ON SUFFICIENT CONDITIONS FOR Q-UNIVERSALITY

M.V. SCHWIDEFSKY

Abstract. If a quasivariety K contains a B^*-class then K satisfies sufficient conditions for Q-universality found by V. A. Gorbunov.

Keywords: B-class, quasivariety, Q-universal.

1. Introduction

G. Birkhoff [3] and A. I. Maltsev [19] raised a problem by asking which lattices are isomorphic to quasivariety lattices; this problem is now referred to as the Birkhoff-Maltsev problem. Many results were obtained on such lattices which demonstrate their highly complex inner structure; some of them are presented in the monograph of V. A. Gorbunov [10]. M. V. Sapir introduced in [22] the notion of Q-universal quasivariety and constructed the first example of such quasivariety—his example was a quasivariety generated by a certain semigroup. In [1], M. E. Adams and W. Dziobiak found a sufficient condition for a quasivariety to be Q-universal, see Theorem 1. In [11], V. A. Gorbunov established some other sufficient conditions for Q-universality, see Theorem 2.

In the paper [13] by A. V. Kravchenko, A. M. Nurakunov, and the author, the notion of B-class was introduced. It was shown in [13] that if a quasivariety K contains a B-class then it contains uncountably many subquasivarieties with no independent quasi-equational basis relative to some subquasivariety of K. Some other results which demonstrate the high complexity of the inner structure of quasivariety lattices for quasivarieties containing B-classes were obtained in [2, 12, 14, 15, 16, 17, 18, 20, 21]. Interesting results in the same direction concerning
quasivarieties of groups were obtained recently by A. I. Budkin in [7, 8], see also his earlier articles [4]-[6].

It was shown in [13] that if a quasivariety K contains a B-class then K satisfies the Adams-Dziobiak condition for Q-universality. In [24], the notion of B-class was generalized, and it was shown in particular that if a quasivariety K contains a finite generalized B-class then K also satisfies the Adams-Dziobiak condition.

We prove here in Theorem 6 that if a quasivariety K contains a generalized B-class then K satisfies the Gorbunov conditions for Q-universality.

2. Basic definitions

For a semilattice P, let $\text{Sub}P$ denote the lattice of all subsemilattices of P. For nonzero $n < \omega$, let \mathcal{B}_n denote the \cap-semilattice and \mathcal{B}_n' denote the \cup-semilattice of all subsets of an n-element set. Let also $I(FL(\omega))$ denote the ideal lattice of the free lattice of countable rank.

Let \mathcal{E} denote the trivial structure of type σ and let $T = \{\mathcal{E}\}$.

Let $K(\sigma)$ denote the class of all structures of similarity type σ and let $K \subseteq K(\sigma)$. By $Q(K)$, we denote the quasivariety generated by K. By H, S, P, P_s, L_s, we denote the operators of taking homomorphic images, substructures, Cartesian products, subdirect products, and superdirect limits, respectively.

For a class operator O and a class $M \subseteq K(\sigma)$, we put

$$(O \cap K)(M) = O(M) \cap K.$$

A subclass $K' \subseteq K$ is a K-quasivariety, if $K' = Q(K') \cap K$. The set of all K-quasivarieties forms a complete lattice under inclusion; we denote this lattice by $Lq(K)$ and call a K-quasivariety lattice or just a quasivariety lattice.

Let $K \subseteq M \subseteq K(\sigma)$. The class K is a homogeneous quasi-Birkhoff sub-class in M if for each $M' \subseteq M$, the equality

$$Q(M') \cap K = (L_s \cap K)(P_s \cap K)(S \cap K)(M')$$

holds. A family $\{K_i \subseteq K(\sigma) \mid i \in I\}$ is homomorphically disconnected if $K_i \cap S(K_j) = T$ for each distinct $i, j \in I$. Let $T \subseteq K \subseteq K(\sigma)$. A nontrivial structure $A \in K(\sigma)$ is homomorphically disconnected in K if the family $\{K_\theta \mid \theta \in \text{Con}_K A\}$ is homomorphically disconnected, where $K_\theta = \{A/\theta, \mathcal{E}\}$ for each $\theta \in \text{Con}_K A$. Equivalently, a nontrivial structure $A \in K(\sigma)$ is homomorphically disconnected in K if $\theta \in \{\theta', 1_A\}$ for each $\theta, \theta' \in \text{Con}_K A$ such that A/θ embeds into A/θ'. A structure $A \in K$ is K-prime, if $\text{Con}_K A$ is a two-element lattice.

