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Abstract. We will study relationship between a convolution equation
of second kind on a �nite interval and the Riemann �Hilbert boundary
value problems. In addition, as a consequence of the results obtained in
the work, Theorem 2 of the following article will be supplemented [3].

Keywords: Riemann boundary value problems, factorization of matrix
functions, partial indices, stability, unique, convolution equation, trunca-
ted Wiener �Hopf equation.

1. Introduction

This paper studies relationship between a convolution equation of second kind on a
�nite interval (which is also called a truncated Wiener�Hopf equation) and Riemann
boundary value problems (also referred to as Riemann�Hilbert boundary value problems).

The following convolution equation of second kind on a �nite interval (0, τ) is considered:

u(t)−
τ∫

0

k(t− s)u(s) ds = f(t), t ∈ (0, τ), (0.1)

where

k ∈ L1(−τ, τ), f ∈ L1(0, τ), τ > 0. (0.2)

It is easy to see that the values of the function k(t) outside of the interval (−τ, τ) have
no a�ect on the solutions of equations (0.1). For convenience, we assume that k(t) is a
de�ned function as t ∈ (−τ, τ) and arbitrary enough as t /∈ (−τ, τ):

k ∈ L1

(
ea|x|;R

)
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is a space with a norm

||k|| =
∞∫
−∞

|k(t)|ea|t| dt, a > 0.

It is well-known that there are theories developed for convolution equation of second kind
on a semi-in�nite interval (Wiener�Hopf equations) and the scalar Riemann boundary
value problem (for example, see [1�2]). The interrelation between Wiener�Hopf equation
and Riemann boundary value problem was found in the middle of the previous century
(see historical information in [2]). For truncated Wiener�Hopf equations (for the problem
(0.1)�(0.2)), a general theory has not been developed by the present time. Only more
recently a generalization of the Wiener�Hopf method for the problem (0.1)�(0.2) was
obtained. In papers [3],[4, Lemma 1.1],[5, Theorem 1], the relationship (and equivalence
conditions) between convolution equations on a �nite interval with an arbitrary kernel from
L1(0, τ) and Riemann boundary problem with a matrix coe�cient admitting a standard
factorization in the Wiener algebra has been found. The authors of paper [3] have obtained
for the �rst time generalization of the Wiener�Hopf method for problem (0.1)�(0.2) under
condition of existence of a unique solution of the latter (and also for the case of truncated
Wiener�Hopf equation system). In the second half of the previous century, the works of
M.P. Ganin, B.V. Pal'sev, Y.I. Novokshenov, I.M. Spitkovsky, Y.I. Karlovich and others
gave �rst results on generalization of the Wiener�Hopf method for the case of truncated
Wiener�Hopf equation for special kernels and (or) matrix functions which do not lie in
the Wiener algebra and hence do not admit standard factorization in the Wiener algebra
(for history of the question, see, for example, [6]).

In this paper, the connection is found between problem (0.1)�(0.2) and the Riemann
boundary problem in the Wiener algebra whose matrix coe�cient (we denote it by Gβ(x))
parametrically depends on two functions β±(x) and admits standard factorization. Moreover,
Gβ = G as β± = 0, whereG(x) is a matrix coe�cient of the Rienmann problem, considered
in papers [4],[5]. Given

β±(x) = 1 + F{k(t)θ(±t)}(x),

where θ is the Heaviside function, and F is the Fourier transform, the matrix Gβ(x) will
coincide with the matrix A(x), whose factorization is studied in [3]. Taking into account
the fact that the results in [4],[5] are obtained due to the considerations distinct from such
in [3], and the matrices G and A are (fundamentally) di�erent, relationship between the
matrices G and A, established in our work, constitutes an important complement to the
results of papers [3] and [4]�[5]. Apart from that, in the present work we have obtained
more general results for problem (0.1)�(0.2) compared to the ones in [3]�[5], and have
conducted comparative analysis of papers [3] and [4]�[5].

