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PERIODIC LOCALLY NILPOTENT GROUPS OF FINITE

c-DIMENSION

A.A. BUTURLAKIN, I.E. DEVYATKOVA

Abstract. According to Bryant's theorem a periodic locally nilpotent
group satisfying minimal condition on centralizers is virtually nilpotent.
The c-dimension of a group is the supremum of lengths of chains of
centralizers. We bound the index of the nilpotent radical of a locally
nilpotent p-group of �nite c-dimension k in terms of k and p.

Keywords: c-dimension, periodic locally nilpotent group, locally nilpo-
tent p-group.

1. Introduction

Let G be a group and A be a subset of G. The set of all elements of G that
commute with the elements of A is called the centralizer of A in G and is denoted
by CG(A).

A group G satis�es the minimal condition on centralizers if every strictly descen-
ding chain of centralizers stabilizes in a �nite number of steps. The class of all such
groups is denoted by Mc.

There are several important classes of Mc-groups: �nite groups, abelian groups,
free groups, and linear groups. The class Mc is closed under taking subgroups, �nite
direct product, and �nite extensions, but it is not closed under taking homomorphic
images and arbitrary extensions [1, Example 1].

A group is called periodic if every element of the group has �nite order. Periodic
Mc-groups were studied in [1, 2]. In particular, in [1] R. Bryant showed that periodic
locally nilpotent Mc-group has a normal nilpotent subgroup of �nite index. Recall
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that a group is called locally nilpotent if every �nitely generated subgroup of the
group is nilpotent.

Following [5], the supremum of lengths of strictly descending chains of centralizers
is called the c-dimension of a group G and is denoted by cdim(G). Observe that
all of the groups listed above are groups of �nite c-dimension. An example of an
Mc-group of in�nite c-dimension was given in [1, Example 2].

It follows from Bryant's result that periodic locally nilpotent Mc-group has the
nilpotent radical, i.e. the largest normal nilpotent subgroup. One can take instead
of Mc-group a group of �nite c-dimension. In this case, two natural questions arise:
whether we can bound the nilpotency class or the index of the nilpotent radical of
a group in terms of c-dimension.

The answer to both questions is negative. In [4] Khukhro constructs the following
example: for any prime p there is a group of c-dimension 3 such that every its
nilpotent subgroup of �nite index has nilpotency class p − 1. The counterexample
to the second question is much simpler: for a prime p take the wreath product
Z∞p o Zp. It has c-dimension 2, but the index of its nilpotent radical is p.

Nevertheless, we can prove the following:

Theorem 1. Let G be a locally nilpotent p-group of c-dimension k. Then the index
of its nilpotent radical is bounded in terms of p and k.

Corollary 1. Let G be a periodic locally nilpotent group of c-dimension k. Then
the index of its nilpotent radical is bounded in terms of p and k, where p is the
largest prime such that the Sylow p-subgroup of G is non-abelian.

Remark. Note that such p always exists, as will be seen in the proof of the corollary.
Observe that the derived length of G itself is bounded by k according to [4,

Lemma 1]. It is unknown whether one can bound the nilpotency class of the
nilpotent radical of p-group of �nite c-dimension k in terms of p and k.

2. Preliminaries

Let us recall some basic properties of c-dimension.

Lemma 1. Let G and K be groups of �nite c-dimension and let A be a subset of
G. Then

1. If H 6 G, then cdim(H) 6 cdim(G);
2. If CG(A) < G, then cdim(CG(A)) < cdim(G);
3. cdim(G×K) = cdim(G) + cdim(K).

The proof of Theorem 1 is essentially based on the proof of the original Bryant
theorem and requires some lemmas from [1].

Let us denote by Zk(G) the k-th member of the upper central series of a group G.

Lemma 2 ([1], Corollary 2.2). Suppose that G is a locally nilpotent Mc-group such
that Zk−1(G) < G, where k is a positive integer. Then Zk−1(G) < Zk(G).

Lemma 3 ([1], Lemma 2.6). Let G be a periodic nilpotent Mc-group. Then G/Z1(G)
has �nite exponent.

Recall that a periodic group G has �nite exponent if there exists a positive
integer e such that xe = 1 for every x in G. The smallest such integer e is called
the exponent of G.
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Lemma 4 ([1], Lemma 2.7). Let G be a locally nilpotent Mc-group such that
G/Zk(G) has �nite exponent for some integer k > 0. Then G is nilpotent.

Lemma 5 ([1], Lemma 2.8). Let D be an elementary abelian group of order
p2, where p is a prime. let n = 1

2 (p2 + p). Then there exist non-trivial elements
x1, x2, . . . , xn of D such that

(x1 − 1)(x2 − 1) . . . (xn − 1) = 0

in the group ring of D over the integers.