For all other definitions and notation concerning algebraic structures and quasivarieties, we refer to the monograph [10, Ch. 1] as well as to the papers [13, 14, 24].

3. Sufficient conditions for Q-universality

The following conditions were found in W. Dziobiak [9] and M. E. Adams and W. Dziobiak [1]. In the present form they appeared in [23].

Definition 1. If a class $A = \{A_X \mid X \in \mathcal{P}_{fin}(\omega)\}$ of structures of a finite similarity type σ possesses the following properties:

- (P$_0$) for each $X \in \mathcal{P}_{fin}(\omega)$, the structure A_X is l-projective in $Q(A)$ and the trivial congruence is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
- (P$_1$) A_\varnothing is a trivial structure;
- (P$_2$) for each $\vartheta \in \{\theta', 1_A\}$, the structure A/ϑ is a K-prime in K;
- (P$_3$) for each $X \in \mathcal{P}_{fin}(\omega)$, the structure A_X is a trivial congruence in $\text{Con}_{Q(A)} A_X$;
- (P$_4$) the trivial congruence is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
- (P$_5$) each A_X is a K-prime in K;
- (P$_6$) for each $\theta \in \{\theta', 1_A\}$, the structure A/θ is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
- (P$_7$) each A_X is a trivial congruence in $\text{Con}_{Q(A)} A_X$;
- (P$_8$) for each $\vartheta \in \{\theta', 1_A\}$, the structure A/ϑ is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
- (P$_9$) each A_X is a trivial congruence in $\text{Con}_{Q(A)} A_X$;
- (P$_{10}$) for each $\vartheta \in \{\theta', 1_A\}$, the structure A/ϑ is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
- (P$_{11}$) each A_X is a trivial congruence in $\text{Con}_{Q(A)} A_X$;
- (P$_{12}$) for each $\vartheta \in \{\theta', 1_A\}$, the structure A/ϑ is a dually compact element in the relative congruence lattice $\text{Con}_{Q(A)} A_X$;
(P_2) if $X = Y \cup Z$ in $\mathcal{P}_{\text{fin}}(\omega)$, then $A_X \in \mathbf{Q}(A_Y, A_Z)$;
(P_3) if $\emptyset \neq X \subseteq \mathcal{P}_{\text{fin}}(\omega)$ and $A_X \in \mathbf{Q}(A_Y)$, then $X = Y$;
(P_4) if $A_X \leq B_0 \times B_1$ for some structures $B_0, B_1 \in \mathbf{Q}(A)$, then there are $Y_0, Y_1 \in \mathcal{P}_{\text{fin}}(\omega)$ such that $A_{Y_0} \in \mathbf{Q}(B_0), A_{Y_1} \in \mathbf{Q}(B_1)$, and $X = Y_0 \cup Y_1$ then A is called an Adams-Dziobiak class or simply an AD-class.

For the following statement, we refer to [1, Theorem 3.3] as well as to [23, Corollary 3.5].

Theorem 1. Let a quasivariety K contain an AD-class. Then K is Q-universal and the lattice $\mathbf{L}(\omega)$ embeds into $\mathbf{L}_q(K)$.

The following definition is essentially due to V. A. Gorbunov [11], see also [10].

Definition 2. Let σ be finite, let $A \subseteq K(\sigma)$ be a prevariety, and let a class $G = \{s_n \mid n < \omega\} \subseteq B \subseteq A$

possess the following properties:

- (E_1) $\{H(s_n) \cap B \mid n < \omega\}$ is a disconnected family of homogeneous quasi-Birkhoff subclasses of A;
- (E_2) for each $n < \omega$, the lattice $\mathbf{L}(H(s_n) \cap B)$ is finite and \mathbf{Sub}_B is a homomorphic image of a sublattice in $\mathbf{L}(H(s_n) \cap B)$;
- (E_3) for each $n < \omega$, the structure s_n is homomorphically disconnected in B and $\mathbf{Con}_B s_n$ is a complete meet-subsemilattice in $\mathbf{Con}s_n$ which contains B, as a subsemilattice.

If G satisfies (E_1) and (E_2) or (E_1) and (E_3) then G is called a Gorbunov class or simply a G-class with respect to $B \subseteq A$.

We note that condition (E_2) is weaker than the corresponding condition in [11, 10]. Nonetheless the proof of the following theorem is identical to the proof of [10, Theorem 5.4.26], see also [11, Theorem 5.19].