Before proceeding directly to the Riemann boundary problems and relationship between
those and the truncated Wiener�Hopf equation, we introduce the following designations.
For 1 ≤ n,m ≤ 2, assume that Ln×m is a space n×m of matrix functions with elements
from L1(R), and Ff is a Fourier image of the matrix function f ∈ Ln×m:

Ff(x) =

∞∫
−∞

f(t)eixt dt, x ∈ R,

where R is the extended real line (R is the real line); Wn×n is the Wiener algebra of
continuous matrix functions of the form C +Ff , where C is a constant matrix of order n
and f ∈ Ln×n; Wn×n

+ (Wn×n
− ) is a subalgebra in Wn×n, consisting of matrix functions of

the form C +Ff , such that f(t) = 0 as t < 0 (as t > 0); given C=0, we assign a subscript
0 to the corresponding algebras and subalgebras (Wn×n

0 , Wn×n
0± ). As n = 1, we drop the

superscript n× n of W . If B is some algebra, we denote by GB the group of invertible
elements in B.
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Consider the following Riemann boundary value problem for vector functions Φ± ∈
W 2×1

0± on the line R:
Φ+(x) = G(x) Φ−(x) + g(x), x ∈ R, (0.3)

where

G ∈ GW 2×2, g ∈W 2×1
0 . (0.4)

Here the classes of functionsW 2×1
0 , W 2×1

0± are de�ned similarly to the classesW 2×2
0 , W 2×2

0± ,

respectively. For example, the condition Ψ+ ∈W 2×1
0+ means that

Ψ+ = (Ψ+
1 ,Ψ

+
2 )T , Ψ+

j ∈W0+, j = 1, 2,

where AT denotes the transpose of a matrix A.
Note also the well-known results from the theory of Riemann boundary problem and

factorization of matrix functions (see, for example, [7, Chapter 6],[8, §7], [9, Chapter I]).
We say that the matrix G ∈ GW 2×2 admits standard (left) factorization if it is

represented in the form of the following matrix product:

G(x) = G+(x)D(x)G−(x), x ∈ R,

where G± ∈ GW 2×2
± (G± are called the factors), D(x) is a diagonal matrix function,

D(x) =
{(x− i

x+ i

)κ1

,

(
x− i
x+ i

)κ2}
,

κ1 ≥ κ2 are partial indices of the matrix G (integers), and

κ := Ind det G(t) ≡ 1

2π
∆R arg det G(x) =

2∑
j=1

κj

is the total index of the matrix G.

The Riemann boundary value problem is well-de�ned depending on the partial indices
of its matrix coe�cient. In particular, we have the following theorem:

Theorem 1. Let the total index of the matrix G(t) equal zero. For the numbers p and l
(where l is a number of linearly independent solutions, and p is a number of conditions
for solvability of the Riemann problem (0.3)�(0.4)) to be stable with respect to elements
of the matrix G(x) it is necessary and su�cient that the partial indices of the matrix
G(x) equal zero. Moreover, if the partial indices of the matrix G(x) equal zero, then for
the homogeneous Riemann problem (0.3)�(0.4) only a trivial solution exists, and the non-
homogeneous problem is correctly solvable (a solution exists, is unique and stable with
respect to the coe�cients G and g of the problem).

§1. Preliminary statements. The basis for research. We de�ne on the algebra
W0 projectors P+

0 and P−0 complementary to each other by formulas

P±0 : W0 → W0±, P
±
0 Fg(x) =

∞∫
−∞

eixtg(t)θ(±t) dt, x ∈ R.

Note the following properties of the linear operators P±0 :

P+
0 + P−0 = I, F−1{P±0 Fg(x)}(t) = g(t)θ(±t), t ∈ R,

where I is the identity operator, and F−1 is the reverse Fourier transform.
Set

k±(t) := θ(±t)k(t), Fk±(x) :=

∞∫
−∞

eixtk±(t) dt, f(t) := 0, t∈(0, τ). (1.1)
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Consider the problem of �nding the function u ∈ L1(0, τ), u(t) = 0, t /∈ (0, τ) from
the functional equation

Fu(x)− P+
0 {Fk−(x)Fu(x)} − eixτP−0 {e

−ixτFk+(x)Fu(x)} =

= Ff(x), x ∈ R. (1.2)

The following proposition holds [4, Statement 1.2] (see also [5, Statement 2]):

Proposition 1. Equation (0.1) with condition (0.2) is equivalent to equation (1.2) with
condition u ∈ L1(0, τ), u(t) = 0, t /∈ (0, τ).

