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A NOTE ON DECIDABLE CATEGORICITY AND INDEX SETS

N. BAZHENOV, M. MARCHUK

Abstract. A structure S is decidably categorical if S has a decidable
copy, and for any decidable copies A and B of S, there is a computable
isomorphism from A onto B. Goncharov and Marchuk proved that the
index set of decidably categorical graphs is Σ0

ω+2 complete. In this paper,
we isolate two familiar classes of structures K such that the index set
for decidably categorical members of K has a relatively low complexity
in the arithmetical hierarchy. We prove that the index set of decidably
categorical real closed fields is Σ0

3 complete. We obtain a complete char-
acterization of decidably categorical equivalence structures. We prove
that decidably presentable equivalence structures have a Σ0

4 complete in-
dex set. A similar result is obtained for decidably categorical equivalence
structures.

Keywords: decidable categoricity, autostability relative to strong con-
structivizations, index set, real closed field, equivalence structure, strong
constructivization, decidable structure.

1. Introduction

The paper studies algorithmic complexity for classes of computable algebraic
structures. A computable structure S is decidable if its complete diagram Dc(S)
is computable — in other words, there is an algorithm which given a first-order
formula ψ(x̄) and a tuple ā from S, decides whether the formula ψ(ā) is satisfied
in S. A structure S is decidably presentable (or strongly constructivizable) if it has
a decidable copy.
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Ershov [1] and Morley [2] initiated the systematic studies of decidably presentable
structures. In the 1970s and 1980s, computable structure theory was mainly fo-
cused on the study of structures with natural model-theoretic properties. Ershov [1]
proved that every decidable theory T has a decidable model M |= T . Goncharov
and Nurtazin [3], and independently, Harrington [4] proved that a complete decid-
able theory T has a decidable prime model if and only if T has a prime model and
the set of all principal types of T is computable. Goncharov [5] and Peretyat’kin [6]
obtained a characterization of decidably presentable homogeneous models. The
reader is referred to, e.g., the survey [7] and the recent papers [8, 9, 10] for further
results on decidable models of decidable theories.

One of the important results in this area was obtained by Nurtazin [11]. The
result connects the complexity of isomorphisms with model-theoretic properties.
A decidably presentable structure S is decidably categorical (or autostable relative
to strong constructivizations) if for any decidable copies A and B of S, there is a
computable isomorphism f : A ∼= B. The paper [11] provides a characterization
of decidably categorical structures. In particular, this result shows that for any
decidably categorical structure M, there is a tuple c̄ ∈ M such that (M, c̄) is a
prime model of the theory Th(M, c̄) (see Section 2.1 for a detailed discussion).

Goncharov and Marchuk [12] proved that the characterization of [11] is optimal:
Nurtazin’s criterion implies that the index set of decidably categorical structures
belongs to the class Σ0

ω+2 of the hyperarithmetical hierarchy. The article [12] estab-
lishes that this set is Σ0

ω+2 complete, hence, there is no simpler syntactic description
of decidable categoricity than the one provided by [11].

Recall that a computable structure S is computably categorical if for any com-
putable copy A of S, there is a computable isomorphism from A onto S. In general,
it turns out that the behavior of decidable categoricity differs significantly from that
of computable categoricity. This phenomenon can be witnessed even for familiar
classes of structures:

• The article [13] proves that the index set of computably categorical struc-
tures is Π1

1 complete. Note that by employing the results of [14], it is not
hard to show that the index set of computably categorical linear orders is
Σ0

3 complete — informally speaking, computable categoricity among linear
orders admits a pretty simple description.

• On the other hand, the index set of decidably categorical linear orders is
Σ0
ω+2 complete [15]. In other words, the property “being decidably cate-

gorical among linear orders” has the same complexity as “being decidably
categorical among arbitrary structures”.

These kinds of phenomena lead to the following natural problem:

Problem. Find familiar classes of structures K such that the index set of decidably
categorical members of K is not Σ0

ω+2 complete.