Theorem 2. Let a prevariety K contain a G-class with respect to some class $B \subseteq K$. Then K is Q-universal and the lattice $\mathbf{L}(\omega)$ embeds into $\mathbf{L}_q(K)$.

4. B*-classes and the main result

The following definition was introduced in [24]. The definition of a B-class is due to [13].

Definition 3. Let $M \subseteq K(\sigma)$ be a quasivariety of a finite similarity type σ and let $V \subseteq K(\sigma)$ be a nonempty homomorphically closed class. A class $A = \{A_F \mid F \in \mathcal{P}_{\text{fin}}(\omega)\} \subseteq M$ is called a B*-class with respect to M and V if A satisfies the following conditions:

- (B_0) for each nonempty $F \in \mathcal{P}_{\text{fin}}(\omega)$, the structure A_F is finitely presented in M; A_\emptyset is a trivial structure;
- (B_1) if $F = G \cup H$ in $\mathcal{P}_{\text{fin}}(\omega)$ then $A_F \in \mathbf{Q}(A_G, A_H)$;
- (B_2) for each $F, G \in \mathcal{P}_{\text{fin}}(\omega)$, if $F \neq \emptyset$ and $A_F \in \mathbf{Q}(A_G, V)$ then $F = G$;
- (B_3) for every $F \in \mathcal{P}_{\text{fin}}(\omega)$ and every $i < \omega$, if $f \in \mathbf{Hom}(A_F, A_{\{i\}})$ then either $f(A_F) \in V$ or $i \in F$;
- (B_4) for each $F \in \mathcal{P}_{\text{fin}}(\omega)$, $(H(A_F) \cap M) \setminus V \subseteq A$.

If $V = T$ then we call A a B-class with respect to M.
Consider also the following conditions:

(B$_g^*$) for every $n < \omega$, the structure $A_{(n)}$ is M*-simple, where M$^* = (M \setminus V) \cup \{\varepsilon\}.$

(B*) for every $F, G \in \mathcal{P}_{fin}(\omega)$ such that $\emptyset \neq G \subseteq F$, for an arbitrary $B \in V$ and arbitrary homomorphisms $f \in \text{Hom}(A_F, B)$ and $g \in \text{Hom}(A_G, A_G)$, there is a homomorphism $h \in \text{Hom}(A_G, B)$ such that $f = hg$.

We cite some results from [24] which we use in the proof of our main result.

Lemma 3. [24, Lemma 1.3] Let $A = \{A_F \mid F \in \mathcal{P}_{fin}(\omega)\}$ be a B*-class with respect to some quasivariety $M \subseteq K(\sigma)$ and to some variety $V \subseteq K(\sigma)$. The following statements hold.

(i) If $A_F \in V$ for some $F \in \mathcal{P}_{fin}(\omega)$ then $F = \emptyset$.

(ii) If $G \subseteq F \in \mathcal{P}_{fin}(\omega)$ then $A_G \in H(A_F)$.

(iii) If $f \in \text{Hom}(A_F, A_G)$ for some $F, G \in \mathcal{P}_{fin}(\omega)$ then either $f(A_F) \in V$ or $G \subseteq F$ and $f(A_F) \cong A_G$.

Lemma 4. For a quasivariety $M \subseteq K(\sigma)$ of finite type σ containing (B$_g^*$) and (B*) with respect to M and some variety $V \subseteq K(\sigma)$, the following statements hold.

(i) For each $F \in \mathcal{P}_{fin}(\omega)$, there is an isomorphism $\xi: 2^F \to \text{Con}(M^*, A_F)$ such that $A_F/\xi(G) \cong A_F \cap G$ for all $G \subseteq F$. Hence $M^* = (M \setminus V) \cup \{\varepsilon\}$.

(ii) $F = G_0 \cup \ldots \cup G_k$ in $\mathcal{P}_{fin}(\omega)$ if and only if $A_F \leq_s A_{G_0} \times \ldots \times A_{G_k}$.

Proof. Statement (i) follows from Lemma 2.1 in [24].

We prove (ii). If $F = G_0 \cup \ldots \cup G_k$ in $\mathcal{P}_{fin}(\omega)$ then $A_F \leq_s A_{G_0} \times \ldots \times A_{G_k}$ by [24, Lemma 1.6(i)].

