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ON THE MAXIMAL DISPLACEMENT OF CATALYTIC

BRANCHING RANDOM WALK

E.V. BULINSKAYA

Abstract. We study the distribution of the maximal displacement of
particle positions for the whole time of the existence of population in the
model of critical and subcritical catalytic branching random walk on Z.
In particular, we prove that in the case of simple symmetric random walk
on Z, the distribution of the maximal displacement has a "heavy"tail',
decreasing as a function of the power 1/2 or 1 when the branching
process is critical or subcritical, respectively. These statements describe
the e�ects which had not arisen before in related studies on the maximal
displacement of critical and subcritical branching random walks on Z.

Keywords: catalytic branching random walk, critical regime, subcritical
regime, maximal displacement, "heavy"tails.

1. Introduction

Problems related to the rate of propagation of population (e.g., of particles,
bacteria, individuals, or genes) in space have been attracting the attention of
researchers for a long time. It su�ces to mention, for example, the survey [22] and
the paper [21], devoted to branching random walk (BRW), or the recent works [19]
and [24], in which branching Brownian motion (BBM) is investigated. Among the
models describing the evolution of population in space, a special place is occupied
by catalytic branching processes and, in particular, catalytic branching Brownian
motion (CBBM), see, for example, [2] and [26]. In this paper, we will focus on the
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study of a catalytic branching random walk (CBRW). The distinctive feature of
catalytic branching processes is that they furnish the space with catalysts, and that
only there a particle may produce an o�spring or die. In the absence of catalysts,
particles can only move in space. Thus, the evolution of a particle depends on its
spatial location.

Until now, the problems of propagation of particle population have been conside-
red in the case of supercritical CBRW on Zd, d ∈ N, see, for example, papers [17], [12]
and [10]. In a supercritical regime, the particle population in CBRW survives with
positive probability, and in case of survival, the total and local numbers of particles
grow exponentially fast over time (see [5] and [6]). While in critical and subcritical
regimes the population degenerates locally with probability 1, in some cases it can
survive globally with positive probability (for global and local extinction see, for
example, [1]). Therefore, in supercritical CBRW, as time grows unboundedly, the
rate of propagation of population is of interest, whereas in critical and subcritical
regimes the main attention is paid to the maximal displacement of particles during
the whole history of the existence of the population.

As it turned out, the rate of propagation of particle population in CBRW depends
essentially on �heaviness� of the distribution tails of the walk jump. For this reason,
in the series of papers [7], [8] and [9], we had to consider the cases of "light"tails
separately, regularly varying tails and that of semi-exponential distribution of the
walk jump. In the present work, we are interested in critical and subcritical CBRW
on Z. Thus, in the context of research on the propagation of population, the aim
of the work is to study the maximal displacement of particles for the whole history
of the existence of the population.

For the distribution functions of the maximal displacement of particles for the
whole history of the process we derive a system of equations which has a unique
solution. In such system, there arise the probabilities related to the behavior of
the random walk only on the time interval from the moment the particle leaves
the catalyst until the moment when the particle returns to it for the �rst time,
or the moment when it �rst hits another catalyst. Such probabilities for arbitrary
random walks have not been previously studied. However, in certain signi�cant
cases of a simple random walk (i.e. when the jumps of the walk are performed to
the nearest-neighbor points of the lattice Z), these probabilities can be found on
the basis of solution of the classical �ruin� problem. Therefore, in this case we study
the asymptotic behavior of the distribution tails of the maximal displacement of
particles in critical and subcritical CBRW on Z. Whenever the simple random walk
has a drift, the obtained results are natural and not surprising: the distribution
tail of the maximal displacement either decays exponentially fast, or the random
variable under consideration is extended. However, when the simple random walk is
symmetric, the new results seem unexpected and radically di�erent from the known
statements for BRW studied in the papers [15] and [18].

For the studies of CBRW focusing on areas other than the estimation of the rate
of population propagation, see, for example, [13], [20] and [25].