Set

G(x) := − 1

Λ−(x)

(
1 −eixτFk−(x)

e−ixτFk+(x) 1−Fk−(x)−Fk+(x)

)
, (1.3)

where

Λ±(x) = 1−Fk±(x);

g(x) :=
Ff(x)

Λ−(x)

(
Fk−(x), e−ixτFk+(x)

)T
. (1.4)

We may assume in advance [4, Remark 1.1] that

Λ±(x) 6= 0, x ∈ R. (1.5)

Indeed, if the inequalities (1.5) do not hold, then instead of equation (0.1) we consider
a similar equation with the kernel k1(t) = e−th k(t) and the right side f1(t) = e−th f(t),
where for the parameter h the inequality −a < h < a is valid. For the newly obtained
convolution equation we can always choose a parameter h such that the inequalities in
(1.5) will have been satis�ed, because only for a �nite number of di�erent values of the
parameter h these inequalities might not hold since

Λ±1 (x) = Λ±(x+ ih), x ∈ R,
and since by construction the functions Λ±(z) can have only a �nite number of zeros on
the strip −a <Im z < a. Note that the restriction on the behavior of the kernel k(t) on
in�nity was adopted only to justify (as mentioned above) the fact that inequalities (1.5)
hold.

Consider the Riemann boundary problem (0.3) with conditions (1.3)�(1.5). The following
theorem holds (see [4, Lemma 1.1], [5, Theorem 1]):

Theorem 2. The problem (0.1)�(0.2) is equivalent to the Riemann boundary problem
(0.3) under conditions (1.3)�(1.5) with the restriction

û(x) := Φ+
1 (x) + eixτΦ−2 (x) + Ff(x) ∈W0+, e

−ixτ û(x) ∈W0−. (1.6)

Solutions of the problem (0.1)�(0.2) and the boundary problem (0.3),(1.3)�(1.6) are
connected by equations

Φ1(x) = Fk−(x)Fu(x), Φ2(x) = e−ixτFk+(x)Fu(x), (1.7)

Fu(x) = Φ+
1 (x) + eixτΦ−2 (x) + Ff(x)

(
û(x) = Fu(x)

)
, (1.8)

where

Φ = Φ+ + Φ−, Φ±(x) = P±0 Φ(x).

Remark 1. It is easy to see that the restriction (1.6) is satis�ed if a solution of the
problem (0.1)�(0.2) exists (see formulas (1.7)�(1.8)). Moreover, the restriction (1.6) is
satis�ed in advance if

||k±|| < 1. (1.9)

Indeed, it follows from condition (1.9) that |Λ±(z)| > 0, ± Im z ≥ 0. Then from the �rst
equality of system (0.3) and the second equality of the following system

G−1(x) Φ+(x) = Φ−(x) + g0(x), x ∈ R,
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where

G−1(x) = − 1

Λ+(x)

(
1−Fk−(x)−Fk+(x) eixτFk−(x)
−e−ixτFk+(x) 1

)
,

g0(x) =
Ff(x)

Λ+(x)

(
Fk−(x), e−ixτFk+(x)

)T
,

we have respectively that

e−ixτΦ+
1 (x) ∈W0−, e

ixτΦ−2 (x) ∈W0+.

The obtained conclusion guarantee that restriction (1.6) is satis�ed.
We can see that the condition (1.9) is weaker compared to the condition

||k|| < 1.

Elementary considerations show that

det G =
Λ+

Λ−
, G ∈ GW 2×2, g ∈W 2×1

0 .

