEXKILY JII0-
6eivu 1ByMst otokamu Mopca—Cweiina. U3 pesynbrara paborst 2K. @umeiitac [1]
BBITEKAET, YTO MPOCTYIO JyTy, mocTpoernyo Hrioxaycom u [leitmoro Beerma MOXHO
3aMeHuThb Ha ycroituusyio. s nuddeomopduzmor Mopca—Cwmeitna, 3a1aHHbIX Ha
MHOr000pa3usx J000H PazsMEepPHOCTH U3BECTHBI IPUMEPBL CHCTEM, KOTOPbIE HE MO-
I'yT OBITH COETMHEHBI YCTONUMBON Ayroii. B cBs3M ¢ 5THM eCTeCTBEHHO BO3HUKAET
BOIIPOC O HAXOXKJEHWM MHBAPUAHTA, OJHO3HAYHO OINPEIENISAIONIero KJacC dKBUBA-
sneataocT nuddeomopduama Mopca—Cmeiina OTHOCUTETFHO OTHOINEHUS CBS3aH-
HOCTH yCTONYMBOH 1yroil (Komnonenmy ycmotiuueots c6A3aHHOCTIL).

Coruacuo [2], ps quddeomopdusmos 3amrHyToro Muoroodbpasus M"™ ¢ koneu-
HBIM TTPEJIETIBHBIM MHOXKECTBOM, ycroiunsocth ayru {f; € Dif f(M™), t € [0,1]}
XapaKTEPU3YeTCsd KOHEYHBIM YUCIOM OndypKAIMOHHBIX 3HadeHnit 0 < by < -+ <
b, < 1, mpu sToM Gudypkarmonuslii guddeomopbusm ¢y, i € {1,...,m} obaamaer
CTEeYIOMUMU CBORCTBAMU:

1) Bce unBapuanTHble MHOIOOOpa3us nNepuoaudeckux Touek juddeomopbuzma
Vp; IMEPECEKAIOTCA TPAHCBEPCAIBHO;

2) nuddbeomopdusM pp, He MMeeT IUKIOB U MMEET POBHO OJIHY HErnIepoosInye-
CKYIO TIEPUOIUIECKYIO OpOUTY, & UMEHHO (DJIATIT Wi HEKPUTUIECKUN CEeII0—y3€e,
[IPU ITOM JIyTa MPOXOIUT depe3 OudypKAIMOHHOE 3HAYEHWE TUITHIHO.

Byaem rosoputb, uro auddeomopdusmsol fo, f1 : M™ — M™ npuHaaiexar oj-
HOMY U TOMY K€ KJIACCY Ycmotiuueot u30monuveckoli c6A3aHHOCMU, €CIU B PO~
crpancTBe auddeoMopdu3MOB OHE MOTYT OBITH COEIUHEHBI AYTOi C OMUCAHHBIMU
BBIIIIE CBOMCTBAMU.

Knaccudukanusi ¢ TOYKH 3peHWs BBEJIEHHOI'O OTHOIIEHWS SKBUBAJEHTHOCTU
HETPUBHUAIBHA YK€ JIsT COXPAHSIIONNX OpUEeHTANNIO udHeoMopdu3MoB OKPYKHO-
cru S', rie nosBiIgeTCH CYETHOE MHOMKECTBO TAKMX KJIACCOB, KAXK/IbIA U3 KOTOPBIX
OJTHO3HAYHO OTPE/IETISIETCST TUCIOM BpPAIEHUsT IPydoro Mpeobpa3oBaHmsT OKPYKHO-
cru [5], KoTopoe paBHO %, rne k € (NUO),m € Nk <m, (k,m)=1.

Paccmorpum S' xax sxsarop cdepsr S2. Torna crpyKTyPHO yCTOHYUBLIH Hud-
dbeomopdu3M OKPYKHOCTH B TOYHOCTHU C JABYMSI MTEPUOINICCKUMU OPOUTAMU TIEPU-
oma m € N u dncjoMm BpareHust %, k < m/2 moxer ObITh NPOAOJZKeH 10 auddeo-
MOpbHU3MA G 1 ¢ S? — SZ, MMEIONIEro IBa HETOBHKHBIX NCTOTHUKA B CEBEPHOM H
102kHOM nommiocax. O6o3naunym depes3 C, ,, KOMIIOHEHTY yCTONINBON W30TOMMIECKOM
ceasanHOCTH Auddeomopdusma P p, .