In this paper, we isolate two such classes K: real closed fields and equivalence
structures. The article is arranged as follows. Section 2 gives necessary prelim-
inaries. Section 3 proves that the index set of decidably categorical real closed
fields is Σ0

3 complete (Theorem 3). Section 4 provides a complete characterization
of decidably categorical equivalence structures (Theorem 6). This characterization
and results of [16] allow to obtain the following result: decidably categorical equiv-
alence structures and decidably presentable equivalence structures both have a Σ0

4
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complete index set (Theorem 7 and Corollary 2). Section 5 discusses further results
on index sets among decidable structures.

2. Preliminaries

We consider only computable languages, and structures with domain contained
in the set of natural numbers ω. We identify first-order formulas with their Gödel
numbers. If not specified otherwise, a formula is always a first-order formula. As
usual, {ϕe}e∈ω is the standard enumeration of all partial computable functions.

For a set X ⊆ ω, X is the complement of X, and card(X) denotes the cardinality
of X. Let α be a non-zero computable ordinal. Recall that a set X is Σ0

α complete
if X ∈ Σ0

α and every Σ0
α set A is m-reducible to X.

For a structure S, Th(S) is the first-order theory of S, and D(S) is the atomic
diagram of S. For a natural number n, Σcn formulas are computable infinitary Σn
formulas.

Let L be a language. For a computable L-structure S, its computable index is a
number e such that the characteristic function χD(S) of the atomic diagram D(S)
is equal to ϕe.

For e ∈ ω, by Me we denote the structure with computable index e. Suppose
that K is a class of L-structures. The index set of the class K is the set

I(K) = {e : Me ∈ K}.
The reader is referred to the monographs [17, 18] for further background on

computable structure theory.

2.1. Decidable categoricity. A structure M is a prime model (of the theory
Th(M)) if M is elementarily embeddable into any model of Th(M). A structure
M is an almost prime model if there is a finite tuple c̄ fromM such that (M, c̄) is
a prime model.

An L-structure M is an atomic model if for any tuple ā = a0, . . . , an from M,
there exists an L-formula ψ(x0, . . . , xn) such that M |= ψ(ā) and any L-formula
ξ(x0, . . . , xn) satisfies the following: if M |= ξ(ā), then M |= ∀x̄(ψ(x̄) → ξ(x̄)).
Such a formula ψ is called a complete formula of the theory Th(M).

Proposition 1 (Vaught, see [19]). An L-structure M is a prime model if and only
if M is a countable atomic model.

Nurtazin [11] obtained the following characterization of decidably categorical
structures:

Theorem 1 (Theorem 1 of [11]). Let L be a computable language. A decidable
L-structure M is decidably categorical if and only if there is a finite tuple c̄ from
M with the following properties:

(1) (M, c̄) is a prime model, and
(2) given an (L ∪ {c̄})-formula ψ(x̄), one can effectively check whether ψ is a

complete formula of the theory Th(M, c̄).

Theorem 1 implies that the index set of decidably categorical L-structures is
Σ0
ω+2. It is known that for any of the classes K given below, the index set of

decidably categorical members of K is Σ0
ω+2 complete:

• graphs [12, 20],
• linear orders [15],
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• Boolean algebras [21],
• 2-step nilpotent groups [22],
• structures with two equivalence relations [23].

3. Real closed fields

3.1. Background on real closed fields. A field F is real closed if F (
√
−1) is

algebraically closed and F 6= F (
√
−1). Note that every real closed field has a

unique ordering: a < b if and only if (a− b) has a nonzero square root in the field.
We will consider real closed fields in the language LRC = 〈0, 1,+, ·, <〉.

Let F be a field of characteristic 0. A subset S of a field F is algebraically depen-
dent if for some n ∈ ω there exist distinct s1, . . . , sn ∈ S and a nonzero polynomial
p ∈ Q[x1, . . . , xn] such that p(s1, . . . , sn) = 0. A set S is algebraically independent
if it is not algebraically dependent. A maximal algebraically independent set in F
is called transcendence basis of F over Q. The transcendence degree of a field F is
the cardinality of some transcendence basis. For more background on real closed
fields, the reader is referred to [24, 25]

Note that as the theory of real closed fields has effective quantifier elimination,
every computable real closed field is decidable. Nurtazin [11] obtained the following
characterization of decidably categorical real closed fields.