It follows from the above mentioned inclusion for G that a standard factorization for the
matrix G exists.

It is easy to see that Theorems 1�2 imply

Corollary 1. If the partial indices of the matrix G(x) equal zero, then the homogeneous
truncated Wiener�Hopf equality (0.1) has a unique (trivial) solution in L1(0, τ) and

(i) the problem (0.1)�(0.2) is correctly solvable in L1(0, τ) (a solution exists, is unique
and stable with respect to the coe�cients k, f of the equality in the norm L1),

(ii) the Riemann boundary value problem (0.3) with respect to conditions (1.3)�(1.4)
is also correctly solvable in the Wiener algebra,

(iii) solutions of equality (0.1) and the Riemann boundary problem (0.3) are connected
by equalities (1.7)�(1.8).
If the restriction (1.9) is satis�ed and the homogeneous problem (0.1)�(0.2) has a unique
(trivial) solution in L1(0, τ), then the partial indices of the matrix G(x) equal zero.

Set

A(x) =

(
e−ixτFk(x) −1−Fk(x)
1−Fk(x) eixτFk(x)

)
, x ∈ R. (1.10)

We have

det A = 1, A ∈ GW 2×2.

We mention the following theorem from [3] in the case of equation (0.1) to compare it to
Corollary 1.

Theorem 3. The partial indices of the matrix A(x) equal zero if and only if the homogeneous
truncated Wiener�Hopf equation (0.1) has a unique (trivial) solution in L1(0, τ).

In [3], it was also established that in the case when a canonical factorization of the
matrix A(t) exists, the solution of the problem (0.1)�(0.2) is written in explicit formulas
in terms of that factorization. Moreover, it is shown that the above mentioned results of
paper [3] remain valid if the kernel k ∈ L1(R) constitutes an arbitrary extension of the
kernel k from the interval (−τ, τ) to the real line.

Note that the results in [3] are obtained only for the case when the partial indices of
the matrix A(x) equal zero, in contrast with [4]�[5] (see Theorem 2 in our paper).

Next we obtain the analogue of Theorem 2 for the matrix A, thus complementing
paper [3] for the case of non-zero partial indices of the matrix A. We will also �nd a
direct relationship between the matrices G and A. In order to do that, we will solve a
problem that is more general: we construct a matrix Gβ(x) parametrically dependent on
two functions β± ∈W0± and possessing the following property:

Gβ = G when β± = 0; Gβ(x) = {1, −1}A(x)I1 when β± = Fk±(x),
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where {1, −1} is a diagonal matrix with elements 1 and -1, and I1 is an anti-diagonal
matrix with identity elements. Thus the relationship between the matrices G and A is
established. Using the same reasoning as in [4]�[5], we obtain an analogue of Theorem 2
for the matrix Gβ(x).
§2. Constructing the matrix Gβ(x). The main results of the work. By the

property of the operators P±0 , we write the functional equation (1.2) in the equivalent
form (

1−Fk(x)
)
Fu(x) + P−0 {Fk−(x)Fu(x)}+ eixτP+

0 {e
−ixτFk+(x)Fu(x)} =

= Ff(x), x ∈ R. (2.1)

Set
b1(x) := Fk−(x) + β+(x), b2(x) := e−ixτ

(
Fk+(x) + β−(x)

)
, (2.2)

where
β± ∈W0±, F−1β± ∈ L1

(
ea|t|;R

)
.

From (2.1) and taking into account the evident chain of equalities

P−0 {β
+(x)Fu(x)} = P+

0 {e
−ixτβ−(x)Fu(x)} = 0,

we get(
1−Fk(x)

)
Fu(x) + P−0 {b1(x)Fu(x)}+ eixτP+

0 {b2(x)Fu(x)} = Ff(x), (2.3)

Hence, from Proposition 1 it follows that the following statement is true.

Proposition 2. Equation (0.1) with condition (0.2) is equivalent to equation (2.3) with
the condition u ∈ L1(0, τ), u(t) = 0, t /∈ (0, τ).

