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TWO LIMIT CYCLES FOR A CLASS OF DISCONTINUOUS

PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO

PIECES

A. BERBACHE

Abstract. This paper is a survey on the study of the maximum
number of limit cycles of planar continuous and discontinuous piecewise
di�erential systems formed by two linear centers and de�ned in two pieces
separated by

Σ =
{

(x, y) ∈ R2 : x = ly, l ∈ R and y ≥ 0
}

∪
{

(x, y) ∈ R2 : y = 0 and x ≥ 0
}
.

We restrict our attention to the crossing limit cycles, i.e. to the limit
cycles having exactly two or four points on Σ. We prove that such
discontinuous piecewise linear di�erential systems can have 1 or 2 limit
cycles. The limit cycles having two intersection points with Σ can reach
the maximum number 2. The limit cycles having four intersection points
with Σ are at most 1, and if it exists, the systems could simultaneously
have 1 limit cycle intersecting Σ in three points.

Key words: Discontinuous piecewise linear di�erential systems, linear
centers, �rst integrals, limit cycles.

1. Introduction and statement of the main result

One of the most challenging problems in the qualitative theory of planar ordinary
di�erential equations is the second part of the classical 16th Hilbert problem: the
determination of an upper bound for the number of limit cycles (and their relative
positions) for the class of polynomial vector �elds of degree n. This problem remains
unsolved if n ≥ 2. The case n = 1, that is for the class of planar linear vector
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�elds the problem has a trivial answer. However, this problem presents a surprising
richness when adapted to the class of the planar piecewise linear systems.

The study of the piecewise linear di�erential systems goes back to Andronov, Vitt
and Khaikin [1], and nowadays such systems still continue to receive the attention
of many researchers. These di�erential systems are widely used to model processes
appearing in electronics, mechanics, economy, etc..., see for instance the books of
di Bernardo [2] and Simpson [16], the survey of Makarenkov and Lamb [11], as well
as hundreds of references quoted in these last three works.

A periodic orbit of a di�erential system which is isolated in the set of all periodic
orbits of the system is a limit cycle. There are two types of limit cycles in the
planar discontinuous piecewise linear di�erential systems, the crossing and sliding
ones. The �sliding limit cycles� contain some arc of the lines of discontinuity that
separate the di�erent linear di�erential systems (more precise de�nition can be
found in. [14]). The �crossing limit cycles� only contain isolated points of the lines
of discontinuity.

Discontinuous piecewise linear systems with two regions separated by a straight
line have received a lot of attention during the last years, see for instance [3, 5,
6, 7, 8, 9, 12] among other papers. In [5], the authors conjectured that piecewise
linear systems with two regions separated by a straight line could have at most two
crossing limit cycles. Later on in [6], the authors provided numerical evidence on
the existence of three crossing limit cycles, which was analytically proved in [9].
Su�cient condition on piecewise linear system implying the existence of at most
3 crossing limit cycles can be found in [3, 8, 12]. As far as we know, there are no
examples of piecewise linear vector �elds separated by a straight line with more
than 3 crossing limit cycles. In fact, although there is no proof, it is common sense
that 3 is very likely the upper bound in this case. It is worthwhile to mention that
the shape of the discontinuity set plays an important role in the number of crossing
limit cycles. Indeed, if the discontinuity set is not a straight line, then one may �nd
an arbitrary number of crossing limit cycles (see [13]).

Here, our objective is to study the number of limit cycles, which can exhibit the
planar discontinuous piecewise linear di�erential systems separated by two pieces
of straight lines such that both linear di�erential systems are formed by centers. In
[8], it is proved that : A discontinuous piecewise linear di�erential system separated
by one straight line formed by two linear centers has no limit cycles.

In this work we study the crossing limit cycles of discontinuous piecewise di�eren-
tial systems separated by

Σ =
{

(x, y) ∈ R2 : y = 0 and x ≥ 0
}
∪
{

(x, y) ∈ R2 : x = ly, l ∈ R and y ≥ 0
}
,

and formed by two linear centers. The two components ofR2\Σ are

S1 = {(x, y) ∈ R2 : x > ly and y > 0},
S2 = {(x, y) ∈ R2 : x ≤ ly and y > 0} ∪ {(x, y) ∈ R2 : y < 0, x ∈ R},

or convenience, using the notations : Σ = Σ1 ∪ Σ2 where

Σ1 =
{

(x, y) ∈ R2 : y = 0 and x ≥ 0
}
, Σ2 =

{
(x, y) ∈ R2 : x = ly and y ≥ 0

}
,

We observe that we have three types of crossing limit cycles, namely, crossing
limit cycles of type 1 which intersect in a unique point each branch of the set Σ,
crossing limit cycles of type 2 which intersect the set Σ in four points (intersect
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Fig. 1. The regions
if l > 0.

Fig. 2. The regions
if l = 0

Fig. 3. The regions
if l < 0

Fig. 4. Crossing
limit cycle of type 1.

Fig. 5. Crossing
limit cycle of type 2.

Fig. 6. Crossing limit cycles of type 3

only two branches of in exactly two points in each branch) and crossing limit cycles
of type 3 which intersect in two points only one branch of the set Σ :

According to the uniqueness Theorem for the solutions of an ordinary di�erential
equation with a given initial value, then the solutions of any piecewise linear
di�erential system connecting the points (xi, 0) and (lyi, yi) cannot intersect. Then
if any discontinuous piecewise linear system in the plane with two pieces separated
by Σ has two crossing limit cycles, these two crossing limit cycles should be some
of Figure 7.

We note that if discontinuous piecewise linear di�erential system with two pieces
separated by the set Σ and formed by two arbitrary linear centers the cases of
Figure 7 (A), (C), (D), (E), (I), (J), (M), (O) and (S) are not possible because in
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 7. Possible cases of two crossing limit cycles of any
discontinuous piecewise linear system in the plane with two pieces
separated by Σ.

these cases the pieces of the ellipses of linear di�erential centers in the regions S1

and S2, would not be nested which contradicts that the linear di�erential systems
in each of these regions are linear centers.

Here we do not consider the case where crossing limit cycles intersecting only
one branch of Σ in two points (type 3), because in [10, 8] it was proved that
discontinuous piecewise linear di�erential systems separated by a straight line have
no crossing limit cycles, therefore the cases of Figure 7 (F), (G), (H), (K), and (L)
are not possible because the inner limit cycle that intersecting only one branch of
Σ in two points do not exist.

In this subsection we give the upper bound of crossing limit cycles of planar
discontinuous piecewise linear di�erential centers and separated by the set Σ. We
consider only the crossing limit cycles that intersect each branch of Σ in one point(
type 1) and the crossing limit cycles intersecting the set Σ in four points (type 2).

The following normal form for the discontinuous piecewise linear di�erential
systems in R2 separated by the set Σ when both linear di�erential systems have a
center will help us to prove our main result, the Theorem which follows the next
proposition.

Proposition 1. After a linear change of variables and a rescaling of the independent
variable any discontinuous piecewise linear di�erential systems in R2 separated by
the set Σ when both linear di�erential systems have a center can be written as

(1)
ẋ = −bx− 4b2+v2

4a y + α, ẏ = ax+ by + d in S1,

ẋ = −Bx− 4B2+w2

4A y + C, ẏ = Ax+By +D in S2,

with a 6= 0, A 6= 0, v > 0 and w > 0.

Proof. The linear di�erential system in the region S1 is

ẋ = βx+ γy + α, ẏ = ax+ by + d,

assuming that it has a center. Since the eigenvalues of this system are

1

2

(
b+ β ±

√
(b− β)

2
+ 4aγ

)
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in order to have a center we must have that b + β = 0 and (b− β)
2

+ 4aγ = −w2

for some w > 0 and aγ < 0, or equivalently β = −b, γ = − 1
4a

(
4b2 + w2

)
. For the

linear di�erential system in the region S2 the proof is similar to the proof of linear
centre in S1. This completes the proof of the Proposition 1. �

Our main results are the following:

Theorem 1. For a planar discontinuous piecewise linear di�erential centers with
two pieces separated by the set Σ, the following statements hold:
a) The maximum number of crossing limit cycles intersecting in a unique point with
each of the two branches of Σ in one point (type 1) is two.
b) The maximum number of crossing limit cycles intersecting the set Σ in four
points (type 2) is one.