2. Main results

The description of CBRW model on Z with N catalysts, forming the set W =
{w1, . . . , wN} ⊂ Z, can be found, for example, in [12], [5], [8]. However, for the
sake of the readers' convenience, we will recall it here. Assume that all the random
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variables are de�ned on a complete probability space (Ω,F ,P), where Ω is a sample
space consisting of outcomes ω. Moreover, the index x of the probability Px and
mathematical expectation Ex denote the starting point of CBRW or of the random
walk, depending on the context.

Suppose that at the moment of time t = 0 there is a single particle located
on the lattice at a point z ∈ Z. When z /∈ W , the movement of the particle
until it hits the set of catalysts W for the �rst time is determined by the Markov
chain S = {S(t), t ≥ 0}. The space-homogeneous random walk S is speci�ed
by the in�nitesimal matrix Q = (q(x, y))x,y∈Z, which is assumed irreducible and
conservative, i.e.

(1) q(x, y) = q(x− y, 0) = q(0, y − x) and
∑
y∈Z

q(x, y) = 0,

where q(x, y) ≥ 0 for x 6= y, and q(x, x) ∈ (−∞, 0) for all x, y ∈ Z. Whenever z ∈W ,
or when the particle hits the set W for the �rst time, for instance, on a catalyst
wk, where k = 1, . . . , N , the particle spends there a random time distributed
exponentially with parameter βk > 0. After that, with probability αk ∈ [0, 1),
the particle instantly produces a random number ξk of o�springs which are also
located at wk, and then dies. Otherwise, the particle performs a jump to point
y with probability −(1 − αk)q(wk, y)/q(wk, wk), where y ∈ Z and y 6= wk, and
continues walking until it hits the catalysts set the next time. The new particles
behave as independent copies of the parent particle.

We denote the probability generating function of an arbitrary variable ξk by
fk(s) := Esξk , where s ∈ [0, 1], and set mk := Eξk = f ′k(1) < ∞, where k =
1, . . . , N . We exclude the deterministic case when fk(s) = s, where s ∈ [0, 1], for all
k = 1, . . . , N .

Paper [5] proposed a classi�cation in which CBRW is called supercritical, critical
or subcritical when the Perron root (i.e., the maximal positive eigenvalue) of the
matrix

(2) D =
(
δi,jαimi + (1− αi)Wj

Fwi,wj
(∞)

)N
i,j=1

is larger than, equal to, or less than 1, respectively. Here δi,j = 1, if i = j, and
δi,j = 0 otherwise. Suppose also that Wj := W \ {wj}. Then WjFwi,wj (∞) is a
probability for a random walk wj to hit the point wj avoiding the setWj , whenever
the starting point is wi, where i, j = 1, . . . , N . In [6], it was established that in
supercritical CBRW only the total and local numbers of particles grow exponentially
fast over time, whereas the probabilities of global and local survival are positive. The
propagation rate of the population of particles in supercritical CBRW was studied
in works [17], [12], [7]�[10]. Since in critical and subcritical CBRW the population of
particles degenerates locally contrary to what is observed for supercritical CBRW,
it makes no sense to talk about the rate of propagation of population. However, one
can pose a question regarding the way remote points are visited by the particles
during the whole history of the existence of population. Our work is devoted to
answering this question in cases of critical and subcritical CBRW on Z.

Let Z(t) be a random set of particles existing in CBRW at time t ≥ 0. For
a particle v ∈ Z(t), we denote by Xv(t) its position at time t ≥ 0. Let Mt :=
max{Xv(t), v ∈ Z(t)} be the maximum of CBRW at time t ≥ 0, i.e. the position of
the right-most particle existing in CBRW at time t. We are interested in a random
variable M := max{Mt, t ≥ 0}, which is the maximal displacement (to the right
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from the origin) of CBRW for the whole history of the population of the particle.
Clearly, M ≥ z.