OCHOBHBIM DPE3YILTATOM SIBJISIIOTCS CJIEIYIONIHE TEOPEMBI.

Theorem 2. Komnonewmo, Ci ., k € (NUO),m € N,k < m/2, (k,m) =1
NONAPHO HE NEPECERKAMCA.

Theorem 3. /10601 coxrpanaouwutl opuenmayuto 2paduenmuo—nodobnuti duggeo-
mopdusm 2—-cepu, npunadaestcum 0dnoti us xomnorwewm Ci o, k € (NUO), m €
N, k <m/2, (k,m)=1.

Baazodaprocme. Pesymbprar mogyden npu noaaepxkke Jlaboparopuu guHaMude-
ckux cucreMm u npuiaoxkenuit HUY BIIID, rpanr MunucrepcTBa HAyKH U BBICIIETO
obpazoBanusi P® cormamenne Ne 075-15-2019-1931
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Kak uHTerpajbl I0 MATPULIAM MEePeYUcIsIOT HAKPBITUS
PUMAHOBBLIX U KJEWHOBBIX OBepXHOcCTelt
A. Opaos (Mocksa)

¢l pacckaxky mpo CBsi3b MHTETPAJIOB 10 MATPHUIAM C YuCaaMu ['ypBuia u mo-
KaXKy, KaK (PeifHMAHOBCKHE IUArPAMMBI TEPEYUC/ISAIOT PA3BETBJIEHHBIE HAKPBITHS
PUMAHOBBIX U KJIEHOBBIX HOBEPXHOCTEll 106010 posa (¢ MPOU3BOIBHBIM YUCJIOM
kpuruieckux rouek). ITo coBmecrunomy o630py ¢ C.M. Haranzonom.

Discrete Heisenberg groups, algebraic surfaces and theta functions

D. Osipov (Moscow)
The discrete Heisenberg group Heis(3,Z) is the group of matrices

1
0
0

S =
_ o0

where a, b, c are integers.
The extended discrete Heisenberg group G is the group of matrices

1 m a c
0 1 b %b(b -1
0 0 1 b
0 0 O 1

where a,b,c,m are integers. The group Heis(3,7Z) is a subgroup of the group G,
and moreover G = Heis(3,Z) x Z.

I will speak how the groups Heis(3,Z) and G naturally appear from a data: an
algebraic surface X, a point z € X, and the stalk C C X of an irreducible curve
such that z € C.

In case, X is a surface over a finite field F,, I will describe the family of
infinite-dimensional irreducible complex representations of the group Heis(3,7Z)
which are parameterized by the elliptic curve C*/¢%. The group G also acts on
each representation from this family, and there are traces of some elements of G in
this representation which are classical theta functions.

The talk is based on joint papers with A. N. Parshin.
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3epKaJibHasi CHMMETDPHs U CTPYKTYPbl X0/Ka
B.B. Hpocusrxoscruti (Mocxkea)

B mokmame s pacckaXKy O THMIOTE3aX 3€PKAJBHON CHUMMETPHHU, CBSI3aHHBIX CO
crpykrypamu Xomxka. Mbr obcynum rumore3nl Kamapkosa—Konmnesnua—Ilanresa u
P=W, ux cBa3pb u noka3aresnbcTBa B Pa3MEPHOCTH 2 U 3.

