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AN EXTENSION OF FRANKLIN'S THEOREM

O.V.BORODIN, A.O. IVANOVA

Abstract. Back in 1922, Franklin proved that every 3-polytope with
minimum degree 5 has a 5-vertex adjacent to two vertices of degree at
most 6, which is tight. This result has been extended and re�ned in
several directions.

It is well-known that each 3-polytope has a vertex of degree at most
5, called minor vertex. A 3-path uvw is an (i, j, k)-path if d(u) ≤ i,
d(v) ≤ j, and d(w) ≤ k, where d(x) is the degree of a vertex x. A 3-path
is minor 3-path if its central vertex is minor.

The purpose of this note is to extend Franklin' Theorem to the 3-
polytopes with minimum degree at least 4 by proving that there exist
precisely the following ten tight descriptions of minor 3-paths:
{(6, 5, 6), (4, 4, 9), (6, 4, 8), (7, 4, 7)}, {(6, 5, 6), (4, 4, 9), (7, 4, 8)},
{(6, 5, 6), (6, 4, 9), (7, 4, 7)}, {(6, 5, 6), (7, 4, 9)}, {(6, 5, 8), (4, 4, 9), (7, 4, 7)},
{(6, 5, 9), (7, 4, 7)}, {(7, 5, 7), (4, 4, 9), (6, 4, 8)}, {(7, 5, 7), (6, 4, 9)},
{(7, 5, 8), (4, 4, 9)}, and {(7, 5, 9)}.

Keywords: planar graph, plane map, 3-polytope, structure properties,
tight description, path, weight.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its
incident edges. A k-vertex (k-face) is a vertex (face) with degree k, a k+-vertex has
degree at least k, etc. The minimum vertex degree of G is δ(G). We will drop the
arguments whenever this does not lead to confusion.

A k-path is a path on k vertices. A path uvw is an (i, j, k)-path if d(u) ≤ i,
d(v) ≤ j, and d(w) ≤ k. The weight w(H) of a subgraph H of a graph G is the
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degree-sum of the vertices of H in G. By Pδ denote the class of 3-polytopes with
minimum degree δ; in particular, P3 is the set of all 3-polytopes.

In 1904, Wernicke [20] proved that if P5 ∈ P5 then P5 contains a 5-vertex
adjacent to a 6−-vertex. This result was strengthened by Franklin [12] in 1922 by
proving the existence of a (6, 5, 6)-path in every P5 ∈ P5.

Theorem 1 (Franklin [12]). Every 3-polytope in P5 has a (6, 5, 6)-path, where no 6
can be lowered to 5.

We recall that a description of 3-paths is tight if none of its parameters can be
strengthened and no term dropped. The tightness of Franklin's description is shown
by putting a vertex inside each face of the dodecahedron and joining it to the �ve
boundary vertices.

Franklin's Theorem 1 is fundamental in the structural theory of planar graphs;
it has been extended or re�ned in several directions, see, for example, [1�7, 9�11,
13,14,16�19] and surveys [8, 15].

We now mention only a few easily formulated results on P5, which are the closest
to Franklin's Theorem and whose parameters are all sharp.

Borodin [3] proved that there is a 3-face with weight at most 17. Jendrol' and
Madaras [14] ensured a 5-vertex that has three neighbors whose weight sums to at
most 18 and a 4-path with weight at most 23. Madaras [17] found a 5-path with
weight at most 29. We proved [7] that there is a (5, 6, 6)-path.

In 2014, we proved [6] that there exist precisely seven tight descriptions of 3-paths
in triangle-free 3-polytopes: {(5, 3, 6), (4, 3, 7)}, {(3, 5, 3), (3, 4, 4)}, {(5, 3, 6), (3, 4, 3)},
{(3, 5, 3), (4, 3, 4)}, {(5, 3, 7)}, {(3, 5, 4)}, {(5, 4, 6)}, which was a result of a new type
in the structural theory of plane graphs.

In 1996, Jendrol' [13] gave the following description of 3-paths in P3: {(10, 3, 10),
(7, 4, 7), (6, 5, 6), (3, 4, 15), (3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7), (4, 7, 5)}.

The �rst tight description of 3-paths in P3 was obtained in 2013 by Borodin et
al. [10]: {(3, 4, 11), (3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (7, 4, 7), (6, 5, 6)}.