Theorem 2 (Nurtazin, see [11]). Let R be a computable real closed field. Then R
is decidably categorical if and only if R has finite transcendence degree.

In computable structure theory there are various results connected with real
closed fields. R. Miller and Ocasio [26] investigated the degree spectra of real closed
fields. The estimates for the complexity of index sets of Archimedean real closed
fields with different transcendence degrees were obtained by Calvert, Harizanov,
Knight, and S. Miller [27]. Ocasio investigated computability properties of real
closed fields in his dissertation [28] .

3.2. Index set of decidably categorical real closed fields. Marker in unpub-
lished work introduced a uniform way of computing, from the atomic diagram of
a linear order L, the atomic diagram of a real closed field RL such that L ∼= L′ if
and only if RL ∼= R′L. Recall the construction of Marker’s embedding, described
by Ocasio in [28].

Let L be a linear order. Then there exists a Turing operator taking L to an
embedding of L into (Q, <). Let RQ be a computable real closed field, such that
dom(RQ) ⊇ {aq : q ∈ Q}, RQ |= n < aq for all n ∈ ω, and if q < q′, then
RQ |= anq < a′q for all n ∈ ω. There is a Turing operator taking the subset of S of
Q to a copy of the real closure of {aq : q ∈ S} in RQ. Thus RL denotes the real
closure of {al : l ∈ L} in RQ.

Lemma 1 (Ocasio [28]). Let L be a ∆0
2 linear order. Then there is a computable

copy R of RL and a ∆0
2 L-embedding i : L → R such that i extends to an isomor-

phism from RL onto R.

Proposition 2 (Ocasio [28]). Let L be a computable linear order. If L is not
computably categorical, then RL is not ∆0

2-categorical.
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Lemma 2. For any Σ0
3 set S, there exists a sequence of 0′-computable linear orders

{An}n∈ω such that:

An ∼=

{
γn, such that γn < ω, if n ∈ S,
ω, if n 6∈ S.

Furthermore, given a number n, we can uniformly compute a ∆0
2-computable index

for An

Proof. Let A be a Σ0
2 set. Using the presentation of Π0

2 set with (∃∞) quantifier,
i.e.

n 6∈ A ⇔ ∃∞xP (n, x), for a computable predicate P,

we can build a computable sequence of computable linear orders {Bn}n∈ω such
that:

Bn ∼=

{
γn, such that γn < ω, if n ∈ A,
ω, if n 6∈ A.

Then we can relativize this construction to the 0′ to get the result from the state-
ment of the lemma. �

Theorem 3. The index set of decidably categorical real closed fields is Σ0
3 complete.

Proof. Let IRC be the index set of real closed fields, and let IDC(RC) be the index
set of decidably categorical real closed fields.

First, we establish that IDC(RC) is a Σ0
3 set. It is not hard to see that IRC is a Π0

2

set (see, e.g., Theorem 5 of [29]). By Theorem 2, a real closed field R is decidably
categorical if and only if it has finite transcendence degree. This condition can be
presented as

∃x1, . . . , xk ∈ R
[
∀y ∈ R

(
k

&
i=1

[y 6= xi]→ ∃p(u1, . . . , uk, v)[p(x1, . . . , xk, y) = 0]

)]
,

where p(u1, . . . , uk, v) is a nonzero polynomial with coefficients from Z. This is a
Σ0

3 condition, therefore IDC(RC) is a Σ0
3 set.

Let S be a Σ0
3 set, and let {An}n∈ω be the sequence of 0′-computable linear

orders, constructed for S, from Lemma 2. By Lemma 1, there exists a computable
sequence of real closed fields {Rn}n∈ω such that Rn is a computable copy of RAn .
If n ∈ S, then An is finite, therefore Rn has finite transcendence degree, so Rn is
decidably categorical. If n 6∈ S, then An ∼= ω and Rn is not decidably categorical
by Proposition 2. Then {Rn}n∈ω is a computable sequence of computable real
closed field such that:
n ∈ S ⇔ Rn is decidably categorical;
n 6∈ S ⇔ Rn is not decidably categorical. �

4. Equivalence structures

The section is arranged as follows. Subsection 4.1 gives a brief overview of the
necessary preliminary results. Subsection 4.2 provides a complete characterization
of decidably categorical equivalence structures (Theorem 6). In Subsection 4.3,
we prove that the index set of decidably categorical equivalence structures is Σ0

4

complete (Theorem 7). A similar result is obtained for decidably presentable equiv-
alence structures (Corollary 2).
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4.1. Background on equivalence structures. An equivalence structure A =
(A,EA) consists of a set with an equivalence relation on this set. If A is countably
infinite, then without loss of generality, we may assume that A = ω. For a ∈ A,
[a]A denotes the EA-equivalence class of a. Recall that

InfA = {a : [a]A is infinite},
F inA = {a : [a]A is finite}.