Theorem 1 is proved in Section 2.
The next propositions shows that the upper bound for the maximum number of

crossing limit cycles provided in Theorem 1 is reached.

Proposition 2. The following statements hold.
i) There are discontinuous piecewise linear di�erential system separated by Σ formed
by two linear centers, having exactly one crossing limit cycle of the type 1, see
Figures 24, 25, 26.
ii) There are discontinuous piecewise linear di�erential system separated by Σ formed
by two linear centers, having exactly two crossing limit cycle of the type 1, see
Figures 27, 28, 29.
iii) There are discontinuous piecewise linear di�erential system separated by Σ
formed by two linear centers, having exactly one crossing limit cycle of the type
2, see Figures 30, 31, 32.

This Proposition will be proved in section 2.
Here we study the maximum number of crossing limit cycles of a discontinuous

piecewise linear di�erential system separated by Σ formed by two linear centers
that intersect the set Σ in two and in four points simultaneously, and we consider
only the existence and the number of crossing limit cycles of the type 1 and type 2
simultaneously.

Our main result is the following:

Theorem 2. A planar discontinuous piecewise linear di�erential system separated
by Σ formed by two linear centers, can have at most one limit cycle intersecting
the set Σ in exactly four points (type 2) and at most 1 limit cycle intersecting each
branch of Σ in one point (type 1). Moreover this upper bound is reached. See Figure
41.

Theorem 2 is proved in Section 3.

2. Proof of Theorem 1

2.1. Proof of statement (a) of Theorem 1. Assume that we have a discontinu-
ous piecewise linear di�erential system separated by the set Σ and formed by
two centers. By Proposition 1, we can write such a discontinuous piecewise linear
di�erential systems as

(2)
ẋ = −bx− 4b2+v2

4a y + α, ẏ = ax+ by + d in S1,

ẋ = −Bx− 4B2+w2

4A y + C, ẏ = Ax+By +D in S2,
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with A 6= 0, a 6= 0, v > 0 and w > 0. The �rst integrals of the tow linear di�erential
systems (2) in S1 and S2 are

H1 (x, y) = 4(ax+ by)2 + 8a(dx− αy) + v2y2,(3)

H2 (x, y) = 4(Ax+By)2 + 8A(Dx− Cy) + w2y2,

respectively. Suppose that this discontinuous piecewise di�erential system has some
limit cycles each one intersecting each branch of Σ in one point, namely (x1, 0) with
x1 > 0 and (ly1, y1) with y1 > 0. Then, the �rst integrals H1, and H2 must satisfy
the following two equations

(4)
H1 (x1, 0)−H1 (ly1, y1) = 0,
H2 (ly1, y1)−H2 (x1, 0) = 0,

or equivalently

(5)
4a2x21 + 8adx1 −

(
4 (b+ al)

2
+ v2

)
y21 + 8a (α− dl) y1 = 0,

4A2x21 + 8ADx1 −
(

4 (B +Al)
2

+ w2
)
y21 + 8A (C − lD) y1 = 0.

We recall that Bezout Theorem (see for instance [15]) states that if a polynomial
system of equations has �nitely many solutions, then the number of its solutions is
at most the product of the degrees of the polynomials which appear in the system.
Then by Bezout Theorem system (5) has at most 4 solutions (xi, yi) , i = 1, 2, 3, 4.
So, the discontinuous piecewise linear di�erential system (2) can have at most 4
limit cycles.

Notice that, the polynomial system (5) has the solution (0, 0), which, cannot
contribute a limit cycle. So, in this case, system (5) can have eventually three real
solutions, (xi, yi) for i = 1, 2, 3 producing three limit cycles for the discontinuous
piecewise linear di�erential system (2). According to the Uniqueness Theorem for
the solutions of an ordinary di�erential equation with a given initial value, then the
solutions of the piecewise linear di�erential system (2) connecting the points (xi, 0)
and (lyi, yi) cannot intersect So the polynomial system (5) can have eventually
three real solutions, (xi, yi) for i = 1, 2, 3, producing three limit cycles for the
discontinuous piecewise linear di�erential system (2), it is necessary that x1, x2 and
x3 have the same order as that of y1, y2 and y3. For instance

(6) 0 < x1 < x2 < x3 and 0 < y1 < y2 < y3,

to prove the system (5) cannot have 3 solutions (xi, yi), i = 1, 2, 3 satisfying the
orders of (6), we write the �rst equation of (5) in
(7)

(2ax1 + 2d)
2 −

(√(
4 (b+ al)

2
+ v2

)
y1 − 4a(α−dl)√

(4(b+al)2+v2)

)2

= 4d2 − 16(a(α−dl))2

4(b+al)2+v2
,

which is a hyperbola if 8la2dα− 4a2α2 + 8labd2 + 4b2d2 + d2v2 6= 0, denoted by H.
Moreover the hyperbola H has the two asymptotes:

L1
H : 2ax1 +

√(
4 (b+ al)

2
+ v2

)
y1 − 4a(α−dl)√

(4(b+al)2+v2)
+ 2d = 0,

L2
H : 2ax1 −

√(
4 (b+ al)

2
+ v2

)
y1 + 4a(α−dl)√

(4(b+al)2+v2)
+ 2d = 0,
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which intersect at IH =
(
− da ,

4a(α−dl)
4(b+al)2+v2

)
. We notice that the second equation of

(5) can be write as
(8)

(2Ax1 + 2D)
2−

(√(
4 (B +Al)

2
+ w2

)
y1 − 4A(C−lD)√

(4(B+Al)2+w2)

)2

= 4D2− 16A2(C−lD)2

4(B+Al)2+w2 ,

which is a hyperbola if 8lA2CD−4A2C2 + 8lABD2 + 4B2D2 +w2D2 6= 0, denoted
by H∗. Moreover, the hyperbola H∗ has the two asymptotes

L1
H∗ : 2Ax1 +

√(
4 (B +Al)

2
+ w2

)
y1 − 4A(C−lD)√

(4(B+Al)2+w2)
+ 2D = 0,

L2
H∗ : 2Ax1 −

√(
4 (B +Al)

2
+ w2

)
y1 + 4A(C−lD)√

(4(B+Al)2+w2)
+ 2D = 0,

which intersect at IH∗ =
(
−DA ,

4A(C−lD)

4(B+Al)2+w2

)
.

To study the maximum number of limit cycles of system (2) intersecting each branch
of Σ in one point is equivalent to �nd the maximum number of intersection points
Pi's of the hyperbolas H in (7) with H∗ in (8), whose coordinates satisfy (6).
Denote by Pi = (xi, yi) the intersection points of H with H∗. Under condition (6),
hereafter, we write

(9) P0 = (0, 0) ≺ P1 ≺ P2 ≺ ....

We further assume without loss of generality that the hyperbola H is in left�right
way, i.e., its two branches face, respectively, the left and right sides, and they are
denoted, respectively, by HL and Hr .

Case 1: if Pi are located on the right branch Hr of H.
� In case that the hyperbola H∗ is of left�right type, i.e., the two branches of H∗
face, respectively, left and right, and are denoted by H∗L and H∗r , respectively, there
are at most two intersection points Pi = (xi, yi) , i = 1, 2, of H with H∗, which
satisfy (9), one on H∗L and another on H∗r . Note that in this case and in order that
there are exactly tow intersection points Pi = (xi, yi) , i = 1, 2 which satisfy (9),
should be the following conditions holds:
i) The straight line L2

H∗ must have positive slope larger than that of L2
H.

ii) IH ≺ IH∗ (IH∗ is located on the right hand side of Hr or above the Hr).
iii) P0 = (0, 0) ∈ Hr ∩H∗L. See the �gures 8 and 9.
� In case that the hyperbola H∗ is of upper�down type i.e., the two branches of H∗
face, respectively, upper and down, and are denoted by H∗u and H∗d, respectively.
there are also at most two intersection points Pi = (xi, yi) , i = 1, 2, of H with
H∗, which satisfy (9). These point are located on the upper branch H∗u of H∗ if
IH∗ is located on the right hand side of Hr or are located on the down branch
H∗d of H∗ if IH∗ is located above the Hr. In order that there exist exactly two
intersection points Pi = (xi, yi) , i = 1, 2 which satisfy (9), these points must satisfy
the following conditions:
i) The straight line L2