Conversely, suppose that $A_F \leq_s A_{G_0} \times \ldots \times A_{G_k}$ for some $F, G_0, \ldots, G_k \in \mathcal{P}_{fin}(\omega)$. We have $G = G_0 \cup \ldots \cup G_k \leq F$ by Lemma 3(iii). By Lemma 3(ii), there is a surjective homomorphism $f: A_F \to A_G$.

We prove that $A_G \leq_s A_{G_0} \times \ldots \times A_{G_k}$. Indeed, $A_G \in Q(A_{G_0} \times \ldots \times A_{G_k})$ by (B$_g$). Since A_G is an l-projective structure by (B$_0$), we conclude that $A_G \in SP(A_{G_0}, \ldots, A_{G_k})$. Thus, there are structures $B_i \in S(A_{G_0}, \ldots, A_{G_k})$, $i \in T$, such that $A_G \leq \prod_{i \in T} B_i$. Applying (B$_1^*$) and (B$_2^*$), we conclude that for each $i \in T$, either $B_i \in V$ or $B_i \cong A_{G_i}$ for some $i \leq k$. Applying statement (i), we obtain that there is a set $J \subseteq \{0, \ldots, k\}$ and a structure $B \in V$ such that $A_G \leq B \times \prod_{i \in T} A_{G_i}$. Let $\pi: A_G \to B$ and $\pi_i: A_G \to A_{G_i}$, $i \in I$, denote the projection homomorphisms in the above subdirect decomposition. If $I \neq \emptyset$ then $A_G \in V$, whence $G = G_0 = \ldots = G_k = \emptyset$ by Lemma 3(i) and $A_G \leq_s A_{G_0} \times \ldots \times A_{G_k}$ holds trivially. Suppose therefore that $I \neq \emptyset$ and fix an element $j \in I$. Using (B*), we conclude that there is a homomorphism $f: A_G \to B$ such that $f \pi_j = \pi$. Therefore $\ker \pi_j \subseteq \ker \pi$ and this inclusion implies that $0_{A_G} = \ker \pi \cap \prod_{i \in I} \ker \pi_i = \prod_{i \in \tilde{J}} \ker \pi_i$. According to Lemma 3(ii), for each $i \in \{0, \ldots, n\} \setminus I$, there is a surjective homomorphism $\pi_i: A_G \to A_{G_i}$. This implies that $0_{A_G} = \prod_{i \leq n} \ker \pi_i$ and $A_G \leq_s A_{G_0} \times \ldots \times A_{G_k}$ which is our desired conclusion.

By what we have just proved,

$$A_G \leq_s A_{G_0} \times \ldots \times A_{G_k}; \quad A_F \leq_s A_{G_0} \times \ldots \times A_{G_k},$$

Hence for each $i \leq k$, there is a surjective homomorphism $\pi_i: A_F \to A_G$ such that $\ker \pi_0 \cap \ldots \cap \ker \pi_k = 0_{A_F}$. Moreover, for each $i \leq k$, there is a surjective homomorphism $\rho_i: A_G \to A_{G_i}$. Fix an index $i \leq k$ and consider the congruence
This means that we have (B^*_4) and Lemma 3(iii), there is a set $H \subseteq F$ such that

$$\mathcal{A}_H \cong \mathcal{A}_F / \theta \leq, \mathcal{A}_F / \ker \pi_i \times \mathcal{A}_F / \ker (\rho_i f) \cong \mathcal{A}_{G_i} \times \mathcal{A}_{G_i}.$$

This implies that $\mathcal{A}_H \in \mathcal{Q}(\mathcal{A}_{G_i})$, whence $H \subseteq G_i$ by (B^*_3). Moreover, in view of (B^*_4) and Lemma 3(i), $G_i \subseteq H$ whence $H = G_i$. We conclude that

$$\mathcal{A}_F / \theta \cong \mathcal{A}_{G_i} \cong \mathcal{A}_F / \ker \pi_i \cong \mathcal{A}_F / \ker (\rho_i f).$$

Therefore by statement (i), $\theta = \ker \pi_i = \ker (\rho_i f)$ for all $i \leq k$. Suppose that $(a_1, \ldots, a_m) \in \ker f(p)$ for some $p^m \in \sigma^p \cup \{\cdot\}$. Then for all $i \leq k$, we have $(a_1, \ldots, a_m) \in \ker (\rho_i f)(p)$. Therefore,

$$(a_1, \ldots, a_m) \in \ker (\rho_0 f)(p) \cap \ldots \cap \ker (\rho_k f)(p) = \ker \pi_0 (p) \cap \ldots \cap \ker \pi_k (p) = 0_{\mathcal{A}_F}(p).$$

This means that f is an isomorphism and $\mathcal{A}_F \in \mathcal{Q}(\mathcal{A}_{G_i})$. Hence we get by (B^*_3) that $F = G = G_0 \cup \ldots \cup G_k$.