We say that a sequence {an}n∈ω is a transversal of A if all an are pairwise not
EA-equivalent, and for any b ∈ A, there is n such that an and b are EA-equivalent.

The character of an equivalence structure A is the set

χ(A) = {(n, k) : n, k > 0, and A has at least k equivalence classes of size n}.
The character of A is bounded if there is a number n0 ∈ ω such that all finite
equivalence classes of A have size at most n0.

Theorem 4 (follows from § 5 of [16]). A computable equivalence structure A is
decidable if and only if the character χ(A) is computable and the set

K(A) := {(a, k) ∈ ω2 : card([a]A) ≥ k}
is computable.

Theorem 5 (Theorem 5.6 of [16]). If A is a countable equivalence structure with
computable character χ(A), then A has a decidable copy.

It is not difficult to establish the following fact.

Lemma 3. Suppose that A is a decidable equivalence structure. Then the set FinA

is c.e., and InfA is co-c.e. Furthermore, the function

sizeA(x) :=

{
card([x]A), if x ∈ FinA,
undefined, if x ∈ InfA,

is partial computable.

For more background on computable equivalence structures, the reader is referred
to [16, 30].

4.2. Decidable categoricity. Let d be a Turing degree. A decidably presentable
structure S is decidably d-categorical if for any decidable copies A and B of S, there
is a d-computable isomorphism from A onto B. A Turing degree c is the degree
of decidable categoricity (or degree of autostability relative to strong constructiviza-
tions) for S if c is the least degree such that S is decidably c-categorical.

The studies of degrees of decidable categoricity were initiated by Goncharov [31]:
he proved that any c.e. degree d is a degree of decidable categoricity for some prime
model. The article [32] shows that for any computable successor ordinal α, every
degree d, which is c.e. in 0(α) and above 0(α), is a degree of decidable categoricity
for some structure. The paper [33] establishes that the index set of decidably
0′-categorical structures is Π1

1 complete. We refer the reader to, e.g., the papers
[34, 35, 36] for further results on decidable d-categoricity.

Theorem 6. A computable equivalence structure A is decidably categorical if and
only if its character χ(A) is computable, and A satisfies one of the following con-
dions:
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(A) the character χ(A) is bounded, or
(B) the character χ(A) is unbounded and A contains only finitely many infinite

equivalence classes.

Proof. (⇐). Since the character χ(A) is computable, by Theorem 5, our structure A
has a decidable copy. Without loss of generality, we may assume that the structure
A is infinite. Let B and C be two decidable copies of A. We build a computable
isomorphism f from B onto C.

Case (A). Fix a non-zero number n0 such that all finite equivalence classes of
A have size at most (n0 − 1). Notice that for any b ∈ B, we have b ∈ InfB if and
only if card([b]B) ≥ n0. Hence, the set InfB is computable. Using this fact and
decidability of B, one can build a computable transversal {bn}n∈ω in B with the
following property: There is a computable function θB : ω → ω ∪ {ω} such that for
any n, θB(n) = card([bn]B).

We also build a computable transversal {cn}n∈ω in C and a computable function
θC(n) = card([cn]C). Using the obtained transversals {bn}n∈ω and {cn}n∈ω, it is
straightforward to construct a desired computable isomorphism.

Case (B). Suppose thatA has preciselym infinite classes. Fix elements d1, d2, . . . ,
dm from B such that all di belong to InfB and they are pairwise non-equivalent.
Note that b ∈ InfB if and only if (bEBd1)∨ (bEBd2)∨· · ·∨ (bEBdm). This observa-
tion implies that the set InfB is computable. Therefore, one can build a computable
isomorphism from B onto C, via an argument similar to that of Case (A).