We write G = A.B if G has a normal subgroup N isomorphic to A such that
G/N is isomorphic to B.

3. Proofs

For every prime p, de�ne the functions εp, ψp(h, k), h = 0, . . . , k; k ∈ N, and
ϕp(k), k ∈ N as follows:

εp =

{
p, if p 6= 2;

4 if p = 2.

ψp(h, k) = 1, k ∈ {0, 1},
ψp(k, k) = εp, k > 1,

ψp(h, k) = ϕh+1
p (k − 1)ψp(h+ 1, k)

p(p+1)
2 ,

ϕp(k) = ψp(0, k)!.

We are going to prove a more precise version of Theorem 1.

Theorem 2. Let G be a locally nilpotent p-group of c-dimension k. Then the index
of its nilpotent radical is at most ϕp(k).

Proof. We proceed by induction on the c-dimension of G. We may assume that G
is nonabelian, i.e. cdim(G) > 0.

It follows from Lemma 2 that Z1(G) < Z2(G), so there exists u ∈ Z2(G)\Z1(G)
such that its image in the quotient group Z2(G)/Z1(G) has order p. The map
g 7→ [g, u] is a homomorphism from G to Z1(G) with the kernel C = CG(u). Let
us denote by E the image of G under this map. Observe that E is an elementary
abelian group as [g, u]p = [g, up] = 1.

Lemma 1 implies that cdim(C) < cdim(G), so by inductive hypothesis C = N.F ,
where N is the nilpotent radical of C and |F | 6 ϕp(k − 1). Note that N is normal
in G and G/N ∼= F.E.

To complete the proof it is su�cient to show thatG contains a nilpotent subgroup
G0 whose index does not exceed ψp(0, k). Indeed, if such a subgroup exists, then
the index of its core is at most ψp(0, k)! = ϕp(k) as stated.

First, let us construct a rooted tree Γ such that every vertex γ of the tree is
labeled by some centralizer Mγ from Z1(N) (note that di�erent vertices can have
the same label). The depth of the vertex is the length of the path from the tree
root to this vertex.

We label the root of the tree by Z1(N). Now, let γ be the vertex of depth h. We
attach children to γ in the following way:
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Set H = NG(Mγ), K = CG(Mγ). The map : H → H/K is the natural
homomorphism.

If H has no non-cyclic elementary abelian subgroups, then γ is a leaf.
Now let D 6 H be an elementary abelian subgroup of order p2 and let D 6 H

be its preimage. By Lemma 5 there exist elements x1, · · · , xn ∈ D \K, n = p(p+1)
2 ,

such that

(x1 − 1)(x2 − 1) · · · (xn − 1) = 0

in the group ring of D over the integers. Now we attach n new vertices γi to γ with
labels Mγi = CMγ

(xi) < Mγ .
Observe that every path from the root to a leaf corresponds to some chain of

strictly descending centralizers in Z1(N), so Γ is a �nite tree and the depth of every
vertex is at most cdim(G) = k.

Lemma 6. If γ is a vertex of Γ of depth h, then |G : NG(Mγ)| 6 ϕhp(k − 1).

Proof. We use induction on h. If h = 0, then Mγ = Z1(N) and |G : NG(Mγ)| =
1 = ϕ0

p(k − 1).
If h > 0 then γ has the parent vertex δ. Let H = NG(Mδ), K = CG(Mδ),

L = CH(D) and let L be the preimage of L.
Since L normalizes Mγ , we have

|G : NG(Mγ)| 6 |G : L| = |G : H||H : L|.

Observe that the index of L inH is at most the order of the commutator subgroup

H
′
of H. Indeed, let d1, . . . , ds be some elements of distinct conjugacy classes of L

in H. Then for every i > 1 there exists d in D such that
[
d, di

]
6=
[
d, d1

]
. Hence,

the order of H
′
is not less than the index of L.

Since Mδ is a central subgroup of N , H is a homomorphic image of a subgroup

of F.E, so |H ′| 6 |F | 6 ϕp(k − 1). By induction hypothesis, |G : H| 6 ϕhp(k − 1)
and we have

|G : NG(Mγ)| 6 ϕh+1
p (k − 1).

�

Lemma 7. For every vertex γ of Γ of depth h, there exists a subgroup G0 6 G
such that |G : G0| 6 ψp(h, k) and Mγ 6 Zm(G0) for some positive integer m.

Proof. We use the decreasing induction on h.
Let γ be a leaf of depth h. Then H has no non-cyclic elementary abelian

subgroups, which means that it is �nite. Indeed, assume that H is in�nite. It
has �nite exponent, so there exists an element v of the largest order. Since the

commutator subgroup H
′
is �nite, the centralizer CH(v) has �nite index, so it is

in�nite. Then there exists an element w ∈ CH(v) \ 〈v〉. The group 〈v, w〉 is abelian
and non-cyclic; hence, it contains non-cyclic elementary abelian subgroup, so we
obtain a contradiction.