Lemma 5. Let a quasivariety $\mathbf{M} \subseteq \mathbf{K}(\sigma)$ of finite type σ contain a \mathbf{B}^*-class

$$\mathbf{A} = \{ \mathcal{A}_F \mid F \in \mathcal{P}_{\mathbf{fin}}(\omega) \} \subseteq \mathbf{M}$$

satisfying (\mathbf{B}^*) with respect to \mathbf{M} and some variety $\mathbf{V} \subseteq \mathbf{K}(\sigma)$. If $\mathcal{A}_F \in \mathcal{Q}(\mathbf{X})$ for some $F \in \mathcal{P}_{\mathbf{fin}}(\omega)$ and some $\mathbf{X} \subseteq \mathbf{A}$ then $\mathcal{A}_F \in \mathcal{P}_{\mathbf{s}}(\mathbf{X})$

Proof. Without loss of generality, we may assume that $F \neq \emptyset$. Since \mathbf{V} is a variety, the structure \mathcal{A}_F is l-projective in \mathbf{M}, and $\mathcal{A}_F \in \mathcal{Q}(\mathbf{X}) = \mathbf{L}_s \mathbf{SP}(\mathbf{X})$, there are a set I and a family $\{ \mathcal{A}_{F_i} : \mathcal{A}_i \in \mathbf{X} \mid i \in I \}$ such that $\mathcal{A}_F \leq \prod_{i \in I} \mathcal{A}_{F_i}$. For each $i \in I$, let $\pi_i : \mathcal{A}_F \rightarrow \mathcal{A}_{F_i}$ denote the canonical projection. Then we have $\pi_i (\mathcal{A}_F) \in \mathbf{S}(\mathcal{A}_{F_i}) \subseteq \mathbf{S}(\mathbf{X}) \subseteq \mathbf{Q}(\mathbf{A})$ for all $i \in I$. Therefore by (\mathbf{B}^*_3), either $\pi_i (\mathcal{A}_F) \in \mathbf{V}$ or $\pi_i (\mathcal{A}_F) \in \mathbf{A}$. In the second case, we have $\pi_i (\mathcal{A}_F) \in \mathbf{S}(\mathcal{A}_{F_i})$, whence $\pi_i (\mathcal{A}_F) \cong \mathcal{A}_{F_i} \in \mathbf{X}$ by (\mathbf{B}^*_3). Thus, there are a set $J \subseteq I$ a structure $\mathbf{V} \in \mathbf{V}$ such that $\mathcal{A}_F \leq \mathbf{V} \times \prod_{i \in J} \mathcal{A}_{F_i}$, $\mathcal{A}_{F_i} \in \mathbf{X}$, and $F_i \neq \emptyset$ for each $i \in J$. Let $\pi : \mathcal{A}_F \rightarrow \mathbf{V}$ denote the canonical projection which is a surjective homomorphism. By Lemma 3(i), $\mathcal{A}_F \notin \mathbf{V}$, and we conclude that $J \neq \emptyset$; fix an element $j \in J$. According to (\mathbf{B}^*), there is a homomorphism $h : \mathcal{A}_{F_j} \rightarrow \mathbf{V}$ such that $\pi = h \pi_j$; in particular, $\ker \pi_j \subseteq \ker \pi$ whence $\bigcap_{i \in J} \ker \pi_i = \ker \pi \cap \bigcap_{i \in J} \ker \pi_i = 0_{\mathcal{A}_F}$. This implies that $\mathcal{A}_F \leq \mathbf{V} \times \bigcap_{i \in J} \mathcal{A}_{F_i}$ whence $\mathcal{A}_F \in \mathcal{P}_{\mathbf{s}}(\mathbf{X})$.

The following theorem is our main result.