Using the standard method (as in [4, the proof of Lemma 1.1], [5, the proof of Theorem
1]), from Proposition 2 we obtain a Riemann boundary value problem on determining the
functions Φ± ∈W 2×1

0± from the boundary condition

Φ+(x) = Gβ(x) Φ−(x) + gβ(x), x ∈ R, (2.4)

where

Gβ(x) = − 1

Λ−β (x)

(
1 + β+(x) + β−(x) −eixτ

(
Fk−(x) + β+(x)

)
e−ixτ

(
Fk+(x) + β−(x)

)
1−Fk−(x)−Fk+(x)

)
, (2.5)

Λ±β (x) = 1−Fk±(x) + β±(x), (2.6)

gβ(x) =
Ff(x)

Λ−β (x)

(
Fk−(x) + β+(x), e−ixτ

(
Fk+(x) + β−(x)

))T
. (2.7)

For the ease of presentation, we assume that the inequalities similar to (1.5) hold:

Λ±β (x) 6= 0, x ∈ R. (2.8)

Here the remark made after condition (1.5) remains true.
The following theorem holds:

Theorem 4. The problem (0.1)�(0.2) is equivalent to the Riemann boundary value problem
(2.4)�(2.8) with the restriction

û(x) :=
Φ+

1 (x) + eixτΦ−2 (x) + Ff(x)

1 + β+(x) + β−(x)
∈W0+, e

−ixτ û(x) ∈W0−. (2.9)

Solutions of the problem (0.1)�(0.2) and the Riemann boundary value problem (2.4)�
(2.9) are interrelated by equalities

Φ1(x) = b1(x)Fu(x), Φ2(x) = b2(x)Fu(x), (2.10)

Fu(x) =
Φ+

1 (x) + eixτΦ−2 (x) + Ff(x)

1 + β+(x) + β−(x)

(
û(x) = Fu(x)

)
, (2.11)

where
Φ = Φ+ + Φ−, Φ±(x) = P±0 Φ(x) ∈W 2×1

0± .
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The proof of Theorem 4, in fact, repeats those of Lemma 1.2 in [4] and Theorem 1 in
[5]. Hence, we mention only the scheme of the proof of Theorem 4 here without going into
details.

First, suppose that a solution to the problem (0.1)�(0.2) exists. Then by Proposition 2
the equality (2.3) is true. From the equality (2.3) we directly get(

1−Fk(x)
)
Fu(x) + Φ−1 (x) + eixτΦ+

2 (x) = Ff(x), x ∈ R, (2.12)

having de�ned in advance the functions Φ1 and Φ2 by formulas in (2.10). Multiplying
the left-hand and right-hand sides of equality (2.12) by the function bj(x), j = 1, 2, we
correspondingly get the following equalities:(

1−Fk(x)
)(

Φ+
1 (x)+Φ−1 (x)

)
+b1(x)Φ−1 (x)+b1(x)eixτΦ+

2 (x) = b1(x)Ff(x), x ∈ R, (2.13)(
1−Fk(x)

)(
Φ+

2 (x) + Φ−2 (x)
)

+ b2(x)Φ−1 (x)+

+b2(x)eixτΦ+
2 (x) = b2(x)Ff(x), x ∈ R. (2.14)

We write the system of equalities (2.13)�(2.14) in vector form:

B1(x)Φ+(x) +B2(x)Φ−(x) = Ff(x)
(
b1(x), b2(x))T , (2.15)

where

B1(x) =

(
1−Fk(x) eixτ b1(x)

0 1−Fk(x) + eixτ b2(x)

)
,

(2.16)

B2(x) =

(
1−Fk(x) + b1(x) 0

b2(x) 1−Fk(x)

)
.