(⇒). Since A has a decidable copy, by Theorem 4, the character χ(A) is com-
putable. Now it is sufficient to prove the following claim.

Lemma 4. Let A be a decidable equivalence structure such that the character χ(A)
is unbounded and A has infinitely many infinite classes. Then 0′ is the degree of
decidable categoricity for A.

Proof. By Lemma 3, the sets FinA and InfA are 0′-computable. Moreover, one
can build a computable transversal {an}n∈ω in A such that the function θA(n) :=
card([an]A) is 0′-computable. Hence, for a decidable copy D of A, it is easy to
construct a 0′-computable isomorphism f from A onto D. Thus, the structure A
is decidably 0′-categorical.

We build two decidable copies B and C of A with the following property: For
any isomorphism f : C ∼= B, f computes 0′.

Let B0 be a decidable equivalence structure such that χ(B0) = χ(A) and B0 has
no infinite equivalence classes. Let B1 be a decidable equivalence structure such
that every equivalence class of B1 is infinite and B1 has infinitely many classes.
(One can employ Theorem 5 to construct these structures.) We define B as the
disjoint sum of B0 and B1. More formally, we set xEBy iff

(x = 2u& y = 2v&uEB0v) ∨ (x = 2u+ 1 & y = 2v + 1 &uEB1v).

Note that B is isomorphic to A. Furthermore, Theorem 4 implies that B is decid-
able.

Fix a computable transversal {bn}n∈ω in B0 and a computable function r : ω → ω
such that for any n, r(n) = card([bn]B0

). We choose a strongly computable sequence
of finite sets {V [s]}s∈ω such that

⋃
s∈ω V [s] = ∅′, V [0] is empty, and V [s] ⊂ V [s+1]

for all s.
The construction of C proceeds in stages. For e ∈ ω, let ae = 2e. At a stage s,

we define a computable equivalence relation Es and a finite set Rs.
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Stage 0. Set E0 = {(ae, ae) : e ∈ ω} and R0 = ∅.
Stage s + 1 = 2t + 1. Find the least number n such that n 6∈ Rs. We use fresh

odd numbers b1, b2, . . . , br(n) to form a new Es+1-equivalence class of size r(n).
Enumerate n into Rs+1.

Stage s + 1 = 2t + 2. Suppose that t = 〈e, k + 1〉. If e ∈ V [k + 1] \ V [k], then
find the least n 6∈ Rs such that r(n) ≥ card([ae]Es

). Since the character χ(A) is
unbounded, we can always find such n. Enumerate n into Rs+1 and use fresh odd
numbers to grow the equivalence class of ae to the size r(n). If e 6∈ V [k + 1], then
add a fresh odd number b to the equivalence class of ae. If e ∈ V [k + 1] ∩ V [k],
then proceed to the next stage.

We set EC :=
⋃
s∈ω Es. It is easy to see that C := (ω,EC) is a computable

equivalence structure. Furthermore, the construction guarantees that χ(C) = χ(A)
and C has infinitely many infinite classes. Thus, C is isomorphic to A. Note that
for a non-zero k, we have card([ae]C) ≥ k if and only if card([ae]E2〈e,k−1〉+2

) ≥ k.

This implies that the set K(C) is computable. By Theorem 4, the structure C is
decidable.

Notice that e 6∈ ∅′ if and only if ae ∈ InfC . Since InfC is a co-c.e. set, we have
InfC ≡m ∅′. On the other hand, the set InfB is computable. Suppose that f is
an arbitrary isomorphism from C onto B. Then ∅′ ≡m InfC ≤T InfB ⊕ f ≡T f .
Hence, f computes 0′. This concludes the proofs of Lemma 4 and Theorem 6. �

The proof of Theorem 6 implies the following fact.

Corollary 1. If A is a decidable equivalence structure, then A has degree of decid-
able categoricity d ∈ {0,0′}.

4.3. Index sets.

Theorem 7. The index set of decidably categorical equivalence structures is Σ0
4

complete.