Another tight description was given by Borodin, Ivanova and Kostochka [11]:
{(3, 15, 3), (3, 10, 4), (3, 8, 5), (4, 7, 4), (5, 5, 7), (6, 5, 6), (3, 4, 11), (4, 4, 9), (6, 4, 7)}. Al-
so, it is shown in [11] that there exist precisely three tight one-term descriptions of
3-paths in P3: {(5, 15, 6, )}, {(5, 10, 15)}, and {(10, 5, 10)}.

The problem posed in [11] of describing all tight descriptions of 3-paths in P3 is
still widely open.

The purpose of this note is to extend Franklin's Theorem as follows.

Theorem 2. There exist precisely the following ten tight descriptions of minor
3-paths in P4:

(td1): {(6, 5, 6), (4, 4, 9), (6, 4, 8), (7, 4, 7)},
(td2): {(6, 5, 6), (4, 4, 9), (7, 4, 8)},
(td3): {(6, 5, 6), (6, 4, 9), (7, 4, 7)},
(td4): {(6, 5, 6), (7, 4, 9)},
(td5): {(6, 5, 8), (4, 4, 9), (7, 4, 7)},
(td6): {(6, 5, 9), (7, 4, 7)},
(td7): {(7, 5, 7), (4, 4, 9), (6, 4, 8)},
(td8): {(7, 5, 7), (6, 4, 9)},
(td9): {(7, 5, 8), (4, 4, 9)},
(td10): {(7, 5, 9)}.
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2. Proving Theorem 2

We �rst de�ne 3-polytopes H1�H4 (see Fig. 1) important for the proof.
Put a 5-vertex into each face of the dodecahedron to obtain H1, in which every

5-vertex is surrounded by 6-vertices. Thus H1 has only (6, 5, 6)-paths from those
listed in Theorem 2.

Now delete all edges joining two 6-vertices from H1, and into each its face wxyz
with d(w) = d(y) = 3 and d(x) = d(z) = 5 put 4-vertices v1, v2, where v1 is adjacent
to w, x, y, v2, while v2 is adjacent to w, z, y, v1. The resulting graph H2 has each
4-vertex adjacent to a 4-vertex and three 9+-vertices and hence only (4, 4, 9)-paths
from the statement of Theorem 2.

To obtain H3, we start from the octahedron, and for each its face f = xyz �rst
put vertices x′, y′, and z′ on the edges yz, xz, and xy, respectively. Then add
vertices vx, vy, and vz joined to each vertex in {x, y′, z′}, {x′, y′, z′}, and {x′, y′, z},
respectively. Finally, add a vertex v adjacent to each vertex in {vx, z′, vy, x′, vz, y′}.
Each 4-vertex in the resulting graph has a 6-neighbor and three 8-neighbors, which
implies that H3 has only (6, 4, 8)-paths from Theorem 2.

Take the (3, 4, 4, 4) Archimedean solid, in which every vertex is incident with a 3-
face and three 4-faces, and put a 4-vertex into each 4-face. In the graph H4 obtained
every 4-vertex is surrounded by 7+-vertices, and H4 has only (7, 4, 7)-paths from
those mentioned in Theorem 2.

Figure 1 shows constructing graphsH1�H4 from some Platonic and Archimedean
solids.
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Fig. 1. Graphs H1�H4.
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Lemma 1. Each of the sets (td1), . . . , (td10) is a description of minor 3-paths
in P4.

Proof. For (td1) this follows from the above mentioned result in [11].
Now note that, by de�nition, each (i, j, k)-path is also an (i′, j′, k′)-path if i′ ≥ i,

j′ ≥ j, and k′ ≥ k. Therefore, for each of the sets (td2), . . . , (td10) it su�ces to check
that all triplets in each of them together cover all triplets in (td1). For example,
the only triplet (7, 5, 9) in (td10) covers each of the triplets in (td1). �

Lemma 2. Each of the descriptions (td1), . . . , (td10) is tight.

Proof. The check is based on the properties of H1�H4. Namely, each of (td1), . . . ,
(td10) must contain triplets (6+, 5, 6+), (4+, 4+, 9), (6+, 4+, 8+) and
(7+, 4+, 7+) due to H1, H2, H3 and H4, respectively.

For example, an attempt to decrease 9 in any of (td1), . . . , (td10) is prevented
from by H2, in which every minor 3-path goes through a 9+-vertex. Also, we cannot
replace the central 5 in any of (td1), . . . , (td10) by 4, since otherwise the thus reduced
set of triplets fails to cover H1. The rest of checking is left to the reader. �

Lemma 3. There are no tight descriptions of minor 3-paths in P4 other than
(td1), . . . , (td10).

