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THE PROPERTY OF BEING A MODEL COMPLETE THEORY

IS PRESERVED BY CARTESIAN EXTENSIONS

M.G. PERETYAT'KIN

Abstract. Cartesian-quotient extensions of theories constitute a most
common class of �nitary transformation methods for �rst-order combina-
torics. In this paper, some technical properties of classes of algebraic
Cartesian and algebraic Cartesian-quotient interpretations of theories
are studied. It is established that any algebraic Cartesian interpretation
preserves the property of being a model complete theory; besides, an
example of an algebraic Cartesian-quotient interpretation of theories is
given, which does not preserve the model-completeness property.

Keywords: �rst-order logic, incomplete theory, Tarski-Lindenbaum algeb-
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High importance in logic has the problem of characterization of the Tarski-
Lindenbaum algebra of predicate calculus of a �nite rich signature. This problem
was initiated by Alfred Tarski in the late 1930th, and the problem was solved
by William Hanf in 1975, [1, Th. 3], [2, Th. 23]. Historical background of the Tarski
problem can be found in the papers [3, p. 132-134], [4, p. 75-76], [1, p. 587], [5, Sec. 2],
[6, p. 357], [7, p. 84-85], and others. As a signi�cant generalization of the Tarski
problem, a natural question arises to characterize the structure of the Tarski-
Lindenbaum algebra of predicate calculus together with a description of model-
theoretic properties of di�erent extensions of this theory. Some advances in this
direction are obtained in [8, Th. 6.1], [9, Th. 7.1], and [7, p. 99-102]. A principal result
in this direction is announced in [10] together with [11] showing an evident progress

Peretyat'kin, M.G., The property of being a model complete theory is preserved

by Cartesian extensions.

© 2020 Peretyat'kin M.G.

The work was supported by the Ministry of Science and Education of the Republic of
Kazakhstan (grant � AP05130852).

Received April, 2, 2020, published September, 25, 2020.
1540



THE PROPERTY OF BEING A MODEL COMPLETE THEORY 1541

towards the solution to the generalized Tarski problem. The result is essentially
based on Main Theorem in [11] establishing a strong connection between predicate
calculi of any two �nite rich signatures by a passage via Cartesian extensions; thus,
the operation of a Cartesian extension plays the key role in solving generalized
Tarski's problem.

Finitary and in�nitary �rst-order combinatorics represents a conceptual basis
of investigations on expressive power of predicate logic, [12, Sec. 2]. Cartesian and
Cartesian-quotient extensions of theories represent a natural general class of �nitary
methods of transformations of theories. In this paper, some technical properties of
the class of algebraic Cartesian extensions of theories are studied. It is proved that
the operation of an algebraic Cartesian extension preserves the property of being a
model complete theory. In contrast to this, an example of an algebraic Cartesian-
quotient extension of a theory is constructed that does not preserve the property
of being a model-complete theory.

0. Preliminaries

We consider theories in �rst-order predicate logic with equality and use general
concepts of model theory, algorithm theory, and constructive models found in [13],
[14], and [15]. Special concepts of this paper are in accordance with those accepted
in [16]. Generally, incomplete theories are considered. In the work, the signatures are
considered only, which admit G�odel's numberings of the formulas. Such a signature
is called enumerable.

By L(T ), we denote the Tarski-Lindenbaum algebra of formulas of theory T
without free variables, while L(T ) denotes the Tarski-Lindenbaum algebra L(T )
considered together with a G�odel numbering γ; thereby, the concept of a computable
isomorphism is applicable to such objects. The following notations are used: PC(σ)
is predicate calculus of signature σ, i.e., a theory of signature σ de�ned by an empty
set of axioms, SL(σ) is the set of all sentences of signature σ, FL(σ) is the set of all
formulas of signature σ. A �nite signature is called rich, if it contains at least one
n-ary predicate or function symbol for n > 2, or two unary function symbols.

As an ∃ ∩ ∀-formula ϕ(x̄) of signature σ, a pair of formulas (ϕe(x̄), ϕa(x̄)) is
meant together with the domain sentence DomEA(ϕ(x̄)) = (∀x̄)[ϕe(x̄) ↔ ϕa(x̄)],
where ϕe(x̄) is an ∃-formula, while ϕa(x̄) is a ∀-formula of signature σ. A formula
ϕ(x̄) of theory T is said to be ∃ ∩ ∀-presentable in T if T ` DomEA(ϕ(x̄)). If ψ(x̄) is
a quanti�er-free formula, DomEA(ψ(x̄)) is supposed to be a generally true formula.
If κ is a �nite set (or a sequence) of ∃ ∩ ∀-formulas ψi(x̄i), i < k, we denote by
DomEA(κ) the conjunction

∧
i<kDomEA(ψi(x̄i)).