Proof. Let IDC be the index set of decidably categorical equivalence structures.
First, we establish that IDC is a Σ0

4 set. By Theorem 6, a structure Me is a
decidably categorical equivalence structure if and only if:

(a) Me is an equivalence structure (this is a Π0
2 condition — see, e.g., Propo-

sition 4.1 in [37]), and
(b1) either Me has a bounded character, i.e.∨

k∈ω

∀x
[
(card([x]Me

) ≥ k)→ x ∈ InfMe
]

(since InfA is definable by a Πc
2 formula, this is a Σ0

3 condition),
(b2) or the character χ(Me) is computable and Me has only finitely many

infinite classes, i.e.

∃u
[
(the function ϕu(x, y) is total {0, 1}-valued) &

∧
k,l∈ω

(
∃z0 . . . ∃zl

(
zj are

pairwise not EMe -equivalent & card([z0]Me
) = · · · = card([zl]Me

) = k
)
⇔

ϕu(k, l + 1) = 1
)]

&
∨
n∈ω
∃a0 . . . ∃an∀x

[
x ∈ InfMe → (xEMea0 ∨ · · · ∨ xEMean)

]
(this is a Σ0

4 condition).
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Therefore, we deduce that the set IDC is Σ0
4.

Suppose that S ⊆ ω is a Σ0
4 set. We need to prove that S is m-reducible

to IDC . It is sufficient to build a uniformly computable sequence of equivalence
structures {An}n∈ω with the following property: n ∈ S if and only ifAn is decidably
categorical.

Fix a computable ternary relation R such that for any n,

(1) n 6∈ S ⇔ ∃∞x∃∞yR(n, x, y).

Let W be a non-computable c.e. set such that 0 ∈ W . Choose a strongly
computable sequence of finite sets {W [s]}s∈ω such that W =

⋃
s∈ωW [s] and W [s] ⊆

W [s+ 1] for all s.
For n ∈ ω, we build a computable equivalence structure An in stages. At a stage

s, we construct a computable equivalence structure An[s].
Stage 0. Let An[0] be a decidable equivalence structure such that the domain of

An[0] is the set of all even numbers, An[0] has no infinite equivalence classes, and

χ(An[0]) = {(2m+ 2, k + 1) : m, k ∈ ω} ∪ {(2〈t, j〉+ 1, k + 1) : t, k ∈ ω, j ≤ t}.

Stage s+ 1. Suppose that s = 〈t, u〉. If we have R(n, t, u), then for every j ≤ t,
we do the following: If j ∈ W [s], then find the least even element a such that
[a]An[s] = [a]An[0] and card([a]An[0]) = 2〈t, j〉 + 1. Choose a fresh odd number b
and add it to the equivalence class of a. If R(n, t, u) does not hold, then proceed
to the next stage.

This completes the description of the construction. It is easy to show that the
sequence of equivalence structures {An[s]}n,s∈ω is uniformly computable. We set
An :=

⋃
s∈ω An[s]. It is not difficult to verify the following claim:

Lemma 5. For n, t ∈ ω, let Qn,t := {u ∈ ω : R(n, t, u)}. For any j ≤ t, the
following holds:

(1) If j 6∈W , then An has infinitely many equivalence classes of size 2〈t, j〉+ 1
and infinitely many classes of size 2〈t, j〉+ 2.

(2) If j ∈ W and the set Qn,t is infinite, then An has infinitely many classes
of size 2〈t, j〉+ 2, and An has no classes of size 2〈t, j〉+ 1.

(3) If j ∈ W and the set Qn,t is finite, then An has infinitely many classes of
size 2〈t, j〉+ 1 and infinitely many classes of size 2〈t, j〉+ 2.

The next lemma shows that the constructed structure An has the desired prop-
erties.

Lemma 6. (1) If n ∈ S, then there is a finite set F ⊆ ω2 such that

χ(An) = {(2m+2, k+1) : m, k ∈ ω}∪{(2〈t, j〉+1, k+1) : t, k ∈ ω, j ≤ t, (t, j) 6∈ F}.

In particular, the character χ(An) is computable.
(2) If n 6∈ S, then W ≤T χ(An).