Theorem 6. If a quasivariety $\mathbf{M} \subseteq \mathbf{K}(\sigma)$ of finite type σ contains a \mathbf{B}^*-class $\mathbf{A} \subseteq \mathbf{M}$ satisfying (\mathbf{B}^*_4) and (\mathbf{B}^*) with respect to \mathbf{M} and some variety $\mathbf{V} \subseteq \mathbf{K}(\sigma)$, then there is a class $\mathbf{A}' \subseteq \mathbf{A}$ which satisfies (E_1)–(E_3) with respect to some class $\mathbf{B} \subseteq \mathbf{Q}(\mathbf{A})$, whence \mathbf{A}' is a \mathbf{G}-class with respect to $\mathbf{B} \subseteq \mathbf{Q}(\mathbf{A})$.

Proof. Let $\bigcup_{n < \omega} P_n = \omega$ be a partition of the set ω such that $|P_n| = n$ for each $n < \omega$. Let $\mathbf{A} = \{ \mathcal{A}_F \mid F \in \mathcal{P}_{\mathbf{fin}}(\omega) \}$ be a \mathbf{B}^*-class satisfying (\mathbf{B}^*) with respect to \mathbf{M} and \mathbf{V}. For each $n < \omega$, we put $\mathbb{S}_n = \mathcal{A}_{P_n}$. We prove that the class $\mathbf{G} = \{ \mathbb{S}_n \mid n < \omega \}$ is a \mathbf{G}-class with respect to $\mathbf{B} \subseteq \mathbf{Q}(\mathbf{A})$, where $\mathbf{B} = (\mathbf{Q}(\mathbf{A}) \setminus \mathbf{V}) \cup \{ \mathbf{E} \}$. We have in particular that $\mathbf{A} \subseteq \mathbf{B}$.

Claim 1. The class \mathbf{G} satisfies (E_1) with respect to $\mathbf{B} \subseteq \mathbf{Q}(\mathbf{A})$.

Proof of Claim. Assume first that \(m, n < \omega \) are distinct and \(A \in \mathbf{H}(S_n) \cap B \) embeds into \(B \in \mathbf{H}(S_m) \cap B \). According to (B\(^2\)) and Lemma 3, there are sets \(F \subseteq P_m \), \(G \subseteq P_n \) such that \(A \cong A_F \) and \(B \cong A_G \). Since \(A_F \) embeds into \(A_G \), we conclude by (B\(^2\)) that either \(F = \emptyset \) or \(F = G \). If \(F = G \) then \(F = G \subseteq P_m \cap P_n = \emptyset \) whence \(F = \emptyset \). This proves that the family \(\{ \mathbf{H}(S_n) \cap B \mid n < \omega \} \) is disconnected.

Let now \(K_n = H(S_n) \cap B \) for some \(n < \omega \), let \(K \subseteq Q(A) \), and let \(A \in Q(K) \cap K_n \). This implies that \(A \in \mathbf{H}(S_n) \cap B \subseteq A \). Lemma 3(iii) yields that there is \(F \subseteq P_n \) such that \(A \cong A_F \). Since \(A_F \in B \), we conclude that \(A_F \notin V \), whence \(F \neq \emptyset \) by (B\(_0\)). Since \(V \) is a variety, the structure \(A_F \) is \(l \)-projective in \(M \), and \(A_F \in Q(K) \subseteq Q(A) \), there are a set \(I \) and a family \(\{ \mathcal{E}_i \in K \mid i \in I \} \) such that \(A_F \leq \prod_{i \in I} \mathcal{E}_i \).

For each \(i \in I \), let \(\pi_i : A_F \to \mathcal{E}_i \) denote the canonical projection. Then we have \(\pi_i(A_F) \in S(\mathcal{E}_i) \subseteq S(K) \subseteq Q(A) \), \(i \in I \). Therefore by (B\(^2\))\(_i\), either \(\pi_i(A_F) \in V \) or \(\pi_i(A_F) \in A \). Thus, there is a set \(J \subseteq I \), a family \(\{ F_i \subseteq F \mid i \in J \} \), and a structure \(V \) such that \(A_F \leq V \times \prod_{i \in J} A_F, A_F \in S(\mathcal{E}_i) \) and \(F_i \neq \emptyset \) for each \(i \in J \). We have therefore that \(A_F \in (S \cap K_n)(K) \) for each \(i \in J \). Let \(\pi : A_F \to V \) denote the canonical projection which is a surjective homomorphism.