H∗ must have positive slope larger than that of L2
H.

ii) IH ≺ IH∗ and IH∗ is located on the right hand side of Hr or above the Hr,
iii) P0 = (0, 0) ∈ Hr ∩H∗d. See the �gures 10 and 11.
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Fig. 8. The tow
intersection points
in the case Pi are
located on the right
branch Hr of H and
H∗ is of left�right
type with IH∗ is
located above the Hr

Fig. 9. The tow
intersection points
in the case Pi are
located on the right
branch Hr of H and
H∗ is of left�right
type with IH∗ is
located on the right
hand side of Hr

Fig. 10. The tow
intersection points
in the cace Pi are
located on the right
branch Hr of H and
H∗ is of upper-down
type with IH∗ is
located above the Hr

Fig. 11. The tow
intersection points
in the case Pi are
located on the right
branch Hr of H and
H∗ is of upper down
type with IH∗ is
located on the right
hand side of Hr

Case 2: Pi are located on the left branch HL of H.
In case that the hyperbola H∗ is of left�right type there are at most two intersection
points Pi = (xi, yi) , i = 1, 2, of H with H∗, which satisfy (9). Moreover these two
points are located on the right branchH∗r ofH∗ and exists if the following conditions
holds :
i) the straight line L2

H∗ must have positive slope larger than that of L2
H.

ii) IH∗ ≺ IH and IH∗ is located on the left hand side of HL or under the HL.
iii) P0 = (0, 0) ∈ HL ∩H∗L. See the �gures 12 and 13.
In case that the hyperbola H∗ is of upper�down type, there are also at most two
intersection points Pi = (xi, yi) , i = 1, 2, of H with H∗, which satisfy (9); one on
H∗u and another on H∗d or the two pints on H∗u. Notice that in order that there exist
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Fig. 12. The tow
intersection points
in the case Pi are
located on the left
branch HL of H and
H∗ is of left�right
type with IH∗ is
located under Hr

Fig. 13. The tow
intersection points in
the casePi are located
on the left branch HL

of H and H∗ is of
left�right type with
IH∗ is located on the
left hand side of Hr

Fig. 14. The tow
intersection points
in the case Pi are
located on the left
branch HL of H and
H∗ is of upper�down
type with IH∗ is
located on the left
hand side of HL

Fig. 15. The tow
intersection points
in the case Pi are
located on the left
branch HLof H and
H∗ is of upper�down
type with IH∗ is
located under HL

two intersection points Pi = (xi, yi) , i = 1, 2 one on H∗u and another on H∗d (resp
there exists two intersection points Pi = (xi, yi) , i = 1, 2 on H∗u) which satisfy (9),
should be the following conditions holds:
i) The straight line L2

H∗ must have positive slope larger than that of L2
H (resp The

straight line L2
H∗ must have positive slope larger than that of L2

H).
ii) IH∗ ≺ IH and IH∗ is located on the left hand side of HL (resp IH∗ is located
under the HL),
iii) P0 = (0, 0) ∈ HL ∩ H∗d. See the �gure 14 (resp P0 = (0, 0) ∈ HL ∩ H∗u. See the
�gure 15).

Case 3: Pi are located on the two branches HL and Hr of H.
In case that the hyperbola H∗ is of left�right type and Pi are also located on
the two branches H∗L and H∗r of H∗ there are at most two intersection points
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Fig. 16. The tow
intersection points
in the case Pi are
located on the two
branches HL and Hr

of H and H∗ is of
left�right type with
I∗H ≺ IH

Fig. 17. The tow
intersection points
in the case Pi are
located on the two
branches HL andHr

of H and H∗ is of
left�right type with
IH ≺ IH∗

Pi = (xi, yi) , i = 1, 2, of H with H∗, which satisfy (9), one in H∗L∩HL and another
in H∗r ∩ Hr or the two pints on H∗r ∩ Hr. In order that there exist exactly two
intersection points Pi = (xi, yi) , i = 1, 2 which satisfy (9), the following conditions
must be holds:
i) the straight line L2

H∗ must have positive slope smaller than that of L2
H.

ii) IH∗ is located in between HL and Hr.
iii) P0 = (0, 0) ∈ HL ∩H∗L. See the �gures 16 and 17.
� In case that the hyperbola H∗ is of upper�down type and Pi are also located
on the two branches H∗u and H∗d of H∗; there are at most two intersection points
Pi = (xi, yi) , i = 1, 2, of H with H∗, which satisfy (9), one in H∗u ∩HL and another
in H∗d ∩ HL or one in H∗u ∩ HL and another on H∗u ∩ Hr. In order that there exist
exactly two intersection points Pi = (xi, yi) , i = 1, 2 which satisfy (9), the following
conditions must be holds:
i) the straight line L2

H∗ must have positive slope smaller than that of L2
H,

ii) IH∗ is located in between HL and Hr,
iii) P0 = (0, 0) ∈ HL ∩H∗d. See the �gure 18 and 19.
�The case if the hyperbola H∗ is of left�right type and Pi are located on the left
branch H∗L of H∗ or Pi are located on the right branch H∗r of H∗similar to the
case 1 (if Pi are located on the right branch Hr of H and the hyperbola H∗ is of
left�right type), enough just replace H∗ by H. See the �gure 20 and 21.
In case that the hyperbola H∗ is of upper�down and Pi are located on the upper
branch H∗u of H∗ there are at most two intersection points Pi = (xi, yi) , i = 1, 2, of
H with H∗, which satisfy (9), these two points are located on the right branch Hr.
In order that there exist two intersection points Pi = (xi, yi) , i = 1, 2 which satisfy
(9), these points must satisfy following conditions:
i) the straight line L2

H∗ must have positive slope larger than that of L2
H,

ii) IH∗ ≺ IH and IH∗ is located in between HL and Hr,
iii) P0 = (0, 0) ∈ HL ∩H∗u.
In case that the hyperbola H∗ is of upper�down and Pi are located on the down
branch H∗d of H∗ there are at most two intersection points Pi = (xi, yi) , i = 1, 2, of
H with H∗, which satisfy (9), one on HL and another on Hr. In order that there
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Fig. 18. The tow
intersection points in
the case H∗ is of
upper-down type and
Pi are located on the
two branches HL and
Hr of H and are also
located on the two
branches H∗u and H∗d
with IH ≺ I∗H

Fig. 19. The tow
intersection points in
the case H∗ is of
upper-down type and
Pi are located on the
two branches HL and
Hr of H and are also
located on the two
branches H∗u andH∗d
with IH � I∗H

Fig. 20. The tow
intersection points
in the case Pi are
located on the two
branches HL and Hr

of H and H∗ is of
left-right type with
IH∗ is located on the
right hand side of HL

Fig. 21. The tow
intersection points
in the case Pi are
located on the two
branches HL and Hr

of H and H∗ is of
left-right type with
IH∗ is located on the
left hand side of HL

exist two intersection points Pi = (xi, yi) , i = 1, 2 which satisfy (9), the following
conditions must be holds:
i) the straight line L2

H∗ must have positive slope larger than that of L2
H,

ii) IH ≺ IH∗ and IH∗ is located in between HL and Hr,
iii) P0 = (0, 0) ∈ HL ∩H∗d. See the �gure 22 and 23.
Consequently, system (5) cannot have 3 solutions (xi, yi), i = 1, 2, 3 satisfying
the orders of (6). Hence, the discontinuous piecewise linear di�erential system (2)
cannot have 3 limit cycles. This completes the proof of statement (a) of Theorem 1.

2.2. Proof of statement (b) of Theorem 1. Suppose that we have an arbitrary
discontinuous piecewise linear di�erential system separated by the set Σ formed by
the two linear centers given in (2). These linear centers in S1, and S2 have the �rst
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Fig. 22. The tow
intersection points in
the case H∗ is of
upper-down type and
Pi are located on the
two branches HL and
Hr of H and on the
upper branch H∗u of
H∗.