Robinson's criterion, [17], establishes that an arbitrary (in general case, incomp-
lete) theory T is model complete if and only if each formula ϕ(x̄) of theory T is
∃ ∩ ∀-presentable in T , equivalently, M ⊆M′ ⇒M 4M′ is satis�ed for all models
M and M′ of theory T .

Recall an important de�nition introduced in [3, Sec. 1]. Given a theory T of

signature τ and a theory S of signature σ. Consider a pair of functions (h, h̃),

where h : SL(τ)→ SL(σ) is a computable bijection, and h̃ : Mod(T )→ Mod(S) is

a bijective mapping. This pair (h, h̃) is said to be Hanf's isomorphism between the
theories, if the following condition is satis�ed:

(0.1) M |= ϕ↔ h̃(M) |= h(ϕ), for all ϕ ∈ SL(σ), M ∈ Mod(T ).
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Moreover, it is possible to restrict ourselves with just the case when the mapping h̃
links classes of models of theories T and S of cardinality 6 γ instead of the classes
of all models, where γ is a �xed in�nite cardinal number.

Lemma 0.1. [3, Sec. 1] Let T and S be theories of signatures τ and, respectively,
σ. The following statements are equivalent with each other :

(a) there is a computable isomorphism µ : L(T )→ L(S),

(b) there is Hanf's isomorphism (h, h̃) between T and S.

Proof. Immediately. �

Let µ : L(T ) → L(S) be an isomorphism of the Tarski-Lindenbaum algebras of
theories T and S. It is a simple fact that µ establishes a one-to-one correspondence
between �lters in the Boolean algebras L(T ) and L(S); moreover, ultra�lters in
L(T ) will correspond to ultra�lters in L(S). By construction, �lters in the Tarski-
Lindenbaum algebras represent theories extending the source theories, while ultra�l-
ters represent complete theories extending the source theories. Based on this obser-
vation, we de�ne a natural correspondence between extensions of the theories T
and S (including both complete and incomplete ones) by the rules:

(0.2) (a) T ′ ⊇ T 7→ S′ ⊇ S, by rule S′ = µ(T ′),

(b) S′ ⊇ S 7→ T ′ ⊇ T, by rule T ′ = µ−1(S′).

Thus, if T ′ is a theory extending T , its full image S′ = µ(T ′) is a theory extending
S, and visa verse, if S′ is a theory that is an extension of S, its full preimage
T ′ = µ−1(S′) is a theory extending T . Moreover, the following properties take
place:

(0.3) (a) transitions T ′ 7→ µ(T ′) and S′ 7→ µ−1(S′) in (0.2) are mutually
inverse to each other;

(b) (∀ extension T ′ ⊇ T )
[
T ′ is complete ⇔ µ(T ′) is complete

]
.

1. Isostone interpretations

We follow a standard version of the concept of an interpretation of a theory T0
of signature σ0 in the domain U(x) of a theory T1 of signature σ1, cf. [18, Sec. 4.7].
Interpretation I : T0 � T1 is uniquely determined by a mapping ι̇ (called the
basic assignment) from signature symbols of theory T0 in formulas of theory T1.
The mapping ι̇ has to keep (in a sense) quantity of free variables demanding these
variables to be restricted in the domain U(x). Each n-ary predicate is mapped in a
formula with n free variables, n-ary function in a formula with n+1 free variables,
and constant in a formula with one free variable. Inductively, the mapping ι̇ is
expanded upto a transformation I : FL(σ0)→ FL(σ1).

Any interpretation I has to satisfy the following properties for all ϕ ∈ SL(σ0):
(a) T1 ` (∃x)U(x), (b) T0 ` ϕ ⇒ T1 ` I(ϕ). Interpretation I is said to be faithful
if T0 ` ϕ ⇔ T1 ` I(ϕ) for all ϕ ∈ SL(σ0). Interpretation I of theory T0 in the
domain U(x) of theory T1 is said to be ∃ ∩ ∀-presentable, if both domain formula
U(x) and destinations of the basic assignment for I are ∃ ∩ ∀-presentable formulas
in T1 Interpretation I is said to be e�ective if transformation ϕ 7→ I(ϕ) is de�ned
by a computable function on G�odel numbers.