In statements of Theorems 1�4, we consider a simple random walk S on the
lattice Z. It means that

q(x, x+ 1)

−q(x, x)
= p,

q(x, x− 1)

−q(x, x)
= q, q(x, y) = 0, for |x− y| ≥ 2,

where p + q = 1 and p, q ∈ (0, 1). Such random walk is called symmetric when
p = q, and asymmetric otherwise. In other words, during a single jump, a particle
performing a simple random walk on Z moves to the nearest point to the right
with probability p and to the nearest point to the left with probability q. A simple
random walk on Z is recurrent if and only if it is symmetric (see, for example, [3],
Theorem 13.3.1).

To prove Theorems 1�4 we derive equations (9)�(12) for the probabilities under
consideration. These equations are valid for an arbitrary number of catalysts and
for any random walk satisfying condition (1) (not only for a simple random walk).
However, for the subsequent study of solutions of the equations we have to know
the properties of the random walks which can be established easily in the case of a
simple random walk and constitutes a topic of a separate study in the other case.
Therefore, in the present work, our main results are based on the assumption of
the random walk simplicity.

Moreover, for Theorems 1�4, we assume that the set W consists of a single
catalyst located at the origin 0, and the starting point is also positioned at 0.
The asymptotic results in Theorems 1�4 hold true under more general assumptions
of any �nite number of catalysts and an arbitrary starting point. The di�erence
consists in constants arising in the asymptotic estimations. However, the form of
these constants depends essentially on the relative location of both the starting
point and the catalysts as well as the distances between them. That is why the
corresponding bulky results are not reproduced here.

In the next theorem, we establish the asymptotic behavior of the distribution
tail of the random variableM for a critical CBRW on Z, in which the random walk
is simple and symmetric. From here on, whenever we mention a single catalyst, we
assume that, without loss of generality, it is located at 0, and omit the index 1 of
the symbols α1, ξ1, f1, and m1. As mentioned above, a simple symmetric random
walk is recurrent, hence the probability of return from 0 to 0 previously denoted as

∅F0,0(∞) equals 1. Thus, from the de�nition of a critical CBRW (see formula (2))
we obtain the equality αm+ (1−α)∅F0,0(∞) = 1 which is equivalent to m = 1. In
other words, for a recurrent random walk, CBRW with a single catalyst is critical
if and only if the Galton-Watson branching process with an o�spring number ξ1 is
critical.

Theorem 1. Suppose that f ′(1) = 1 and f ′′(1) = σ2 ∈ (0,∞) for CBRW on Z, in
which the random walk S is simple and symmetric. Then we have

(3) P0 (M > x) ∼
√

1− α√
ασ2
√
x
, x→∞.

The result of Theorem 1 is a counterpart of the main result of the paper [15],
derived for the model of a critical BRW on Z. However, in the latter model the
decay rate of the probability P0 (M > x) has an order 1/x2 as x → ∞. Therefore,
the particles in the critical CBRW manage to go further away from the origin
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before returning back and, possibly, dying, than in the model of BRW, in which
the particles may die at any point.

Theorem 2 gives the solution to the same problem as in Theorem 1. The only
di�erence is that now we consider a subcritical CBRW on Z.

Theorem 2. Suppose that m = f ′(1) < 1 for a CBRW on Z, in which the random
walk S is simple and symmetric. Then

(4) P0 (M > x) ∼ 1− α
2α(1−m)x

, x→∞.

The result of Theorem 2 is a counterpart of the main result of the paper [18],
devoted to a subcritical BRW on Z. However, in the latter case the probability
P0 (M > x) decays exponentially fast, which signi�cantly di�ers from our result.
Again, this di�erence is related to the possibility for the particles to die at any
point of the lattice in the BRW model.

Theorems 1 and 2 focus on the case of a simple symmetric random walk on Z. The
two following theorems are devoted to the investigation of critical and subcritical
CBRW, in which the random walk is simple and asymmetric, i.e. it has a drift to
the right when p > q, or to the left when p < q. Because of a drift, the random
walk no longer remains recurrent. Therefore, the criticality condition of CBRW
changes as well. Now we have r := 1− ∅F0,0(∞) ∈ (0, 1), and according to (2), the
criticality of CBRW implies that αm + (1 − α)(1 − r) = 1, which is equivalent to
m = 1 + rα−1(1− α).