Fig. 23. The tow
intersection points in
the case H∗ is of
upper-down type and
Pi are located on the
two branches HL and
Hr of H and on the
down branch H∗d of
H∗

integrals H1, and H3 described in (3). Assume that this discontinuous piecewise
di�erential system has some limit cycles intersecting in four points of the set Σ.
We can assume that these four points are (x1i, 0), (x2i, 0), (ly1i, y1i), and (ly2i, y2i)
with 0 < x1i < x2i and 0 < y1i < y2i. In order that these four points correspond to
the intersection points of a limit cycle with the set Σ, they must satisfy:

(10)

H1(x11, 0)−H1(ly11, y11) = 0,
H1(x21, 0)−H1(ly21, y21) = 0,
H2(ly21, y21)−H2(ly11, y11) = 0,
H2(x11, 0)−H2(x21, 0) = 0,

or equivalently

(11)

4a2x211 + 8adx11 −
(

4 (b+ al)
2

+ v2
)
y211 + 8a (α− dl) y11 = 0,

4a2x221 + 8adx21 −
(

4 (b+ al)
2

+ v2
)
y221 + 8a (α− dl) y21 = 0,

(y11 − y21)
(
8AC − 8AlD −

(
4A2l2 + 4B2 + w2 + 8ABl

)
(y11 + y21)

)
= 0,

4A (x11 − x21) (2D +Ax11 +Ax21) = 0.

Since x11 < x21 and y11 < y21 the previous system is equivalent to the system

(12)

4a2x211 + 8adx11 −
(

4 (b+ al)
2

+ v2
)
y211 + 8a (α− dl) y11 = 0,

4a2x221 + 8adx21 −
(

4 (b+ al)
2

+ v2
)
y221 + 8a (α− dl) y21 = 0,(

8AC − 8AlD −
(
4A2l2 + 4B2 + w2 + 8ABl

)
(y11 + y21)

)
= 0,

(2D +Ax11 +Ax21) = 0,

from the third and fourth equations of (12) we isolated y21 and x21 we obtain

(13) x21 = − 1
A (2D +Ax11) , y21 = 8A(C−lD)

4(B+Al)2+w2 − y11.
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Substituting (13) into the second equation of (12), we get

4a2(2D+Ax11)
2

A2 − 8ad(2D+Ax11)
A −

(
4 (b+ al)

2
+ v2

)(
8AC−8AlD

4(B+Al)2+w2 − y11
)2

+8a (α− dl)
(

8AC−8AlD
4(B+Al)2+w2 − y11

)
= 0.

Summing up this last equation and the �rst equation of (12), we get

(a(dl−α)(4(B+Al)2+w2)+A(4(b+al)2+v2)(C−lD))(4A(lD−C)+(4(B+Al)2+w2)y11)
(4(B+Al)2+w2)

2

−aAd−aDA2 (D +Ax11)− = 0.

Now, solving (12) reduces to solve

(14)

4a2x211 + 8adx11 −
(

4 (b+ al)
2

+ v2
)
y211 + 8a (α− dl) y11 = 0,

(a(dl−α)(4(B+Al)2+w2)+A(4(b+al)2+v2)(C−lD))(4A(lD−C)+(4(B+Al)2+w2)y11)
(4(B+Al)2+w2)

2

−a (Ad−aD)(D+Ax11)
A2 = 0.

If a (Ad− aD) = a (dl − α)
(

4 (B +Al)
2

+ w2
)

+ A
(

4 (b+ al)
2

+ v2
)

(C − lD) =

0, then the second equation of (14) is trivial, and the �rst equation of (14) has a
continuum family of solutions, and so (12) has a continuum solution. Consequently,
system (2) has no limit cycles.
If a (Ad− aD) 6= 0 and

a (dl − α)
(

4 (B +Al)
2

+ w2
)

+A
(

4 (b+ al)
2

+ v2
)

(C − lD) 6= 0,

we notice that the �rst equation of (14) can be write as (7) which is the hyperbola
H if 8la2dα− 4a2α2 + 8labd2 + 4b2d2 + d2v2 6= 0, and the second equation of (14)
is a straight line, denoted by L. Clearly, we can chose the values of the parameters
of system (2) such that the straight line L can intersect the hyperbola H in either
zero point or one point or two points whose coordinates have only positive entries.
If L does not intersect H, then (14) has no solution, and system (2) has no limit
cycle.
If L intersects H in a unique point or in a point multiple two, again, system (2) has
no limit cycle.
If the intersection points are two, we denote them by (x11, y11) and (x21, y21) with
0 < x11 < x21 and 0 < y11 < y21. This implies that (x11, 0) and (x21, 0) ((ly11, y11)
and (ly21, y21)) are the four intersection points of the limit cycle (if exist) with the
branch of Σ. This completes the proof of statement (b) of Theorem 1.

2.3. Proof of Proposition 2.

2.3.1. Proof of statement (i) of Proposition 2. The proof of statement (i) of Proposi-
tion 2 is provide by the following examples

Example 1 (Case l > 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = 1
2y and y ≥ 0

}
, de�ned by

(15)

ẋ =
(
4− 4

√
11
)
x+

(
4
√

11− 26
)
y + 8, ẏ = 8x+

(
4
√

11− 4
)
y + 16 in S1,

ẋ = − (8x+ 10y − 8) , ẏ = 8x+ 8y + 8 in S2,
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Fig. 24. The limit cycle of the discontinuous piecewise linear
di�erential system (15).

It is easy to see that this system has the �rst integrals

H1 (x, y) = 4
(
x+

√
11−1
2 y

)2
+ 8(2x− y) + y2,

H2 (x, y) = 4(x+ y)2 + 8(x− y) + y2,

in S1, and S2, respectively. The eigenvalues of the matrices of the two linear di�eren-
tial systems (15) are ±4i. So the two systems have a linear center. We shall use the
notation and the expressions of the proof of statement (ii) of Theorem 1. System
(4) with l = 1

2 can be written as the

8x1 + 4y1 + 4x21 − 10y21 = 0,
16x1 + 4x21 − 12y21 = 0.

Taking into account that 0 < x1 and 0 < y1 the unique solution (x1, y1) of the
previous system is (2, 2). Straightforward computations show that : the implicit form
of the solution of the �rst linear di�erential system of (15) passing through the
crossing points (1, 2) and (2, 0) is H1(x, y) = 48 and the implicit form of the solution
of the second linear di�erential system of (15) passing through the crossing points
(1, 2) and (2, 0) is H2(x, y) = 32. Moreover, the orbit arc in S1 starting from (2, 0)
satis�es ẋ|(2,0) < 0 and ẏ|(2,0) > 0, so it runs in counterclockwise. The orbit arc
in S2 starting from (1, 2) satis�es ẋ|(1,2) < 0 and ẏ|(1,2) > 0, and so it runs in
counterclockwise. Drawing the orbit

Γ = {(x, y) ∈ S1 : H1(x, y) = 48} ∪ {(x, y) ∈ S2 : H2(x, y) = 32} ,

we obtain the limit cycle of Figure 24, which is traveled in counterclockwise sense.

Example 2 (Case l = 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = 0 and y ≥ 0
}
, de�ned by

(16)
ẋ = −

(
8x+ 10y − 25

3

)
, ẏ = 8x+ 8y + 16 in S1,

ẋ = − (2y + 1) , ẏ = 8x+ 2 in S2,



1502 A. BERBACHE

Fig. 25. The limit cycle of the discontinuous piecewise linear
di�erential system (16).

It is easy to see that its corresponding Hamiltonian functions are

H1 (x, y) = 4(x+ y)2 + 8
(
2x− 25

24y
)

+ y2,(17)

H2 (x, y) = 4x2 − (−2x− y) + y2,(18)

in S1, and S2, respectively. The eigenvalues of the matrices of the two linear di�eren-
tial systems (16) are ±4i. So the two systems have a linear center. System (4) with
l = 0 can be written as the

4x21 + 16x1 − 5y21 + 25
3 y1 = 0,

4x21 + 2x1 − y21 − y1 = 0.

The unique solution (x1, y1) of this last system satisfying the necessary conditions
x1 > 0 and y1 > 0 is (x1, y1) =

(
49
24 ,

49
12

)
. Straightforward computations show that

the solution passing through the crossing points (0, y1) and (x1, 0) correspond to

Γ = {(x, y) ∈ S1 : H1(x, y) = 48} ∪ {(x, y) ∈ S2 : H2(x, y) = 20} .