For x ∈ R such that 1− Fk(x) 6= 0, we multiply the left-hand and right-hand sides of
the equality (2.15) on the left by the matrix

B−1
1 (x) =

1

db(x)

(
1−Fk(x) + eixτ b2(x) −eixτ b1(x)

0 1−Fk(x)

)
,

where db(x) = detB1(x) =
(
1 − Fk(x)

)
Λ−β (x). After trivial transformations and

reduction in the left-hand and right-hand sides of the newly obtained equality by the
factor 1 − Fk(x), we get the required boundary condition (2.4). The latter is now true
for every x ∈ R due to the fact that the analytical function 1 − Fk(z) on the strip
−a <Im z < a can have no more than a �nite number of zeros on this strip (by analogy
with the evident statement 1.1 in [4]).

From (2.3) and the following property of the projectors P+
0 + P−0 = I, it follows that(

1 + β+(x) + β−(x)
)
Fu(x) = Φ+

1 (x) + eixτΦ−2 (x) + Ff(x), x ∈ R.
In the above mentioned equality, putting û(x) := Fu(x), we obtain that restriction (2.9)
is satis�ed.

Equalities in (2.10)-(2.11) hold by construction.
We now prove the second half of the statement of Theorem 4. Let the Riemann

boundary value problem (2.4)�(2.9) have a solution. From the �rst equality of system
(2.4), we get(

Φ+
1 (x) + Φ−1 (x)

)
(1 + β+(x) + β−(x)) =

(
Φ+

1 (x) + eixτΦ−2 (x) + Ff(x)
)
b1(x).

Then from restriction (2.9), we have that

Φ1(x) = û(x)b1(x). (2.17)

We will show that
Φ2(x) = û(x)b2(x). (2.18)

In order to do so, �rst we multiply the boundary condition (2.4) on the left by the vector-
row

(
b2(x), −b1(x)

)
, taking into account the equality(

b2(x), −b1(x)
)
Gβ(x) = −

(
b2(x), −b1(x)

)
,
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which can be directly obtained, and we have that

b2Φ1 = b1Φ2. (2.19)

From (2.17) and (2.19), we get

b1(x)
(
Φ2(x)− û(x)b2(x)

)
= 0, x ∈ R. (2.20)

The function b1(z) is analytical on the strip −a <Im z < a by construction, hence, it can
have only a �nite number of zeros on every interval of R. Then equality (2.18) follows
from equality (2.20) due to continuity of the functions Φ2, û, b2 in (2.20) and the following
equality

Φ2(±∞)− û(±∞)b2(±∞) = 0.

It only remains to show that û = Fu. From the second equality of the system (2.4), we
have that

Φ2(x)
(
1−Fk(x)

)
+ b2(x)Φ−1 (x) + b2(x)eixτΦ+

2 (x) = b2(x)Ff(x). (2.21)

Substituting in (2.21) the expression for Φ2 from (2.18) and reducing in the newly obtained
equality its left-hand and right-hand sides by the factor b2, we get

û(x)
(
1−Fk(x)

)
+ Φ−1 (x) + eixτΦ+

2 (x) = Ff(x). (2.22)

Reduction of the left-hand and right-hand sides of equality (2.21) by the factor b2 is a well-
de�ned operation due to the reasoning similar to that for the reduction by the factor b1 in
equality (2.20). Set Fu(x) := û(x). Then from (2.22), we get (2.3). Then by Proposition
2 the problem (0.1)-(0.2) has a solution. Theorem 4 is proved.
§3. Some corollaries of Theorem 4. Direct considerations show that

detGβ =
Λ+
β

Λ−β
, Gβ ∈ GW 2×2, gβ ∈W 2×1

0 .

From the above mentioned inclusion for Gβ it follows that there exists a standard factoriza-
tion for the matrix Gβ .

It is easy to see that Theorem 4 implies

Theorem 5. Let the inequalities in (2.8) hold. Then if the partial indices of the matrix
Gβ(x) in (2.5) equal zero, then the truncated Wiener�Hopf equation (0.1) under condition
(0.2) has a unique solution in L1(0, τ).