In the next theorem, we estimate the distribution tail of the random variable
M for a critical CBRW on Z, in which the underlying random walk is simple and
asymmetric.

Theorem 3. Suppose that m = 1 + rα−1(1 − α) and f ′′(1) = σ2 ∈ (0,∞) for
a CBRW on Z, in which the random walk is simple and asymmetric. Then the
following relations hold:

(5) P0 (M > x) ∼
√

2(1− α)(q − p)√
ασ2

(
p

q

) x+1
2

, for p < q,

(6) P0 (M > x)→ s0, for p > q,

as x → ∞, where s0 ∈ (0, 1) is a unique solution to the equation α(1 − f(1 −
s)) + (2q(1− α)− 1) s+ (1− α)(p− q) = 0 with respect to the unknown variable s,
s ∈ [0, 1].

The following result contains a solution to the problem that is the subject of
Theorem 3, but now we take subcritical CBRW on Z.

Theorem 4. Suppose that m < 1 + rα−1(1 − α) for CBRW on Z, in which the
random walk is simple and asymmetric. Then

(7) P0 (M > x) ∼ (1− α)(q − p)
1− 2p(1− α)− αm

(
p

q

)x+1

, when p < q,

(8) P0 (M > x)→ s0, when p > q,

as x → ∞, where s0 ∈ (0, 1) is a unique root of the equation α(1 − f(1 − s)) +
(2q(1− α)− 1) s + (1 − α)(p − q) = 0 with respect to the unknown variable s,
s ∈ [0, 1].
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The results of Theorems 3 and 4 are natural and expected. Namely, if the random
walk S has a drift to the left (p < q), then the particles in CBRW do not manage
to get far away to the right, since they drift to the left. Conversely, if the random
walk S has a drift to the right (p > q), then there are particles in CBRW which will
go away to the right to �in�nity�, and therefore we will have M =∞ with positive
probability s0.

Thus, in the case of a simple random walk, we �nd the asymptotic behavior
of probability P0 (M > x) as x → ∞ in critical and subcritical CBRW on Z with
a single catalyst at 0. The Theorems 3 and 4 in the case of asymmetric simple
random walk are not surprising and are presented for the sake of completeness.
The results of Theorems 1 and 2 describe new e�ects and are of the main interest.
Indeed, they are radically di�erent from the corresponding statements for BRW
on Z studied in [15] and [18]. The results which we obtained are pioneering in
description of propagation of population in critical and subcritical CBRW. It is
worth mentioning that visible di�erences in the propagation of particle population
in supercritical CBRW and supercritical BRW were revealed only in the second term
of the asymptotic expansions for the corresponding maximums (see, for example,
[11], [12] and [16]). Meanwhile, our research has shown that in critical and subcritical
CBRWs, and the corresponding critical and subcritical BRWs, the di�erences becomes
noticeable even in the �rst asymptotic approximation of the probability P0 (M > x)
as x→∞.

3. Proofs

First of all, we recall the de�nition (see, for example, [4]) of hitting times under
taboo, which we need for deriving equations with respect to the probability under
consideration, denoted by Pz(M > x), where z ∈ Z. Set

τx := inf{t > 0 : S(t) 6= S(0)}I (S(0) = x) ,

i.e. we introduce the exit moment of the random walk S from the starting point
x ∈ Z. As usual, I (A) is an indicator of the event A ∈ F . We denote by

Hτx,y := inf {t ≥ τx : S(t) = y, S(u) /∈ H, τ ≤ u ≤ t} I (S(0) = x)

the time when the random walk S (�rst) hits the point y ∈ Z under taboo on the
visit of the set H ⊂ Z, where y /∈ H and the walk starts at the point x ∈ Z. If
after the start at the point x, the trajectory of the random walk S(·, ω) visits the
set H before it hits the point y, then we naturally set Hτx,y(ω) = ∞. Note that

Wj
Fwi,wj

(∞) = Pwi

(
Wj
τwi,wj

<∞
)
.