On the other hand, the orbit arc in S1 starting from ( 49
24 , 0) satis�es ẋ|( 49

24 ,0)
< 0

and ẏ|( 49
24 ,0)

> 0, so it runs in counterclockwise. The orbit arc in S2 starting from(
0, 4912

)
satis�es ẋ|(0, 4912 ) < 0 and ẏ|(0, 4912 ) > 0, and so it runs in counterclockwise.

Drawing the orbit Γ we obtain the limit cycle of �gure 25.

Example 3 (Case l < 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = −y and y ≥ 0
}
, de�ned by

(19)
ẋ = −

(
4x+ 17

2 y + 1
)
, ẏ = 2x+ 4y + 2 in S1,

ẋ = x− 5
4y + 5

2 , ẏ = x− y + 1 in S2,

It is easy to see that its corresponding Hamiltonian functions are

H1 (x, y) = 4(x+ 2y)2 + 8

(
x+

1

2
y

)
+ y2,

H2 (x, y) = 4(x− y)2 + 8

(
x− 5

2
y

)
+ y2,

in S1, and S2, respectively. The eigenvalues of the matrices of the two linear di�eren-
tial systems (19) are ±i and ± 1

2 i , respectively. So the two systems have a linear
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Fig. 26. The limit cycle of the discontinuous piecewise linear
di�erential system (19).

center. System (4) with l = −1 can be written as the

4x21 + 8x1 − 5y21 + 4y1 = 0,
4x21 + 8x1 − 17y21 + 28y1 = 0.

The unique solution (x1, y1) of this last system satisfying the necessary conditions
x1 > 0 and y1 > 0 is (x1, y1) = (1, 2) . Straightforward computations show that the
solution passing through the crossing points (x1, 0), and (ly1, y1) correspond to

Γ = {(x, y) ∈ S1 : H1(x, y) = 12} ∪ {(x, y) ∈ S2 : H2(x, y) = 12} .
The orbits arc in Q1 and Q2 starting from (1, 0) and (−2, 2) satis�es ẋ|(1,0) < 0,
ẏ|(1,0) > 0 and ẋ|(−2,2) < 0 and ẏ|(−2,2) < 0, so it runs in counterclockwise. Drawing
the orbit Γ we obtain the limit cycle of �gure 26.

2.3.2. Proof of statement (ii) of proposition 2. proof of statement (ii) of Proposition 2
is provide by the following examples.

Example 4 (Case l > 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = y and y ≥ 0
}
de�ned by

(20)
ẋ = −16x− 34y + 16, ẏ = 8x+ 16y + 64 in S1,
ẋ = −8x− 10y + 8, ẏ = 8x+ 8y + 8 in S2,

It is obvious that The two linear di�erential systems of (20) have the following �rst
integrals

H1 (x, y) = 4(x+ 2y)2 + 8 (8x− 2y) + y2,

H2 (x, y) = 4 (x+ y)
2

+ 8(x− y) + y2,

in S1 and S2, respectively. Since ±4i are the eigenvalues of the matrices of the two
linear di�erential systems of (16), these systems have their equilibria as centers.
Then, for the discontinuous piecewise linear di�erential system (20), system (4)
withe l = 1 becomes:

4x2i + 8xi − 17y2i = 0,
4x2i + 64xi − 37y2i − 48yi = 0.

Taking into account that we are only interested in the solutions (xi, yi), i = 1, 2
satisfying x2 > x1 > 0, and y2 > y1 > 0, the unique two solutions of the previous
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Fig. 27. The two limit cycles of the discontinuous piecewise linear
di�erential system (20).

system are (x1, y1) = (0.853 59, 0.757 05) , (x2, y2) = (3.782 5, 2.268 6) . Straightfor-
ward computations show that the solution passing through the crossing points (xi, 0),
and ( 1

2yi, yi), i = 1, 2 correspond to

Γ = Γ1 ∪ Γ2

= {(x, y) ∈ S1 : H1(x, y) = 57. 544} ∪ {(x, y) ∈ S2 : H2(x, y) = 9. 743 2} ,
Γ2 = Γ3 ∪ Γ4

= {(x, y) ∈ S1 : H1 (x, y) = 299.31} ∪ {(x, y) ∈ S3 : H2(x, y) = 87. 489} .
For the orbit arc Γ1 = {(x, y) ∈ S1 : H1(x, y) = 9. 743 2} in S1 starting from (x1, 0)
we have used the facts that ẋ|(x1,0) > 0, ẏ|(x1,0) > 0, so it runs in counterclockwise.
For the orbit arc Γ2 = {(x, y) ∈ S2 : H2(x, y) = 57. 544} in S2 starting from (y1, y1)
we have used the facts that ẋ|(y1,y1) < 0, ẏ|(y1,y1) > 0, so it runs in counterclockwise.
For the orbit arc Γ3 = {(x, y) ∈ S1 : H1 (x, y) = 87. 489} in S1 starting from (x2, 0)
we have used the facts that ẋ|(x2,0) < 0, ẏ|(x2,0) > 0, so it runs in counterclockwise.
For the orbit arc Γ4 = {(x, y) ∈ S2 : H2(x, y) = 299.31} in S2 starting from (y2, y2)
we have used the facts that ẋ|(y2,y2) < 0, ẏ|(y2,y2) > 0, so it runs in counterclockwise.
Clearly, Γ1 ∪ Γ2, and Γ3 ∪ Γ4 are nested, and Γ1 ∪ Γ2 is the inner one and Γ3 ∪ Γ4

is the outer one.

Example 5 (Case l = 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = 0 and y ≥ 0
}
, de�ned by

(21)
ẋ = −

(
x+ 5

4y + 31
16

)
, ẏ = x+ y + 5

8 in S1,
ẋ = −

(
y + 11

4

)
, ẏ = x+ 1 in S2,

It is easy to see that its corresponding Hamiltonian functions are

H1 (x, y) = 4(x+ y)2 + 8
(
5
8x+ 31

16y
)

+ y2,

H2 (x, y) =
(
y + 11

4

)2
+ (x+ 1)

2
,

in S1, and S2, respectively. The eigenvalues of the matrices of the two linear di�eren-
tial systems (21) are ± 1

2 i and ±i, respectively. So the two systems have a linear
center. System (4) with l = 0 can be written as the

4x2i + 5xi − 5y2i − 31
2 yi = 0,

x2i + 2xi − y2i − 11
2 yi = 0.



TWO LIMIT CYCLES FOR A CLASS 1505

Fig. 28. The two limit cycles of the discontinuous piecewise linear
di�erential system (21).

Taking into account that we are only interested in the solutions (xi, yi) satisfying
xi > 0 and yi > 0,the unique two solutions of the previous system are (x1, y1) =(
1, 12
)
and (x2, y2) = (3, 2) . The orbit passing through the crossing points (x1, 0),

and (0, y1) correspond to

Γ1 = {(x, y) ∈ S1 : H1(x, y) = 9} ∪
{

(x, y) ∈ S2 : H2(x, y) = 185
16

}
,

and the solution passing through the crossing points (x2, 0), and (0, y2) correspond
to

Γ2 = {(x, y) ∈ S1 : H1(x, y) = 51} ∪
{

(x, y) ∈ S2 : H2(x, y) = 377
16

}
.

Clearly, Γ1, and Γ2 are nested, and Γ1 is the inner one and Γ2 is the outer
one. Notice that the, the orbit arc in S1 starting from (1, 0) (resp (3, 0)) satis�es
ẋ|(1,0) < 0 and ẏ|(1,0) > 0 (resp ẋ|(3,0) < 0 and ẏ|(3,0) > 0 ), so it runs in

counterclockwise. The orbit arc in S2 starting from
(
0, 12
)
(resp (0, 2)) satis�es

ẋ|(0, 12 ) < 0 and ẏ|(0, 12 ) > 0 (resp ẋ|(0,2) < 0 and ẏ|(0,2) > 0), and so it runs in

counterclockwise. Drawing the two orbits Γ1, and Γ2 we obtain the two limit cycles
of �gure 28 which are traveled in counterclockwise sense.