Rank 3 Killing tensor fields on a Riemannian 2—torus

V. Sharafutdinov (Novosibirsk)

For a Riemannian manifold (M,g), let C°°(S™7},) be the space of smooth
covariant symmetric tensor fields of rank m on M. The differential operator
d =0V :C®(S™r),) = C>(S™T17],), where V is the covariant derivative with
respect to the Levi-Civita connection and o is the symmetrization, is called the
inner derivative. We say f € C°°(S8™7},) is a Killing tensor field if df = 0. Being
written in coordinates, the latter equation represents a system of (Z:_"f) linear first
order differential equations in (7‘+;2_1) coordinates of f, where n = dimM. Since the
system is overdetermined, not every Riemannian manifold admits nonzero Killing
tensor fields. The two—dimensional case is of the most interest since the degree of
the overdetermination is equal to 1 in this case. In the 2D—case, we obtain one
equation on the metric g after eliminating all coordinates of f from the system,
although the possibility of such elimination is problematic. Points of the tangent
bundle T M are denoted by pairs (x, &), where x € M and £ € T,,M. Given a tensor
field f € C*®°(S™71},), let F € C°(TM) be defined in coordinates by F(z,§) =
firin () &1 .. & The correspondence f +— F identifies C°°(S™7},) with the
subspace of C°°(T'M) consisting of functions that are homogeneous polynomials of
degree m in €. Let H be the vector field on T'M generating the geodesic flow. The
operators d and H are related as follows: if f € C*°(S™7},) and F € C°(TM) is
the corresponding polynomial, then HF = (df);, . i,,., g g1 In particular,
f is a Killing tensor field if and only if HF = 0, i.e., if I’ is a first integral for the
geodesic flow. Thus, the problem of finding Killing tensor fields is equivalent to the
problem of finding first integrals of the geodesic flow which polynomially depend on
&. Because of the relation to integrable dynamical systems, the problem has been
considered by many mathematicians, starting with classical works of G. Darboux
and J. Birkhoff. There exist global isothermal coordinates on a two-dimensional
torus T? endowed with a Riemannian metric g. More precisely, there exists a lattice
I' € R? = C such that T? = C/T and g = \|dz|?, where \(z) is a I'-periodic smooth
positive function on the plane. An easy analysis of equation (4.7) of [1] results the
following
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Theorem 4. Assume a Riemannian 2-torus (T2, g) do not admit a nonzero Killing
vector field. The torus admits a nonzero rank 8 tensor field if and only if there exists
a lattice T' C C such that (T?, g) = (C/T, \|dz|?), where A\ € C>°(C) is a T'—periodic
positive function satisfying the equation

% ()\(A_l)\zz + a)) + % <A(A‘1)\zz + a)) —0

with a complex constant a.

Reference
[1] V.A. Sharafutdinov, Killing tensor fields on the 2—torus, Siberian Math. J.,
2016, Vol. 57, No 1, pp. 155-173.

Automorphisms of elliptic surfaces
C. Shramov (Moscow)

I will discuss automorphism groups acting on compact complex surfaces that have
a structure of an elliptic fibration, and stabilizers of points therein. In particular, we
will see that the image of an automorphism group of a surface of Kodaira dimension
1 in the automorphism group of the base of its pluricanonical fibration is finite. I
will also speculate on possible higher dimensional generalizations.

O TpexmepnbIix auddpeomopdpuszmax Mopca—Cwmeiiia
C €eAMHCTBEHHO HEKOMMNAaKTHOU reTepoKJINHUYIECKON KPUBOii
B.U. IImyxaep (Huocrnut Hoszopod)

Paccvorpum kimace G coxpausiiommx opuenTtarmio auddeomopdnsmon Mopca—
Cymefina f, 33JaHHBIX Ha 3aMKHYTOM MHOrooOpazmm M?>, HebGmysKIarommee MHOMKe-
CTBO KOTOPBIX COCTOUT B TOYHOCTH U3 YEThIPEX TOYEK W,01,02, C HHICKCaMH
Mopca 0,1, 2, 3, coorsercrsento. B pabore [1] mokazano, uro mis aoboro auddeo-
mopdusma f € G muoxkecrso Hy = W3 NWJ He mycTo 1 CONEPKUT KaK MUHEMYM
OZIHY HEKOMTIAKTHYIO T€TEPOKJINHUIECKYIO KpUBYIO v (cM. pucyHok 1). Kpome Toro,
g deoMopdI3MBI PACCMATPEBAEMOTO KJIacca, JomycKaeT cdepa S° 1 Bce IUH30-
BbIe mpocTpancTBa. OIHAKO BOIIPOC O TOJHOM CITHCKE O0BEMJIIOIINX MHOr00Opa3uit
quist iudbdeomopduszmos f € G aBisieTcsi OTKPBITHIM.

Puc. 1. HekomMnakTHas TeTepOKINHUYECKAS KPUBas

B macrosimeit pabore 6ymeT yCTaHOBIEH CAEAYIONAA (PAKT.
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Teopema 1. [Tycmy f € G u mnoscecmeo Hy ceasno. Tozda M3 duddeomopgino
3—cepe.

JlokazarenbCTBO TEOpEeMbI 1 OCHOBAHO HA MOCTPOEHHMH CJeAykomeil myru gud-
deomopdu3MOB.