Therefore, H is �nite, so either it is cyclic or p = 2 and H is a generalized
quaternion group (see, for example, [3, Theorem 6.11]). We have |H : Φ(H)| 6 εp,

where Φ(H) is a Frattini subgroup of H and εp is de�ned in the beginning of this
section.

Set G0 = K. We have Mγ 6 CG(G0) ∩G0 = Z1(G0) and

|G : G0| 6 |G : H||H : K| 6 ϕhp(k − 1)|H|,
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|H| = |H : Φ(H)||Φ(H)|,
|Φ(H)| = |Φ(H/K)| 6 |Φ(H/N)| 6 |F |.

Therefore,

|G : G0| 6 εpϕhp(k − 1)ϕp(k − 1) 6 ϕh+1
p (k − 1)ψp(h+ 1, k) = ψp(h, k).

Now let γ be a branch (i.e. γ is not a leaf) of depth h, γi are its children for
i = 1, . . . , n. Then by induction hypothesis there exist subgroups Gi of G such that
|G : Gi| 6 ψp(h+ 1, k) and Mγi 6 Zmi(Gi).

If we set G0 = L ∩G1 ∩ · · · ∩Gn, then

|G : G0| 6 |G : L|
n∏
i=1

|G : Gi| 6 ϕh+1
p (k − 1)(ψp(h+ 1, k))n = ψp(h, k).

Now we show that Mγ 6 Znm(G0), where m = max{m1, . . . ,mn}.
L acts on Mγ by conjugation, so we may think of Mγ as of L-module. Observe

that Mγi 6 Zm(G0).
We have

Mγ(x1 − 1)(x2 − 1) · · · (xn − 1) = 0,

consequently,

Mγ(x1 − 1)(x2 − 1) · · · (xn−1 − 1) 6 CMγ (xn) = Mγn 6 Zm(G0).

Then

Mγ(x1 − 1)(x2 − 1) · · · (xn−1 − 1)(G0 − 1)m = 0.

Since all xi are central elements of L, we obtain

Mγ(G0 − 1)m(x1 − 1)(x2 − 1) · · · (xn−1 − 1) = 0.

By continuing in a similar way, we obtain

Mγ(G0 − 1)nm = 0.

It is equivalent to the inclusion Mγ 6 Znm(G0). �

Now we �nish the proof of Theorem 2 by applying Lemma 7 to the root γ.
We have Mγ = Z1(N) 6 Zm(G0). It follows from Lemma 3 that the quotient
group N/Z1(N) has �nite exponent; therefore, so does G0/Zm(G0). Therefore, G0

is nilpotent by Lemma 4, and the index of G0 in G is no more than ψp(0, k). �

One can easily derive Corollary 1 from Theorem 2.

Proof of Corollary 1. A periodic locally nilpotent group can be represented as a
direct product of its Sylow subgroups G =

∏
Op(G). Since cdim(G×H) = cdimG+

cdimH, there are only �nitely many primes p such that Op(G) is nonabelian (i.e.
such that cdim(Op(G)) > 0). We apply Theorem 2 to Op(G) for every such p. Then
Op(G) = Np.Fp, where Np is the nilpotent radical of Op(G) and |Fp| 6 ϕp(k). Np
is a normal nilpotent subgroup of G for every p; thus, their direct product N is also
a nilpotent normal subgroup of G and

|G : N | 6
∏

ϕp(k),

where ϕp(k) = 1 when Op(G) is abelian.
Observe that the right-hand side of the inequality can be bounded in terms of k

and the largest p such that Op(G) is nonabelian. �
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In the end, we prove some small re�nement of Bryant's result about the structure
of locally nilpotent groups satisfying the minimal condition on centralizers.

Theorem 3. Let G be a periodic locally nilpotent group satisfying the minimal
condition on centralizers and let N be its nilpotent radical. Then Z1(N) = CG(N).

Proof. Let us denote by C the centralizer of Z1(N) in G. We start by proving that
C = N . The inclusion C > N is obvious. To prove the converse, we show that C is
nilpotent.

Since Z1(C) > Z1(N), the quotient group C/Z1(C) is a homomorphic image of
C/Z1(N), so C/Z1(C) has a �nite exponent by Lemma 3. Thus, C is nilpotent by
Lemma 4, and normal in G as a centralizer of a normal subgroup; hence, C 6 N .

We have N = CG(Z1(N)) > CG(N); therefore CG(N) = Z1(N). �
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