Proof. If n ∈ S, then by (1), there are only finitely many numbers t such that the
set Qn,t is infinite. Suppose that t0 < t1 < · · · < tm are all such numbers. Using
Lemma 5, it is not hard to show that the desired finite set F is equal to

{(ti, ji) : i ≤ m, ji ≤ ti, ji ∈W}.

Now suppose that n 6∈ S. For x ∈ ω, we describe how to check (effectively in
χ(An)) whether x belongs to W .
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First, we find the least number t0 ≥ x such that

(2) (2〈t0, 0〉+ 1, 1) 6∈ χ(An).

Why does such t0 exist? Lemma 5 and the fact that 0 ∈ W together imply that
the condition (2) holds iff the set Qn,t0 is infinite. Since n 6∈ S, we apply (1) and
deduce that there is a number t0 ≥ x with infinite Qn,t0 .

By Lemma 5, we have that x ∈ W if and only if (2〈t0, x〉 + 1, 1) 6∈ χ(An).
Lemma 6 is proved. �

If n ∈ S, then by Lemma 6, the character χ(An) is computable. Since An has
no infinite equivalence classes, by Theorem 6, An is decidably categorical.

If n 6∈ S, then Lemma 6 says that χ(An) is not computable. Henceforth, An has
no decidable copies, and An is not decidably categorical. Therefore, the set IDC is
Σ0

4 complete. This concludes the proof of Theorem 7. �

Corollary 2. The index set of decidably presentable equivalence structures is Σ0
4

complete.

Proof Sketch. First, note that Theorem 5 easily implies the following fact: a count-
able equivalence structure is decidably presentable if and only if its character is
computable. After that, one just follows the lines of the proof of Theorem 7:

(a) The index set of equivalence structures with a computable character is Σ0
4.

(b) For a given Σ0
4 set S, the construction of Theorem 7 produces a uniformly

computable sequence of equivalence structures {An}n∈ω. The sequence sat-
isfies the following: n ∈ S if and only if the character χ(An) is computable.

This shows that our index set is Σ0
4 complete. �

5. Index sets among decidable structures

In this section, we study how the results of the previous section can be transferred
into the setting of index sets among decidable copies.

Let L be a computable language. For a number e ∈ ω, by De we denote the de-
cidable L-structureM such that the characteristic function χDc(M) of the complete
diagram Dc(M) is equal to ϕe.

For a class K, its index set among decidable structures is the set

ID(K) = {e : De ∈ K}.

Theorem 8. Let Kdc-eq be the class of decidably categorical equivalence structures.
Then the set ID(Kdc-eq) is Σ0

3 complete.

Proof Sketch. By Theorem 6, an index e belongs to ID(Kdc-eq) if and only if the
following conditions hold:

(a) The function ϕe computes the complete diagram of the structure De (i.e.
ϕe is total {0, 1}-valued, and ϕe is well-defined on the indices of first-order
formulas). This is a Π0

2 condition (see, e.g., Lemma 5.1 of [38] for a similar
argument).

(b) De is an equivalence structure. This is a Π0
1 condition.

(c) The structure De has a bounded character, or De has only finitely many
infinite classes. Similarly to the argument of Theorem 7, this condition can
be rewritten in a Σ0

3 way (note that since De is decidable, the set InfDe is
Π0

1).
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Therefore, the index set ID(Kdc-eq) is Σ0
3.

Let S be a Σ0
3 set. Fix a computable ternary relation R such that

n 6∈ S ⇔ ∃∞x∀yR(n, x, y).

By employing Theorem 4, it is not hard to build a uniformly decidable sequence
{An}n∈ω of equivalence structures such that for every n ∈ ω, the structure An has
the following properties:

(1) Every element of An is equivalent to some number 〈k, 0〉, k ∈ ω. The
elements 〈k, 0〉, k ∈ ω, are pairwise non-equivalent.

(2) For k, l ∈ ω, the size of the class [〈2〈k, l〉, 0〉]An equals k + 1.
(3) The size of the class [〈2k+1, 0〉]An equals 1+card({t : (∀y ≤ t)R(n, k, y)}).

Note that for every n, the character χ(An) is equal to {(m, k) : m, k > 0}.
One can show that An is decidably categorical if and only if n ∈ S. Hence, the

set ID(Kdc-eq) is Σ0
3 complete. �

A technique similar to that of Theorem 8 can be applied to the case of abelian
p-groups of Ulm type 1.