Lemma 1. The following system of equations holds true with respect to probabilities
Pwi

(M > x), x ∈ Z, i = 1, . . . , N :

Pwi
(M > x) = αi (1− fi (1− Pwi

(M > x)))(9)

+ (1− αi)
N∑
j=1

Pwi

(
max

{
S(t), 0 ≤ t ≤ Wj

τwi,wj

}
≤ x, Wj

τwi,wj
<∞

)
Pwj

(M>x)

+ (1− αi)Pwi

(
max

{
S(t), 0 ≤ t ≤ min

j=1,...,N
Wjτwi,wj

}
> x

)
,

where Wj := W \ {wj}, j = 1, . . . , N .
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The case when CBRW starts at an arbitrary point z ∈ Z \W is reduced to the
previous one:

Pz (M > x) = Pz

(
max

{
S(t), 0 ≤ t ≤ min

i=1,...,N
Wiτz,wi

}
> x

)
(10)

+

N∑
i=1

Pz (max {S(t), 0 ≤ t ≤ Wiτz,wi} ≤ x, Wiτz,wi <∞)Pwi(M > x) ,

where, obviously, Pz (M > x) = 1 for x < z.
In particular, when W = {0}, the system of equations (9) transforms into the

following equation with respect to P0 (M > x):

P0 (M > x) = α (1− f (1− P0 (M > x)))(11)

+ (1− α)P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞)P0 (M > x)

+ (1− α)P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) .

The case when the start is at a point z 6= 0, z ∈ Z, is reduced to the previous one
as well:

Pz (M > x) = Pz (max {S(t), 0 ≤ t ≤ τz,0} > x)(12)

+ Pz (max {S(t), 0 ≤ t ≤ τz,0} ≤ x, τz,0 <∞)P0 (M > x) .

System (9) and, in particular, equation (11) have a unique solution lying on the
intervals [0, 1]N and [0, 1], respectively.

Proof. To reduce the amount of the work, we consider the most illustrative case
when W = {0} and z = 0. The rest of the proof for Lemma 1 is conducted on
the basis of the ideas similar to that for the main case. By the formula of total
probability and according to the description of the CBRW model, we have

P0(M ≤ x) = α

∞∑
k=0

P(ξ = k) (P0(M ≤ x))
k

+ (1− α)P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞)P0 (M ≤ x)

+ (1− α)P0 (τ0,0 =∞, S(t) ≤ x, t ≥ 0) ,

which is equivalent to (11).
The solution of equation (11) with respect to P0 (M > x) always exists and is

unique, since the solution of the equation

α(1− f(1− s)) = s (1− (1− α)p1)− (1− α)p2

exists and is unique for s ∈ [0, 1], where

p1 := P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) ,

p2 := P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) ,

and, obviously, p1+p2 ≤ 1. Indeed , we have 0 = α(1−f(1)) > −(1−α)p2 for s = 0,
and α(1 − f(0)) ≤ α ≤ 1 − (1 − α)p1 − (1 − α)p2 for s = 1. Therefore, whenever
at least one inequality in the latter relation is strict, the graphs of the functions
α(1− f(1− s)) and s (1− (1− α)p1)− (1−α)p2 for s ∈ [0, 1] have a single (by the
convexity of function f) intersection point on the interval (0, 1). For α(1− f(0)) =
α = 1−(1−α)p1−(1−α)p2 (it is possible in the case of a recurrent random walk and
the null probability for a particle to die without giving an o�spring), the intersection
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of the mentioned graphs is at point s = 1 and there are no other intersection points,
since d

ds (α(1− f(1− s)))s=1 < α < d
ds (s (1− (1− α)p1)− (1− α)p2)s=1. �

From (11), it follows that the asymptotic behavior of probability P0 (M > x) as
x → ∞ is determined by that of P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) and
P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x). Under the general assumptions on the random
walk, these probabilities have not been studied. However, for a speci�c and signi�cant
case of the simple random walk, the study of such probabilities can be reduced to
the classic �ruin problem� that has been already solved. In the following two lemmas,
the formulae for the mentioned probabilities are derived separately for the cases of
a simple symmetric and a simple asymmetric random walks.