Example 6 (Case l < 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = − 1
3y and y ≥ 0

}
, de�ned by

(22)
ẋ = −

(
x+ 5

4y −
19
24

)
, ẏ = x+ y − 5

12 in S1,
ẋ = − (6y − 1) , ẏ = 6x+ 5 in S2,

the �rst integrals of the two linear di�erential systems of (22) are

H1 (x, y) = 4(x+ y)2 − 8
(

5
12x+ 19

24y
)

+ y2,

H2 (x, y) =
(
y − 1

6

)2
+
(
x+ 5

6

)2
,

in S1, and S2, respectively. The eigenvalues of the matrices of the two linear di�eren-
tial systems (22) are ± 1

2 i and ±6i, respectively. So the two systems have a linear

center. System (4) with l = − 1
3 can be written as the

4x2i − 10
3 xi −

25
9 y

2
i + 47

9 yi = 0,
x2i + 5

3xi −
10
9 y

2
i + 8

9yi = 0.
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Fig. 29. The two limit cycles of the discontinuous piecewise linear
di�erential system (22).

Taking into account that we are only interested in the solutions (xi, yi) satisfying
xi > 0 and yi > 0,the unique two solutions of the previous system are (x1, y1) =
(1, 2) and (x2, y2) = (2, 3) . The orbit passing through the crossing points (x1, 0),
and (0, y1) correspond to

Γ1 =
{

(x, y) ∈ S1 : H1(x, y) = 2
3

}
∪
{

(x, y) ∈ S2 : H2(x, y) = 61
18

}
,

and the solution passing through the crossing points (x2, 0), and (0, y2) correspond
to

Γ2 =
{

(x, y) ∈ S1 : H1(x, y) = 28
3

}
∪
{

(x, y) ∈ S2 : H2(x, y) = 145
18

}
.

Clearly, Γ1, and Γ2 are nested, and Γ1 is the inner one and Γ2 is the outer one.
Notice that the, the orbit arc in S1 starting from (1, 0) (resp (2, 0)) satis�es ẋ|(1,0) <
0 and ẏ|(1,0) > 0 (resp ẋ|(2,0) < 0 and ẏ|(2,0) > 0 ), so it runs in counterclockwise.

The orbit arc in S2 starting from
(
− 2

3 , 2
)
(resp (−1, 3)) satis�es ẋ|(− 2

3 ,2)
< 0 and

ẏ|(− 2
3 ,2)

> 0 (resp ẋ|(−1,3) < 0 and ẏ|(−1,3) < 0), and so it runs in counterclockwise.

Drawing the two orbits Γ1, and Γ2 we obtain the two limit cycles of �gure 29, which
are traveled in counterclockwise sense.

The next proposition shows that there are discontinuous piecewise linear di�erential
systems separated by the set Σ with one limit cycle intersecting the set Σ in exactly
four points.

Example 7 (Case l < 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = − 1
4y and y ≥ 0

}
de�ned by

(23)
ẋ = 8x+ 10y − 8, ẏ = −8x− 8y + 8 in S1,
ẋ = 8x+ 10y − 32, ẏ = −8x− 8y + 28 in S2,

the �rst integrals of the two linear di�erential systems of (23) are

H1 (x, y) = 4(x+ y)2 + 8(−x− y) + y2,

H2 (x, y) = 4(x+ y)2 + 8
(
− 7

2x− 4y
)

+ y2,
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Fig. 30. The limit cycle of the discontinuous piecewise linear
di�erential system (23).

in S1 and S2, respectively. Since the eigenvalues of the matrices of the two linear
di�erential systems of (23) are ±4i, these systems have their equilibria as centers.
Then, for the discontinuous piecewise linear di�erential system (23), system (10),with
l = − 1

4 becomes

1
4

(
−32x11 + 24y11 + 16x211 − 13y211

)
= 0,

1
4

(
−32x21 + 24y21 + 16x221 − 13y221

)
= 0,

1
4 (y11 − y21) (13y11 + 13y21 − 100) = 0,
4 (x11 − x21) (x11 + x21 − 7) = 0.

Taking into account that we are only interested in the solutions (x11, x21, y11, y21)
satisfying 0 < x11 < x21 and 0 < y11 < y21, the unique solution of the previous
system is (x11, x21, y11, y21) =

(
1
3 ,

20
3 ,

20
39 ,

280
39

)
. Straightforward computations show

that the solution passing through the crossing points
(
1
3 , 0
)
,
(
− 5

39 ,
20
39

)
,
(
20
3 , 0

)
and(

− 70
39 ,

280
39

)
correspond to

Γ =
{

(x, y) ∈ S1 : H1(x, y) = − 20
9

}
∪
{

(x, y) ∈ S2 : H2(x, y) = − 1400
117

}
,

∪
{

(x, y) ∈ S1 : H1 (x, y) = 1120
9

}
∪
{

(x, y) ∈ S2 : H2(x, y) = − 80
9

}
.

For the orbit arc Γ1 =
{

(x, y) ∈ S1 : H1(x, y) = − 20
9

}
in S1 starting from

(
1
3 , 0
)
we

have used the facts that ẋ|( 1
3 ,0)

< 0, ẏ|( 1
3 ,0)

> 0, so it runs in clockwise. For the

orbit arc Γ2 =
{

(x, y) ∈ S2 : H2(x, y) = − 1400
117

}
in S2 starting from

(
− 5

39 ,
20
39

)
we

have used the facts that ẋ|(− 5
39 ,

20
39 ) < 0, ẏ|(− 5

39 ,
20
39 ) > 0, so it runs in clockwise. For

the orbit arc Γ3 =
{

(x, y) ∈ S1 : H1 (x, y) = 1120
9

}
in S1 starting from

(
− 70

39 ,
280
39

)
we have used the facts that ẋ|(− 70

39 ,
280
39 ) > 0, ẏ|(− 70

39 ,
280
39 ) < 0, so it runs in clockwise.

For the orbit arc Γ4 =
{

(x, y) ∈ S2 : H2(x, y) = − 80
9

}
in S2 starting from

(
20
3 , 0

)
we have used the facts that ẋ|( 20

3 ,0)
> 0, ẏ|( 20

3 ,0)
< 0, so it runs in clockwise.

Example 8 (Case l = 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪{

(x, y) ∈ R2 : x = 0 and y ≥ 0
}
de�ned by

(24)
ẋ = −

(
x+ 5

4y − 1
)
, ẏ = x+ y − 1 in S1,

ẋ = −8x− 10y + 2
√

19 + 7, ẏ = 8x+ 8y − 14 in S2,
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Fig. 31. The limit cycle of the discontinuous piecewise linear
di�erential system (24).

the �rst integrals of the two linear di�erential systems of (24) are

H1 (x, y) = 4(x+ y)2 − 8(x+ y) + y2,

H2 (x, y) = 4(x+ y)2 − 2
(

7x+
(√

19 + 7
2

)
y
)

+ y2,

in S1 and S2, respectively. Since the eigenvalues of the matrices of the two linear
di�erential systems of (24) are ± 1

2 i and ±4i, respectively. Then these systems have
their equilibria as centers. Then, for the discontinuous piecewise linear di�erential
system (24); the system (10), withe l = 0 becomes

4x211 − 8x11 −
(

4 (1)
2

+ 1
)
y211 + 8 (1) y11 = 0,

4x221 − 8x21 −
(

4 (1)
2

+ 1
)
y221 + 8 (1) y21 = 0,

2
(√

19 + 7
2

)
− (4 + 1) (y11 + y21) = 0,

− 7
2 + x11 + x21 = 0.

Taking into account that we are only interested in the solutions (x11, x21, y11, y21)
satisfying 0 < x11 < x21 and 0 < y11 < y21, the unique solution of the previous

system is (x11, x21, y11, y21) =
(

1
2 , 3,

3
5 ,

2
√
19+4
5

)
. Straightforward computations show

that the solution passing through the crossing points (0, y11) , (x11, 0) , (0, y21) and
(x21, 0) correspond to

Γ = {(x, y) ∈ S1 : H1(x, y) = −3} ∪ {(x, y) ∈ S2 : H2(x, y) = −6} ,
∪{(x, y) ∈ S1 : H1 (x, y) = 12} ∪

{
(x, y) ∈ S2 : H2(x, y) = − 6

√
19−12
5

}
.