As \(A_F \notin V \), we conclude that \(J \neq \emptyset \); fix an element \(j \in J \). According to (B\(^1\)), there is a homomorphism \(h : A_F \to V \) such that \(\pi = h \pi_j \); in particular, \(\pi_j \subseteq \pi \) whence \(\bigcap_{i \in J} \ker \pi_i = \ker \pi \cap \bigcap_{i \in J} \ker \pi_i = 0_{A_F} \). As \(A_F \in B \), this implies that \(A_F \in (P_n \cap K_n)(S \cap K_n)(K) \). Therefore \(Q(K) \cap K_n \subseteq (P_n \cap K_n)(S \cap K_n)(K) \) which proves that \(K_n \) is a homogeneous quasi-Birkhoff subclass of \(Q(A) \). □

Claim 2. The class \(G \) satisfies \((E_2)\) with respect to \(B \subseteq Q(A) \).

Proof of Claim. Let \(n < \omega \) and let \(K_n = \mathbf{H}(S_n) \cap B \). Then according to (B\(^2\))\(_i\) and Lemma 3, we have

\[
K_n = \mathbf{H}(S_n) \cap B = \{ A_F \mid F \subseteq P_n \}.
\]

Consider the mapping

\[
\psi : Lq(K_n) \to \text{Sub} B'_n, \quad \psi : X \mapsto \{ F \subseteq P_n \mid A_F \in X \}.
\]

Let \(F, G \in \psi(X) \) and let \(H = F \cup G \); then \(H \subseteq P_n \). Hence \(A_H \in K_n \). According to (B\(_i\)), we have \(A_H \in Q(A_F, A_G) \cap K_n \subseteq Q(X) \cap K_n = X \) as \(X \in Lq(K_n) \).

Therefore \(H \in \psi(X) \), \(\psi(X) \subseteq \text{Sub} B'_n \), and the mapping \(\psi \) is well-defined.

If \(X_0, X_1 \in Lq(K_n) \) are such that \(X_0 \nsubseteq X_1 \) then \(A_F \in X_0 \setminus X_1 \) for some \(F \subseteq P_n \).

Hence \(F \in \psi(X_0) \setminus \psi(X_1) \), and \(\psi \) is one-to-one.

It is clear that \(\psi \) preserves meets, whence \(\psi \) preserves the ordering. In order to prove that \(\psi \) preserves joins, it suffices to show that \(\psi(X_0 \cup X_1) \subseteq \psi(X_0) + \psi(X_1) \) for all \(X_0, X_1 \in Lq(K_n) \). Indeed, let \(F \in \psi(X_0 \cup X_1) \). This means that

\[
A_F \in X_0 \cup X_1 = Q(X_0 \cup X_1) \cap K_n.
\]

By Lemma 5, \(A_F \in P_n(X_0 \cup X_1) \cap K_n \). Thus, there is a family \(\{ F_i \mid i \in I \} \subseteq \psi(X_0) \cup \psi(X_1) \) such that \(A_F \leq \prod_{i \in I} A_{F_i} \); by Lemma 4(i), \(A_F \leq \prod_{i \in I} A_{F_i} \) for some finite set \(J \subseteq I \). According to Lemma 4(ii), \(F = \bigcup_{i \in J} F_i \in \psi(X_0) + \psi(X_1) \), which is our desired conclusion.

Finally, let \(S = \{ F_i \mid i \in I \} \subseteq \text{Sub} B'_n \) and let \(X = \{ A_{F_i} \mid i \in I \} \). In order to prove that \(\psi \) is onto, it suffices to show that \(X = Q(X) \cap K_n \subseteq Lq(K_n) \). To prove this, we consider an arbitrary structure \(A_F \in Q(X) \cap K_n \). By Lemma 5, \(A_F \in P_n(X) \). By Lemma 4(i), \(A_F \leq \prod_{i \in I} A_{F_i} \), where \(I \) is a finite set and \(A_{F_i} \in \text{X} \) for all \(i \in I \). According to Lemma 4(ii), \(F = \bigcup_{i \in J} F_i \in S \) whence \(A_F \in \text{X} \). Inclusion \(X \subseteq Q(X) \cap K_n \) is obvious.
Therefore, \(\psi \) is an isomorphism. It remains to note that \(\text{Sub} \ B'_n \cong \text{Sub} \ B_n \). \(\square \)

Claim 3. The class \(G \) satisfies \((E_3)\) with respect to \(B \subseteq Q(A) \).