Lemma 2. For a simple symmetric random walk S on Z and x ∈ N, the following
equalities hold:

(13) P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) =
2x+ 1

2(x+ 1)
,

(14) P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) =
1

2(x+ 1)
.

Proof. A simple symmetric random walk on Z is recurrent (see, for example, [3],
Theorem 13.3.1). It means that τ0,0 =∞ with probability 0 and

P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) = 1−P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) .

Now we derive a formula for P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) in the case of a
simple symmetric random walk. Since in a random walk the jumps occur to the
adjacent points, in a random event {ω : max {S(t), 0 ≤ t ≤ τ0,0} > x} there are
only such trajectories of S that start at point 0, then pass to point 1 and hit the
point x+ 1 before returning to point 0. Thus, taking into account the results of the
classic �ruin problem� (see, for example, [23], Ch. 1, �9, formula (14)) we come to
relation (14) and, hence, to relation (13). Lemma 2 is proved completely. �

Lemma 3. For a simple asymmetric random walk on Z, the following formulae
are valid:

(15) P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) = p
(q/p)

x+1 − (q/p)

(q/p)
x+1 − 1

+min{p, q},

(16) P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) =
q − p

(q/p)
x+1 − 1

for every x ∈ N.

Proof. According to the total probability formula, we have

P0(max {S(t), 0≤ t≤τ0,0}≤x, τ0,0<∞)=P0(S(t)<0, τ0≤ t<τ0,0, τ0,0<∞)(17)

+ P0 (S(t) ∈ (0, x], τ0 ≤ t < τ0,0, τ0,0 <∞)

= q P−1 (∃t2 : S(t2) = 0, S(t) 6= 0, 0 ≤ t < t2)

+ pP1 (∃t1 : S(t1) = 0, S(t) 6= 0, S(t) 6= x+ 1, 0 ≤ t < t1) .

Here P1 (∃t1 : S(t1) = 0, S(t) 6= 0, S(t) 6= x+ 1, 0 ≤ t < t1) is a probability for the
random walk S to exit the stripe (0, x+ 1) through the lower boundary, when the
starting point is located at 1, see [23], Ch. 1, �9, formula (13). Similarly, in the case
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when the starting point is positioned at−1, P−1 (∃t2 : S(t2) = 0, S(t) 6= 0, 0 ≤ t < t2)
is a probability that the random walk S exits a stripe (−∞, 0) through the upper
boundary. The latter probability can be found based on formula (13) from [23],
Ch. 1, �9 as well, but in this case the probabilities p and q should be swapped, and we
suppose that the upper boundaryB tends to in�nity. Returning to representation (17)
and substituting the expressions obtained for the probabilities, we get

P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞) = p
(q/p)x+1 − (q/p)

(q/p)x+1 − 1
+ qmin

{
p

q
, 1

}
,

which coincides with relation (15).
In a similar way, with the help of formula (10) from [23], Ch. 1, �9, we obtain

P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x)

= pP1 (∃t3 : S(t3) = x+ 1, S(t) 6= 0, S(t) 6= x+ 1, 0 ≤ t < t3) = p
(q/p)− 1

(q/p)x+1 − 1
.

Lemma 3 is proved completely. �

Now we turn to the proof of Theorem 1.

Proof. From equation (11), Lemma 2, and equality 1− f(1− s) = f ′(c)s, valid for
s ∈ [0, 1] and some c ∈ (1− s, 1), it follows that

P0 (M > x) ≤ (αf ′(c) + (1− α))P0 (M > x) + P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) .