Converse statement: in the homogeneous truncated Wiener�Hopf equation (0.1) with
condition (0.2) has a unique (trivial) solution in L1(0, τ) and every solution of the Riemann
boundary value problem (2.4)-(2.7) complies with the restriction (2.9), then the partial
indices of the matrix Gβ(x) in (2.5) equal zero. Moreover, the solutions of the problem
(0.1)�(0.2) and the Riemann boundary value problem (2.4)�(2.8) are connected by equalities
(2.10)�(2.11).

Consider the case when

β± = Fk±. (2.23)

By de�nition of the functions b1, b2,Λ
±
β , we have that

b1 = Fk, b2 = e−ixτFk, Λ±β = 1, 1 + β+ + β− = 1 + Fk.
Then in this case the matrix Gβ(x) will be interrelated with the matrix A(x) in (1.10) by
a simple equation

Gβ(x) = {1, −1}A(x)I1. (2.24)

Now we expand Theorem 3. We consider a Riemann boundary value problem with a matrix
coe�cient A(x) and get the relationship between this boundary value problem and the
problem (0.1)�(0.2). In order to do so, we multiply the left-hand and right-hand sides of
the boundary condition (2.4) by a diagonal matrix {1,−1} and set

Ψ+(x) := {1,−1}Φ+(x), Ψ−(x) := I1Φ−(x),
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q(x) := {1,−1}gβ(x) = Fk(x)Ff(x)(1, −e−ixτ )T .

Taking (2.24) into account, we obtain a Riemann boundary value problem on de�ning
functions

Ψ± ∈W 2×1
0±

by the boundary condition:

Ψ+(x) = A(x) Ψ−(x) + q(x), x ∈ R. (2.25)

It is easy to see that Theorem 4 and [3, Theorem 2] imply

Theorem 6. Let the condition (2.23) be satis�ed. Then the problem (0.1)�(0.2) is equivalent
to the Riemann boundary value problem (2.25) with a restriction

û(x) :=
Ψ+

1 (x) + eixτΨ−1 (x) + Ff(x)

1 + Fk(x)
∈W0+, e

−ixτ û(x) ∈W0−. (2.26)

Solutions of the problem (0.1)�(0.2) and the Riemann boundary value problem (2.25)�
(2.26) are connected by the equalities

Ψ+
1 (x) = P+

0 {Fk(x)Fu(x)}, Ψ+
2 (x) = −P+

0 {e
−ixτFk(x)Fu(x)},

Ψ−1 (x) = P−0 {e
−ixτFk(x)Fu(x)}, Ψ−2 (x) = P−0 {Fk(x)Fu(x)},

where

Fu = û.

The Riemann boundary value problem (2.25)�(2.26) has a unique solution if and only if
the homogeneous problem (0.1)�(0.2) has a unique (trivial) solution in L1(0, τ).

Note that the task of calculating partial indices of matrix functions in general form
from the algebra W 2×2, speci�cally, matrices G, A and Gβ , is an open problem (see,
for example, [10, Introduction],[11]). However, the approach developed in papers [4]�[5]
provided a possibility to study (thoroughly enough) the problem (0.1)�(0.2) with a periodic
kernel [12], in fact, in this case the partial indices of the matrix G(x) from (1.3) were found.
Moreover, Theorem 2 allowed us to relate the ancient problem of complex analysis � the
problem of R-linear conjugation (known also as Markuschewisch problem or generalised
Riemann boundary value problem) � to the problem (0.1)�(0.2) and to �nd new e�ective
conditions for correct solvability of these two problems [13].

We would like on this occasion to make a remark to the work [10], in which a method of
de�ning partial indices of matrix functions with a partial symmetry is proposed. Theorem
3 in [10] is not true (the proof of the theorem contains a mistake). In other words, the
proposed method in [10] does not apply to matrices with the following symmetry:

G(x) = G−1(−x), x ∈ R.

The corollaries of Theorem 3 are not valid as well: Proposition 1, Corollary 2, Lemma 1,
and Theorem 4. We are thankful to I.M. Spitkovsky for his message (sent to us in due
time) regarding the mistake in [10, Theorem 3].
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