For a number n ∈ ω, the formula (pn | x) means that ∃y(pny = x). It is known
that a computable abelian p-group A is decidable if and only if the theory Th(A)
is decidable and the relations (pn | · ), n ∈ ω, are uniformly computable inside A
[39]. For more preliminaries on abelian groups, we refer the reader to, e.g., [36, 40].

Proposition 3 (Lemma 3.2 of [36]). Let A be a decidable abelian p-group of Ulm
type 1. Then A is decidably categorical if and only if A is reduced or the character
χ(A) is bounded.

Let Kdc-ut1 be the class of decidably categorical abelian p-groups of Ulm type 1.
An index e belongs to the set ID(Kdc-ut1) if and only if the following conditions
hold:

(a) The function ϕe computes the complete diagram of the structure De. This
is a Π0

2 condition.
(b) The structure De is an abelian p-group. This is also a Π0

2 condition.
(c) De satisfies one of the following:

(c.1) De is reduced and has Ulm type 1. By Prüfer’s Theorem, this is
equivalent to the formula

∀x
[
x 6= 0→

∨
k∈ω

¬(pk | x)

]
.

Since De is decidable, this formula is equivalent to a Π0
2 condition.

(c.2) De has Ulm type 1 and possesses a bounded character. This is equiv-
alent to

(3)
∨
k≥1

∀x[(pk | x)→ (p2k | x)].

Since the condition ∀x[(pk | x) → (p2k | x)] is a first-order one, the
formula (3) can be rewritten in a Σ0

1 way.

Therefore, the set ID(Kdc-ut1) is Π0
2.

Theorem 9. The index set ID(Kdc-ut1) is Π0
2 complete.
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Proof Sketch. Let A be a Π0
2 set. Fix a computable binary relation R such that

n ∈ A ⇔ ∃∞xR(n, x).

Let H be a decidable copy of the quasicyclic group Z(p∞). Inside H choose a
computable sequence of elements {gj}j∈ω such that g0 6= 0 and pgj+1 = gj for all
j. Consider a group

G =
⊕
i∈ω
H.

Without loss of generality, we may assume that G is decidable. For i, j ∈ ω, by
g[i, j] we denote the (copy of the) element gj inside the i-th copy of H.

Fix a decidable group

U ∼=
⊕
i∈ω

(⊕
j∈ω

Z(pi+1)
)
.

We build a computable sequence (An)n∈ω of computable subgroups of G. For
n ∈ ω, the group An will be generated by the set Cn. This Cn is constructed as
follows.

At stage 0, set Cn[0] = {g[0, 0]}, and let c[0] = g[0, 0].
Stage s+ 1. Suppose that c[s] = g[i, j]. If R(n, s) holds, then define Cn[s+ 1] =

Cn[s]∪{g[i+1, 0]} and c[s+1] = g[i+1, 0]. Otherwise, Cn[s+1] = Cn[s]∪{g[i, j+1]}
and c[s+ 1] = g[i, j + 1].

For n ∈ ω, we define Bn = An ⊕ U . The described construction ensures the
following properties:

(1) Recall that if n ∈ A, then ∃∞xR(n, x). This implies that the group An
is reduced, and Bn ∼= U . Hence, by Proposition 3, the group Bn is decidably
categorical.

(2) If n 6∈ A, then ∃<∞xR(n, x), and we have

An ∼= F ⊕ Z(p∞), Bn ∼= U ⊕ Z(p∞),

where F is a finite p-group. Therefore, the group Bn is not reduced, and it has
unbounded character. By Proposition 3, Bn is not decidably categorical.

By employing the techniques of [36], one can show that the sequence (Bn)n∈ω
can be built in a uniformly decidable way. Here we only note the following:

• The relations (pm | ·), where m ∈ ω, can be uniformly computed in all
groups Bn, n ∈ ω.

• A straightforward analysis of the Szmielew invariants [41] shows that all
groups Bn, n ∈ ω, are elementarily equivalent.

Since the sequence (Bn)n∈ω is uniformly decidable, we deduce that our index set is
Π0

2 complete. �
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