On the other hand, the orbit arc in S1 starting from (3, 0) satis�es ẋ|(3,0) < 0
and ẏ|(3,0) > 0, so it runs in counterclockwise. The orbit arc in S2 starting from(

0, 2
√
19+4
5

)
satis�es ẋ|(0,y21) < 0 and ẏ|(0,y21) > 0, and so it runs in counterclockwise.

The orbit arc in S1 starting from
(
0, 35
)
satis�es ẋ|(0,y11) > 0 and ẏ|(0,y11) < 0, so

it runs in counterclockwise, and the orbit arc in S2 starting from ( 1
2 , 0) satis�es

ẋ|( 1
2 ,0)

> 0 and ẏ|( 1
2 ,0)

< 0, so it runs in counterclockwise.

Example 9 (Case l > 0). Consider the discontinuous piecewise linear di�erential
system with two pieces separated by the set Σ =

{
(x, y) ∈ R2 : y = 0 and x ≥ 0

}
∪
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(x, y) ∈ R2 : x = 2y and y ≥ 0

}
, de�ned by

(25)
ẋ = −

(
x+ 5

4y − 1
)
, ẏ = x+ y − 1 in S1,

ẋ = −
(
8x+ 10y +

√
33− 2

√
591 + 40

)
, ẏ = 8x+ 8y − 22 in S2,

the �rst integrals of the two linear di�erential systems of (25) are

H1 (x, y) = 4(x+ y)2 − 8(x+ y) + y2,

H2 (x, y) = 4(x+ y)2 − 8
(

11
4 x+

(√
591
4 −

√
33
8 −

5
2

)
y
)

+ y2,

in S1 and S2, respectively. Since the eigenvalues of the matrices of the two linear
di�erential systems of (25) are ± 1

2 i and ±4i, these systems have their equilibria
as centers. Then, for the discontinuous piecewise linear di�erential system (25),
system (10), withe l = 2 becomes

4x211 − 8x11 − 37y211 + 24y11 = 0,
4x221 − 8x21 − 37y221 + 24y21 = 0,

−37y21 − 37y11 −
√

33 + 2
√

591 + 4 = 0,
x11 + x21 − 11

2 = 0,

taking into account that we are only interested in the solutions (x11, x21, y11, y21)
satisfying 0 < x11 < x21 and 0 < y11 < y21, the unique solution of the previous

system is (x11, x21, y11, y21) =
(

1
2 , 5,

12−
√
33

37 , 2
√
591+12
37

)
. Straightforward computati-

ons show that the solution passing through the crossing points (2y11, y11) , (x11, 0) ,
(2y21, y21) and (x21, 0) correspond to

Γ = {(x, y) ∈ S1 : H1(x, y) = −3} ∪ {(x, y) ∈ S2 : H2(x, y) = −10}
∪ {(x, y) ∈ S1 : H1 (x, y) = 60}

∪
{

(x, y) ∈ S2 : H2(x, y) = 2
37

(√
33 + 8

) (√
591 + 6

)}
.

On the other hand, the orbit arc in S1 starting from (5, 0) satis�es ẋ|(5,0) < 0
and ẏ|(5,0) > 0, so it runs in counterclockwise. The orbit arc in S2 starting from(

4
√
591+24
37 , 2

√
591+12
37

)
satis�es ẋ|(2y21,y21) < 0 and ẏ|(2y21,y21) > 0, and so it runs

in counterclockwise. The orbit arc in S1 starting from
(

24−2
√
33

37 , 12−
√
33

37

)
satis�es

ẋ|(2y11,y11) > 0 and ẏ|(2y11,y11) < 0, so it runs in counterclockwise, and the orbit

arc in S2 starting from ( 1
2 , 0) satis�es ẋ|( 1

2 ,0)
< 0 and ẏ|( 1

2 ,0)
< 0, so it runs in

counterclockwise.

3. Proof of Theorem 2

Suppose that we have an arbitrary discontinuous piecewise linear di�erential
system separated by the set Σ formed by the two linear centers given in (2). These
linear centers in S1, and S2 have the �rst integrals H1, and H2 described in (3).
Here we study the maximum number of crossing limit cycles of planar discontinuous
piecewise linear di�erential system (2) that intersect Σ in two and in four points
simultaneously.
For the proof of Theorem 2 we apply the notations given in the proof of Theorem
1. We assume that systems (4) and (10) have two real solutions where each real
solution provides one crossing limit cycle with four points on Σ (type 3) and one
crossing limit cycle intersecting each branch of Σ in one point (type 2), like in
Theorem 1 we proved that discontinuous piecewise linear di�erential system (2)
has at most 1 crossing limit cycle with four points on Σ. We prove that if there
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Fig. 32. The limit cycle of the discontinuous piecewise linear
di�erential system (25).

exist one limit cycle intersecting the set Σ in exactly four points (x11, 0), (x21, 0),
(ly11, y11) and (ly21, y21) with 0 < x11 < x21 and 0 < y11 < y21. System (2) can
have at most one limit cycle (of the type 2) intersecting each branch of Σ in one
point, denoted by (x1, 0) and (ly1, y1) with x1 > 0 and y1 > 0. We note that the
limit cycle intersecting Σ in two points must contain the limit cycle intersecting Σ
in four points in its interior (see Figure 7 (N)), this restriction induces the next
condition

(26) 0 < x11 < x21 < xi and 0 < y11 < y21 < yi.

Notice that the systems (10) and (4) can be written as

H : 4 (ax11 + d)
2 −

(√
4 (b+ al)

2
+ v2y11 − 4a(α−dl)√

4(b+al)2+v2

)2

= 4d2 − 16(a(α−dl))2

4(b+al)2+v2
,

L : − (a(dl−α)(4(B+Al)2+w2)+A(4(b+al)2+v2)(C−lD))(4A(lD−C)+(4(B+Al)2+w2)y11)
(4(B+Al)2+w2)

2

− a(Ad−aD)(D+Ax11)
A2 = 0,

8AC − 8AlD −
(
4A2l2 + 4B2 + w2 + 8ABl

)
(y11 + y21) = 0,

2D +Ax11 +Ax21 = 0,

and

H : 4 (ax1 + d)
2 −

(√
4 (b+ al)

2
+ v2y1 − 4a(α−dl)√

4(b+al)2+v2

)2

= 4d2 − 16(a(α−dl))2

4(b+al)2+v2
,

H∗ : 4 (Ax1 +D)
2 −

(√
4 (B +Al)

2
+ w2y1 − 4A(C−lD)√

4(B+Al)2+w2

)2

= 4D2 − 16A2(C−lD)2

4(B+Al)2+w2 .

If the intersection points of H and L are two, we denote them by P11 = (x11, y11)
and P21 = (x21, y21) with 0 < x11 < x21 and 0 < y11 < y21. Under condition (26),
hereafter, we write P0 = (0, 0) ≺ P11 ≺ P21. This together with (13) forces

0 < x11 < −DA , 0 < y11 <
4A(C−lD)

4(B+Al)2+w2

and, consequently

(27) 0 < x11 < −DA < x21, 0 < y11 <
4A(C−lD)

4(B+Al)2+w2 < y21.
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Fig. 33. The
intersection points
of H with H∗ in the
case P11 and P21

are both located on
the right branch Hr

of H and H∗ is of
left-right type

Fig. 34. The
intersection points
of H with H∗ in the
case P11 and P21 are
located, respectively,
on the left and right
branches HL and Hr

of H and H∗ is of
left-right type

To study the maximum number of a limit cycles Γk, k = 1, 2, ... of system (2)
intersecting Σ in two points provided the existence of a limit cycle intersecting
Σ in four points is equivalent to �nd the maximum number of intersection points
P1i = (x1i, y1i) , i = 1, 2, ... of the hyperbolas H with H∗, whose coordinates satisfy
(27) and (26) knowing that L intersects H in two points P11 = (x11, y11) and
P21 = (x21, y21) with 0 < x11 < x21 and 0 < y11 < y21. By (26) we must have

(28) P0 = (0, 0) ≺ P11 ≺ P21 ≺ Pi , i = 1, 2, ...