If x ∈ Z is large enough, the latter inequality is possible only in the case when
P0 (M > x)→ 0 as x→∞. Then, according to Taylor's formula, we have

1− f(1− P0(M > x))(18)

= f ′(1)P0(M > x)− f ′′(1)

2
(P0(M > x))

2
+ o

(
(P0(M > x))

2
)
.

Hence, from equation (11) it follows that

ασ2

2
(P0(M > x))

2
(1 + o(1))(19)

= (1− α)P0(max {S(t), 0 ≤ t ≤ τ0,0} > x) (1 + o(1))

as x→∞.
Relations (14) and (19) imply the statement of Theorem 1. �

Now we proceed to the proof of Theorem 2.

Proof. Using the same arguments as in the proof of Theorem 1, we conclude that
P0 (M > x) → 0 as x → ∞. However, for a subcritical case, we write Taylor's
formula in the form

(20) 1− f(1− P0(M > x)) = f ′(1)P0(M > x) + o (P0(M > x))

and, reasoning in the same manner as in the proof of Theorem 1, we get

α (1−m)P0 (M > x) (1+o(1)) = (1−α)P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) (1+o(1))

as x→∞. From here, the statement of Theorem 2 follows. �

Recall that r is a probability that the random walk S starting from 0 will not
return to point 0. We will now prove Theorem 3.
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Proof. If p < q, then according to Lemma 3, the following relations hold:

(21) P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞)→ 2p,

(22) P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x) ∼ (q − p)
(
p

q

)x+1

as x→∞. Moreover,

P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞)→ P0 (τ0,0 <∞) = 1− r, x→∞.
Consequently, r = 1− 2p for p < q. By virtue of equation (11), formulae (21), (22),
and equality 1− f(1− s) = f ′(c)s that is valid for s ∈ [0, 1] and some c ∈ (1− s, 1),
we get

P0(M>x)≤(αf ′(c) + (1−α)(1−r))P0(M > x) +P0(max {S(t), 0 ≤ t ≤ τ0,0}>x) .

It follows that P0(M > x)→ 0 as x→∞. Using equation (11), relations (21), (22),
and Taylor's formula in the form (18) once again, we come to statement (5).

If p > q, then Lemma 3 implies that

(23) P0 (max {S(t), 0 ≤ t ≤ τ0,0} ≤ x, τ0,0 <∞)→ 2q

and

(24) P0 (max {S(t), 0 ≤ t ≤ τ0,0} > x)→ p− q
as x → ∞. Then statement (6) follows from equation (11) and the reasoning on
the existence and uniqueness of solution to this equation in the proof of Lemma 1.
Theorem 3 is proved completely. �

It only remains to give the proof of Theorem 4.

Proof. Employing the same arguments as in the beginning of the proof of Theorem 3,
we come to a conclusion that P0 (M > x)→ 0 as x→∞. Then applying relations
(11), (20), (21), and (22), we get formula (7).

Statement (8) follows from relations (11), (23), (24) and the reasoning on the
existence and uniqueness of solution to equation (11), in the proof of Lemma 1.
Theorem 4 is proved completely. �

In conclusion, we want to make a remark regarding the general case of an
arbitrary �nite number of catalysts in the critical CBRW on Z. To investigate
the asymptotic behavior of the solution to the system of equations (9), we have to
implement equivalent transformations of the system according to Cramer's rule (see,
for example, [14], Ch. 1, �7), which results in that the coe�cient before Pwi (M > x)
for every i = 1, . . . , N equals the determinant of the matrix D − I, where the
matrix D is speci�ed in the de�nition of the critical regime and I is the identity
matrix. However, in the critical case det(D − I) = 0. Therefore, similarly to the
case of a single catalyst, all linear terms are reduced and only quadratic terms are
left, including (Pwi (M > x))

2
. Other di�erences in the study of the solutions to

equation (11) and system of equations (9) are not signi�cant and hence we do not
discuss them.

The author expresses gratefully acknowledgements to professors V.A.Vatutin,
V.A.Topchij and S.G.Foss for the helpful discussions. Many thanks to the anonymous
referee for the useful comments that greatly improved the paper.
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