Let I be an interpretation of a theory T0 of signature σ0 in the domain U(x) of
a theory T1. Consider an arbitrary model M of theory T1. Based on interpretation
I, it is possible to de�ne all predicates, functions and constants of signature σ0
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in �rst-order de�nable set U(M) obtaining a model N = 〈U(M), σ0〉 which is
called the model-kernel of M with respect to the interpretation I, symbolically
N = KI(M), or brie�y N = K(M), when the interpretation I is de�ned within the
context. Interpretation I is called model free if Mod(T0) = {K(M) |M ∈ Mod(T1)}.
Interpretation I is called isostone if it is model free, and the following condition is
satis�ed: K(M0) ≡ K(M1) ⇒ M0 ≡M1 for all models M0,M1 ∈ Mod(T1).

Study main properties of isostone interpretations.

Lemma 1.1. [16, Lem. 5.2.1] Let I be an isostone interpretation of a theory T0 of
signature σ0 in a theory T1. Then, mapping µ from L(T0) into L(T1) de�ned by the
rule

(1.1) µ([ϕ]T0) = [I(ϕ)]T1 , ϕ ∈ SL(σ0),

is an isomorphism between these Tarski-Lindenbaum algebras. In the case when
interpretation I is e�ective, the rule (1.1) determines a computable isomorphism
µ : L(T )→ L(S) between the Tarski-Lindenbaum algebras of theories T and S.

Proof. Immediately. �

An interpretation I of theory T0 in the domain U(x) of theory T1 is said to be
auto-free, if the following condition is satis�ed:

(1.2)
(
∀M ∈ ModT1

)(
∀µ ∈ AutK(M)

)(
∃µ∗ ∈ AutM

) [
µ = µ∗ � U(M)

]
.

We give an important technical fact.

Lemma 1.2. [19, Lem. 1.4] Let I be an isostone interpretation of theory T0 of
signature σ0 in the domain U(x) of theory T1 of signature σ1, such that, I is an
auto-free interpretation. If ϕ(x1, ..., xn) is a formula of signature σ1 satisfying

T1 ` ϕ(x1, ..., xn)→ U(x1) & ...&U(xn),

then, there is a formula ψ(x1, ..., xn) of signature σ0 such that

T1 ` ϕ(x1, ..., xn)↔ Iψ(x1, ..., xn).

Proof. Given a formula ϕ(x̄), x̄ = (x1, ..., xn), of signature σ1 satisfying in theory
T1 the following condition

(1.3) ϕ(x̄)→ x̄ ⊆ U.
We prove that for any complete type p(x̄) in theory T0 and any formula ϕ(x̄) of
signature σ1 satisfying (1.3), one of the following cases must take place:

(1.4) (a) T1 ∪ Ip(x̄) ` ϕ(x̄), or (b) T1 ∪ Ip(x̄) ` qϕ(x̄).

Suppose (1.4) were false for ϕ(x̄); i.e., there is a type p(x̄) in a complete extension
T ′ of T0, such that T1 ∪ Ip(x̄) 6` ϕ(x̄) and T1 ∪ Ip(x̄) 6` qϕ(x̄). Since p(x̄) is
a complete type in T0, each sentence Φ of signature σ or its negation qΦ must
belong to p(x̄). Interpretation I is isostone; thus, I-image of p(x̄) must generate
a complete extension T ′′ of T1. By assumption each of the sets Ip(x̄) ∪ {ϕ(x̄)}
and Ip(x̄) ∪ {qϕ(x̄)} is compatible with T1; therefore, they are compatible with
T ′′. Hence, we can �nd in T ′′ complete types q1(x̄) and q2(x̄), such that q1(x̄) is
compatible with Ip(x̄) ∪ {ϕ(x̄)}, and q2(x̄) is compatible with Ip(x̄) ∪ {qϕ(x̄)}.
Consider a countable homogeneous model M of theory T ′′ that realizes both types
q1(x̄) and q2(x̄) on tuples, respectively, c̄1 and c̄2. By (1.3), the tuples c̄1 and
c̄2 are located in the kernel domain U(x̄) and realize the same type p(x̄) in theory
ThK(M). Since the modelM is homogeneous, its kernel K(M) is also homogeneous.
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Since c̄1 and c̄2 realize the same type in K(M), there is an automorphism µ :
K(M) → K(M) that maps c̄1 into c̄2. However, no automorphism µ∗ : M → M
extending µ can exist since c̄1 and c̄2 realize di�erent types q1(x̄) and q2(x̄) in
theory Th(M). This contradiction establishes that (1.4) is indeed true.