Note that P0 = (0, 0) ∈ H∩H∗ and PL =
(
−DA ,

4A(C−lD)

4(B+Al)2+w2

)
is a point of the line

L. In order that the condition in (27) hold the straight line L must have positive
slope, we further assume without loss of generality that the hyperbola H is in left�
right way, then we have three cases possible for the existence two intersection points
of L with H :
1: PL is located on the right hand side of Hr , and L has its slope larger than that
of L2

H.
2: PL is located in between HL and Hr , and L has its slope smaller than that of
L2
H.

3: PL is located on the left hand side of HL , and L has its slope larger than that
of L2

H.
Since IH∗ has the same vertical coordinate as that of PL,then in order that there
exist at least two Pi satis�es (28); IH∗ must be located on the right hand side of

PL both above the horizontal line y = 4A(C−lD)

4(B+Al)2+w2 .

Case 1- If P11 and P21 are both located on the right branch Hr of H or if P11 and
P21 are located, respectively, on the left and right branches HL and Hr of H.
In case that the hyperbola H∗ is of left�right type,. Since P0 = (0, 0) ∈ H∩H∗ and
P0 ≺ P11 ≺ P21 then, there are at most one intersection point P1 = (x1, y1), of H
with H∗, which satisfy (28), in this case P1 on H∗r . See �gures 33 and 34.
In case that the hyperbola H∗ is of upper�down type and since P0 = (0, 0) ∈ H∩H∗
and P0 ≺ P11 ≺ P21,.then there are at most one intersection point P1 = (x1, y1) of
H with H∗, which satisfy (28), and P1 on H∗u. See �gures 35 and 36.
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Fig. 35. The
intersection points of
H with H∗ in the case
P11 and P21are both
located on the right
branch Hr of H and
H∗ is of upper�down
type

Fig. 36. The
intersection points
of H with H∗ in the
caseP11 andP21 are
located, respectively,
on the left and right
branches HL andHr

of H with H∗ is of
upper�down type

Fig. 37. The
intersection points
of H with H∗ in the
case P11 and P21

are both located on
the right branch Hl

of H and H∗ is of
left�right with P1 in
H∗r ∩Hr

Fig. 38. The
intersection points
of H with H∗ in the
case P11 and P21

are both located on
the right branch Hl

of H and H∗ is of
left�right with P1 in
H∗r ∩HL

Case 2- If P11 and P21 are both located on the left branch HL of H.
In case that the hyperbola H∗ is of left�right type,.and since P0 = (0, 0) ∈ H ∩H∗
and P0 ≺ P11 ≺ P21,.then there are at most one intersection point P1 = (x1, y1),
of H with H∗, which satisfy (28), and P1 in H∗r ∩HL or in H∗r ∩Hr. See �gures 37
and 38.
In case that the hyperbola H∗ is of upper�down type, there are at most two
intersection points P0 = (0, 0) and P1 = (x1, y1) of H with H∗, which satisfy
(28), and P1 in H∗u ∩HL or in H∗u ∩Hr. See �gures 39 and 40.

This proves that if there exist one limit cycle intersecting the set Σ in exactly
four points (type 2), system (2) can have at most one limit cycle (of the type 1).

Now we verify that this upper bound is reached, for this we present the following
example.
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Fig. 39. The
intersection points
of H with H∗ in the
case P11 and P21

are both located on
the right branch Hl

of H and H∗ is of
upper�down with P1

in H∗u ∩Hr

Fig. 40. The
intersection points
of H with H∗ in the
case P11 and P21

are both located on
the right branch Hl

of H and H∗ is of
upper�down with P1

in H∗u ∩HL

Example 10. Consider the discontinuous piecewise linear di�erential system with
two pieces separated by the set

Σ =
{

(x, y) ∈ R2 : y = 0 and x ≥ 0
}
∪
{

(x, y) ∈ R2 : x = 0 and y ≥ 0
}
,

de�ned by
(29)

ẋ = 558x− ky − 36
√

14− 1119, ẏ = kx+
(
16
√

14− 412
)
y + 16

√
14 + 828 in S1,

ẋ = −x− y + 2, ẏ = 2x+ y − 4 in S2,

where k = 93

√
545−32

√
14

31 The two linear di�erential systems of (29) have the

following �rst integrals:

H1 (x, y) = 4

(
x− 1

6

√
545−32

√
14

31 y

)2

− 8
((

2
√
14

31 + 373
186

)
x+

(
8
√
14

279 + 46
31

)
y
)

+ y2,

H2 (x, y) = 4
(
x+ 1

2y
)2

+ 8(−2x− y) + y2,

in S1 and S2, respectively. Since ±279i and ±i are the eigenvalues of the matrices
of the two linear di�erential systems of (29), these systems have their equilibria as
centers. For the discontinuous piecewise linear di�erential system (29), the system
(4),withe l = 0 becomes
(30)

4x21 − 8
(

2
√
14

31 + 373
186

)
x1 − 4

(
1
6

√
545−32

√
14

31 y1

)2

+ 8
(

8
√
14

279 + 46
31

)
y1 − y21 = 0,

4x21 − 16x1 − 2y21 + 8y1 = 0,
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and system (10),withe l = 0 becomes
(31)

4x211 − 8
(

2
√
14

31 + 373
186

)
x11 − 4

(
1
6

√
545−32

√
14

31 y11

)2

+ 8
(

8
√
14

279 + 46
31

)
y11 − y211 = 0,

4x221 − 8
(

2
√
14

31 + 373
186

)
x21 − 4

(
1
6

√
545−32

√
14

31 y21

)2

+ 8
(

8
√
14

279 + 46
31

)
y21 − y221 = 0,

−y211 + 8y11 + 2y221 − 8y21 = 0,
4x211 − 16x11 − 4x221 + 16x21 = 0.

Taking into account that we are only interested in the solutions (x11, x21, y11, y21)
satisfying 0 < x11 < x21 < x1 and 0 < y11 < y21 < y1, the unique solution
of the system (31) is (x11, x21, y11, y21) =

(
2
3 ,

10
3 , 1, 3

)
and the unique solution of

the system (30) is (x1, y1) =
(
5,
√

14 + 2
)
. Straightforward computations show that

the solution passing through the crossing points
(
2
3 , 0
)
, (0, 1) , (0, 3) and

(
10
3 , 0

)
correspond to

Γ1 =
{

(x, y) ∈ S1 : H1(x, y) = − 32
√
14

93 − 2488
279

}
∪ {(x, y) ∈ S2 : H2(x, y) = −6} ,

∪
{

(x, y) ∈ S1 : H1 (x, y) = − 160
93

√
14− 280

31

}
∪
{

(x, y) ∈ S2 : H2(x, y) = − 80
9

}
.

and the solution passing through the crossing points (5, 0) and
(
0,
√

14 + 2
)
corres-

pond to

Γ2 =
{

(x, y) ∈ S1 : H1(x, y) = 1840
93 −

80
√
14

31

}
∪ {(x, y) ∈ S2 : H2(x, y) = 20} .

Clearly, Γ1, and Γ2 are nested, and Γ1 is the inner one and Γ2 is the outer one.
Moreover, the orbit arc in S1 starting from (5, 0) satis�es ẋ|(5,0) > 0 and ẏ|(5,0) >

0, so it runs in counterclockwise. The orbit arc in S2 starting from
(
0,
√

14 + 2
)

satis�es ẋ|(0,
√
14+2) < 0 and ẏ|(0,

√
14+2) > 0, and so it runs in counterclockwise,

thus Γ2 is traveled in counterclockwise sense. And the orbit arc in S1 starting from(
10
3 , 0

)
satis�es ẋ|( 10

3 ,0)
> 0 and ẏ|( 10

3 ,0)
> 0, so it runs in counterclockwise. The

orbit arc in S2 starting from (0, 3) satis�es ẋ|(0,3) < 0 and ẏ|(0,3) > 0, and so it runs
in counterclockwise and the orbit arc in S1 starting from (0, 1) satis�es ẋ|(0,1) < 0
and ẏ|(0,1) > 0, so it runs in counterclockwise. The orbit arc in S2 starting from(
2
3 , 0
)
satis�es ẋ|( 2

3 ,0)
> 0 and ẏ|( 2

3 ,0)
< 0, and so it runs in counterclockwise, thus

Γ1 is traveled in counterclockwise sense. Then the discontinuous piecewise linear
di�erential system (29) has exactly two limit cycles intersecting the set Σ in exactly
two points, which are traveled in counterclockwise sense; see them in Figure 41.
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