Teopema 2. ITycmov f € G u mruoocecmeo Hy ceasno. Tozda f coedunsemca
yemotinueoti dyzoti o, + M3 — M3t € [0,1] ¢ duddeomopdusmom “ucmounur—
CcMOK”, npuvem ©; umeem eOUHCMEEHHYI0 OUGYPKAUUOHHYIO MOUKY MUNG CEN0—
y3ea.
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On 4-dimensional flows with wildly embedded
invariant manifolds of a periodic orbit
O. Pochinka, D. Shubun (Nizhny Novgorod)

Qualitative study of dynamical systems reveals various topological constructions
naturally emerged in the modern theory. For example, Cantor set with cardinality
of continuum and Lebesgue measure zero as expanding attractor or contracting
repeller. Also, a curve in 2-torus with irrational winding number, which is not
a topological submanifold but is injectively immersed subset, can be found being
invariant manifold of Anosov toral diffeomorphism’s fixed point.

Another example of intersection of topology and dynamics is the Artin—Fox arc
[1] appeared in work by D. Pixton [2] as the closure of a saddle separatrix of a
Morse—Smale diffeomorphism on the 3—sphere. A wild behaviour of the Artin—Fox
arc complicates the classification of dynamical systems, it does not admit already a
combinatorial description like to Peixoto’s graph [3] for 2-dimensional Morse-Smale
flows. It is well known that there are no wild arcs in dimension 2. In dimension 3 they
exist and can be realize as invariant set for a discrete dynamics, in different from
regular 3—dimensional flows, which do not possess wild invariant sets. The dimension
4 is very rich. Here wild objects appear both for discrete and continuous dynamics.
Despite the fact that there are no wild arcs in this dimension, there are wild objects
of co-dimension 2. So the closure of 2—dimensional saddle separatrix can be wild
for 4-dimensional Morse-Smale system (diffeomorphism or flow). Such examples
recently were constructed by V. Medvedev and E. Zhuzoma [4]. T. Medvedev and
O. Pochinka [5] shown as wild Artin—Fox 2-dimension sphere appears as closure of
heteroclinic intersection of Morse-Smale 4—diffeomorphism.

In the present paper we prove that the suspension under a non—trivial Pixton’s
diffeomorphism provides a 4—flow with wildly embedded 2-dimensional invariant
manifold of a periodic orbit. Moreover, we show that there are countable many
different wild suspensions.

Thanks. The author is partially supported by Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the
RF grant ag. Ne 075-15-2019-1931.
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Self-Similar Sets with Finite Intersection Property
A. Tetenov (Gorno-Altaisk)

Let S = {51,52,...,5n,} be a system of injective contraction maps on R™.
A nonempty compact set K C R™ is called the attractor of the system S, if
m

K = | Si(K). We call the sets K; = S;(K) the pieces of K and denote by

i=1
A={Ky,..., K} and by G(S) the semigroup generated by S1,S2,...,Sn-
We say that the system S has finite intersection property (FIP) if the set
P = |J(K; N K;) is finite. The intersection graph of the system S is a bipartite
2
graph I'(S) = (A, P; E) in which {K;,p} € Fiff p € K.

The simplest examples of FIP systems are polygaskets studied by R.Strichartz
[2] and polygonal systems studied in [3].

We prove a general condition under which the attractor K of a FIP system S is
a dendrite.

Theorem 1. Let S = {51,...,5m} be a FIP system of injective contraction
maps in R
The intersection graph IT'(S) is a tree iff the attractor K of the system S is a dendrite.

We say that a system S of similarities in R™ has a Weak Separation Property
(WSP) [1, 4] if Id is an isolated point in the set G(S)~! o G(S).
In the case when the system S has WSP, we prove the finiteness of the order of
the ramification points of its attractor K.

Theorem 2. Let S = {51, ..., Sin} be a system of contraction similarities in R™
which has finite intersection and weak separation properties.
Then for any point x € K there is a neighbourhood base W(z) = {Wy, k € N} such
that the number ny, of the components of Wy, \ {z} is bounded by some M > 0
independent of x € K.
Particularly, if K is a dendrite, then Ord(z, K) < M

Thanks. The author is supported by RFBR project 18-01-00420.
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O 3agave gupuxijie NJisl SJIUMNTUIECKOTO
dbyakMoHaIbHO—AN( (pepeHImaIbHOTO ypaBHEHUS
¢ acbpuHHBIM nMpeobpa3zoBaHMeM apryMeHTa
JI. E. Poccoscrut, A. A. Toscyamanos (I'posoii)

B pabore paccmarpuBaerca 3amada Aupuxie i JUIHITHIECKOTO
byHRIMOHATBHO— UM MEPEHITHATBPHOTO  YPABHEHUsI,  COIEPXKAIEro  KOMOWHA-
U0 CABUTOB W CXKATHS aPTYMEHTa, HEM3BECTHON (DYHKIIUU IO 3HAKOM OIEpaTopa
Jlammaca. YCTaHOBJIEHBI [IOCTATOYHBIE YCJIOBHS OJHO3HAYHONW pA3PENTUMOCTH.
Tlokazano Tak:ke, 9TO 3a7a49a MOXKET HMETh OECKOHEYHOMEPHOE MHOTrooOpasme
peLeHuii.