Proof of Claim. Let \(n < \omega \) and let \(\theta, \theta' \in \text{Con}_B S_n \) be such that \(S_n/\theta \) embeds into \(S_n/\theta' \). Since \(S_n/\theta, S_n/\theta' \in H(S_n) \cap B \), using (B\(_n^2\)) and Lemma 3(iii), we get that \(S_n/\theta \cong A_F, S_n/\theta' \cong A_{F'} \) for some sets \(F, F' \subseteq P_n \). As \(A_F \) embeds into \(A_{F'} \), we conclude by (B\(_n^2\)) that either \(F = \emptyset \) or \(F = F' \). In the first case, \(\theta = 1_{S_n} \); in the second case, \(\theta = \theta' \) by Lemma 4(i). This proves that the structure \(S_n \) is homomorphically disconnected.

We prove now that \(\text{Con}_B S_n \) is a complete meet-subsemilattice in \(\text{Con} S_n \). Indeed, \(E \in B \) whence \(1_{S_n} \in \text{Con}_B S_n \). Let \(I \neq \emptyset \), let \(\{ \theta_i \mid i \in I \} \subseteq \text{Con}_B S_n \) and let \(\theta = \bigcap_{i \in I} \theta_i \) in \(\text{Con} S_n \). If \(\theta \notin \text{Con}_B S_n \) then \(S_n/\theta \notin V \). Fix an element \(i \in I \). Since \(\theta \leq \theta_i \), we have \(S_n/\theta_i \in H(S_n/\theta) \subseteq H(V) \subseteq V \) which contradicts the choice of \(\theta_i \). This contradiction shows that \(\theta \in \text{Con}_B S_n \).

Finally, we get from Lemma 4(i) that \(\text{Con}_B S_n \cong B_n \). \(\square \)

The proof is complete. \(\square \)

From Definition 3 and Theorem 6, we get the following statement.

Corollary 7. If a quasivariety \(M \subseteq K(\sigma) \) of finite type \(\sigma \) contains a \(B \)-class \(A \) with respect to \(M \) then there is a class \(A' \subseteq A \) which satisfies \((E_1)-(E_4)\) with respect to some class \(B \subseteq Q(A) \), whence \(A' \) is a \(G \)-class with respect to \(B \subseteq Q(A) \).

It follows from [24, Remark 1.5] that a finite \(B^* \)-class satisfies \((B_n^*)\). Therefore Theorems 2 and 6 yield the following statement which generalizes [24, Corollary 3.4].

Corollary 8. Let a quasivariety \(M \subseteq K(\sigma) \) of finite type \(\sigma \) contain a \(B^* \)-class satisfying \((B_n^*)\) and \((B^*)\) with respect to \(M \) and some variety \(V \subseteq K(\sigma) \). Then \(M \) is \(Q \)-universal and \(I(FL(\omega)) \) embeds into \(L_q(M) \).

It is clear that a \(B \)-class \(A \) with respect to a quasivariety \(M \) satisfies \((B^*)\) with respect to \(M \) and \(T \). Moreover according to [13, Remark 2.4], \(A \) satisfies \((B_n^*)\) with respect to \(M \) and \(T \). Therefore we get the following

Corollary 9. Let a quasivariety \(M \subseteq K(\sigma) \) of finite type \(\sigma \) contain a \(B \)-class \(A \) with respect to \(M \). Then there is a class \(A' \subseteq A \) which satisfies \((E_1)-(E_3)\) with respect to some class \(B \subseteq Q(A) \), whence \(A' \) is a \(G \)-class with respect to \(B \subseteq Q(A) \).

As demonstrated in [14], many well-known quasivarieties contain \(B \)-classes. Moreover, it is shown in [24] that many quasivarieties contain \(B^* \)-classes (but do not contain \(B \) classes). In particular, the variety \(DM \) of differential groupoids contains a \(B^* \)-class satisfying \((B_n^*)\) and \((B^*)\) with respect to \(DM \) and the variety \(V(D_1) \), where \(D_1 = \langle \{a,b\}; \cdot \rangle \) and

\[
 a \cdot a = a \cdot b = a, \quad b \cdot a = b \cdot b = b.
\]

Moreover, according to [24, Corollary 6.11] each almost finite-to-finite universal quasivariety contains a \(B^* \)-class satisfying \((B_n^*)\) and \((B^*)\).
References

Marina Vladimirovna Schwidefsky
Sobolev Institute of Mathematics,
4, Acad. Koptyug ave.,
Novosibirsk, 630090, Russia
Novosibirsk State Technical University,
20, Karl Marx ave.,
Novosibirsk, 630073, Russia
Email address: semenova@math.nsc.ru