Proof. Suppose D = {(x1, y1, z1), . . . (xk, yk, zk)} is a tight description of 3-paths
in P5. This means that

(1) every P4 ∈ P4 has a (xi, yi, zi)-path for at least one i with 1 ≤ i ≤ k, and
(2) if we delete any term (xi, yi, zi) from D or decrease any parameter in D by

one without changing the other 3k− 1 parameters, then the new description is not
satis�ed by at least one P4 ∈ P4.

Note that, due to its tightness, the description D cannot have triplets (X,Y, Z)
and (X ′, Y ′, Z ′) such that X ≤ X ′, Y ≤ Y ′, and Z ≤ Z ′, for D′ = D \ {(X,Y, Z)}
is equivalent to D but shorter. Also, all parameters in D should be at least 4 since
we deal with P4. By symmetry, we can assume that xi ≤ zi whenever 1 ≤ i ≤ k.

Note that D must contain a term (6+, 5, 6+) to be able to describeH1. Therefore,
our case analysis splits into Cases 1�6.

Case 1. D has a term (x1, y1, z1) = (7+, 5, 9+). By Lemma 2, D must coincide
with the tight description (td10), so D = {(7, 5, 9)}.

Case 2. D has a term (x1, y1, z1) = (6, 5, 9+). Due to H4, there should be a term
(x2, y2, z2) = (7+, 4+, 7+) in D, and hence D coincides with the tight description
{(6, 5, 9), (7, 4, 7)}, that is (td6).

Case 3. D has a term (x1, y1, z1) = (7+, 5, 8). Due to H2, there should be a
term (x2, y2, z2) = (4+, 4+, 9+), so D = {(7, 5, 8), (4, 4, 9)}, which is (td9).

Case 4. D has a term (x1, y1, z1) = (6, 5, 8). Now again D must include a term
(x2, y2, z2) = (4+, 4+, 9+). If (x2, y2, z2) = (7+, 4, 9+), then D is weaker than (td4),
which is impossible. If (x2, y2, z2) = (6−, 4+, 9+), then due to H4 there should exist
a term (x3, y3, z3) = (7+, 4+, 7+). Hence D = {(6, 5, 8), (4, 4, 9), (7, 4, 7)}, which
means that we have (td5).

Case 5. D has a term (x1, y1, z1) = (7, 5, 7). Now again D must include a term
(x2, y2, z2) = (4+, 4+, 9+). If (x2, y2, z2) = (6+, 4+, 9+), thenD = {(7, 5, 7), (6, 4, 9)},
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so D is (td8). Otherwise, that is if (x2, y2, z2) = (5−, 4+, 9+), there should exist
(x3, y3, z3) = (6+, 4+, 8+) due to H3, and we have D = {(7, 5, 7), (4, 4, 9), (6, 4, 8)},
which is (td7).

Case 6. D has a term (x1, y1, z1) = (6, 5, 6 ∨ 7). We shall see from what follows
that in fact (x1, y1, z1) = (6, 5, 7) is impossible. Indeed, on the one hand D is tight,
but on the other hand the term (6, 5, 7) can either be deleted from D if there is
also a term (6, 5, 6) in D, or can be strengthened to (6, 5, 6) otherwise, since it
does not cover any triplets mentioned in Theorem 2. Again we can assume that
(x2, y2, z2) = (4+, 4+, 9+).

Subcase 6.1. (x2, y2, z2) = (7+, 4, 9+). Now D = {(6, 5, 6), (7, 4, 9)}, so D is
(td4).

Subcase 6.2. (x2, y2, z2) = (6, 4, 9+). Due to H4, we can assume that there should
be (x3, y3, z3) = (7+, 4, 7+), which implies that D = {(6, 5, 6), (6, 4, 9), (7, 4, 7)},
which is (td3).

Subcase 6.3. (x2, y2, z2) = (5−, 4, 9+). Note that the �rst two terms of D do not
cover H3, and thus we should have (x3, y3, z3) = (6+, 4, 8+). If in fact (x3, y3, z3) =
(7+, 4, 8+), thenD = {(6, 5, 6), (4, 4, 9), (7, 4, 8)}, as in (td2). Otherwise, (x3, y3, z3) =
(6, 4, 8+), which implies due to H4 that D also has a term (x4, y4, z4) = (7+, 4, 7+),
and is (td1): {(6, 5, 6), (4, 4, 9), (6, 4, 8), (7, 4, 7)}. �

This completes the proof of Theorem 2.
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