IIpuMepsl JarpaHkKeBbIX TOPOB B rpaccmanmanax Gr(1,n)
A.H. Twpun, (Mockea)

O600m1ast TEXHUKY IIOCTPOEHHSA JIATPAHIKEBBIX TOPOB C IIOMOIIBIO IICEBIOTOPH-
YECKOIl TEOMETPWH, MPEIIaraeTcss KOHCTPYKINS CEeMEHCTBA JTATPAHKEBBIX TOPOB
B MHOrooGpasmusix I'paccmana Gr(1l,n). Tak Kak reoMETpHYECKH 3TO MHOTOOOpa-
3ue npaMmbix B CP”, Ha KOTOPOM MMEeTCs CTaHIapTHOe Topudueckoe meiicrsue 1",
MBI UCIIOIb3yEM WHIYIIUPOBAHHOE TOPUIECKOE JAeHCTBUE, TIPEIBAPUTENTHHO PACCIIaA-
usas Gr(1,n)\Gr(l,n — 1) nag CP"~! tak uro unmynuposanuoe jeficrsue ecre-
cTBeHHOE JeficTByer Ha cyiogx. Ha KaxkKgoM ciioe Bble/sdeTcs AuBu30p, Beltncreii-
HOB CKeJIeT JOTMOJIHEHWSI K KOTOPOMY €CTh TVIAJKWii JIarpaHzkeB TOP B CJIO€; COOM-
past BMeCTe 3TH CKeJIeThl HaJ, TOYKaM| CTaHzapTHOro Topa 6asbi CP"~ ! momyua-
eMm Jiarpanzxkes Top Bo BceM Gr(1,n). Bo3aMokHO, TaKuM IyTeM MOXKHO IMOJY4aTh
muHuMasibibie 1 H — munumasbubie Toper B Gr(l,n). "Examples of lagrangian
tori in Grassmanians Gr(1,n)"A generalization of the psedutoric technique for
constructions of lagrangian tori presents a way how one can construct a family
of lagrangian tori in the Grassmann varieties Gr(1,n). Since geometrically it is the
variety of lines in CP™, where one has a standard toric action of 7", we exploit the
induced toric action for the fibration of Gr(1,n)\Gr(1,n—1) over CP"~! such that
the induced toric action interchanges the fibers. On each fiber one cuts a divisor,
and the Weinstein skeleton of the complement contains a smooth lagrangian torus in
the fiber; combinig together these skeletons over the points of a standard lagrangian
torus in the base CP"~!, one gets a lagrangian torus in the ambient Gr(1,n). It
seems that this way leads to the construction of minimal of H — minimal lagrangian
tori in Gr(1,n).
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Hapr JIaKCa JOJid JINHEMHbBIX raMUJIBTOHOBBIX CHCTEM

A.B. XKeanos (Mockea)

B mokname peunb moiimer o crocobe mocTpoeHus map Jlakca st TUHEHHBIX Ta-
MWJIBTOHOBBIX cucTeM auddepeHnuaababx ypasuenuii. [lomygarommecs u3 3tux
map MePBbIE WHTETPAJIbI UMEIOT SIBHYIO CBsI3b C YK€ M3BECTHBIMHU MEDPBBIMU HHTE-
rpajaMu, 9TO JIAeT, B YACTHOCTH, HOBOE MPOCTOE JI0KA3aTeIhCTBO Teopembl Bu-
JgbsiMcona. Jlokuas ocHoBan Ha HelaBHeil coBmecrnoit pabore ¢ [I.B. Ocumosbim,
OTTIPABHON TOYKOM IJIsT TIOSBIIEHWS KOTOpoit ObL1 mokiaan B.B. Kosmosa wa cemu-
Hape oTiesia aarebpnl u ajredbpandeckoii reomerpun B MITAHe.
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