In the �rst case (1.4)(a), by using standard methods of model theory, we can �nd
a formula θ(x̄) in type p(x̄) such that T1 ∪ {Iθ(x̄)} ` ϕ(x̄), while in another case
(1.4)(b), we can �nd a formula λ(x̄) in the type p(x̄), such that T1∪{Iλ(x̄)} ` qϕ(x̄).
Consider the set θp, p ∈ P , of all formulas obtained by this rule for di�erent types
p satisfying (1.4)(a), and the set λq, q ∈ Q, of all formulas found from types q
satisfying (1.4)(b). By construction, the following disjunction (possible, in�nitary)∨

p∈P θp(x̄) ∨ ∨
q∈Qλq(x̄)

is true in any tuple of variables x̄ in any model N of theory T . By Maltsev's
Compactness Theorem, there are �nite subsets P0 ⊆ P and Q0 ⊆ Q such that

T ` (∀x̄)[
∨
p∈P0

θp(x̄) ∨∨
q∈Q0

λq(x̄)].

We have obtained �nite sets of formulas {θ0(x̄), ..., θk(x̄)} and {λ0(x̄), ..., λt(x̄)}
of signature σ0 such that

T1 ` Iθ0(x̄) ∨ ... ∨ Iθk(x̄)→ ϕ(x̄),

T1 ` Iλ0(x̄) ∨ ... ∨ Iλt(x̄)→ qϕ(x̄),

T0 ` (∀x̄)
[
θ0(x̄) ∨ ... ∨ θk(x̄) ∨ λ0(x̄) ∨ ... ∨ λt(x̄)

]
,

T0 ` (∀x̄)
[(
θ0(x̄) ∨ ... ∨ θk(x̄)

)
↔ q

(
λ0(x̄) ∨ ... ∨ λt(x̄)

)]
.

Thereby, by putting θ(x̄) = θ0(x̄) ∨ ... ∨ θk(x̄), we obtain the required relation
T1 ` Iθ(x̄)↔ ϕ(x̄). �

Interpretation I of a theory T0 in a theory T1 is called model bijective if the
following requirements are held:

(1.5) (a) Mod(T0) = {K(M)|M ∈ Mod(T1)},
(b) K(M) ∼= K(M′) ⇔ M ∼= M′, for all M,M′ ∈ Mod(T1).

Lemma 1.3. [19, Lem. 1.5] Let I be a model bijective interpretation of a theory T0
in a theory T1. Then, I is faithful, model free, and isostone. Besides, the following
relations take place:

(a) ||K(M)|| < ω ⇔ ||M|| < ω, for all M ∈ Mod(T1),
(b) ||K(M)|| = ||M||, for all in�nite models M ∈ Mod(T1).

Proof. Immediately. �

2. Cartesian-type interpretations

In this section, we introduce the operation of a Cartesian-quotient extension
of a theory and study some technical properties of the operation. The idea behind
the operation was considered by Leslaw Szczerba in the work [20, p. 130, lines 17-24],
where signi�cance of this construction is also discussed. The operation in detail was
described in [21, Sec. 1.5]. A weak version of the operation is presented in [7, pp. 89-
90]. Essence of the operation of a Cartesian-quotient extension is close to that of the
operation T 7→ T eq, cf. [22], [23], [24], [25], and others. The operation 'eq' attaches
imaginary elements to the universe for classes of �rst-order de�nable equivalence
relations. In this paper, we generally use simpler operation of a Cartesian extension
of a theory doing without quotients. As for the general version of the operation of a



THE PROPERTY OF BEING A MODEL COMPLETE THEORY 1545

Cartesian-quotient extension of a theory that is indeed close to the operation 'eq',
we concern this version just for the comparison purposes.

We start to describe the operation of a Cartesian-type extension of a theory.
Given a signature σ and a �nite sequence of formulas of this signature of either

of the following forms:

(2.1) (a) κ = 〈ϕm1
1 /ε1, ϕ

m2
2 /ε2, . . . , ϕ

ms
s /εs〉,

(b) κ = 〈ϕm1
1 , ϕm2

2 , . . . , ϕms
s 〉,

where ϕk(x̄k) is a formula with mk free variables, εk(ȳk, z̄k) is a formula with 2mk

free variables such that Len (ȳk) = Len (z̄k) = mk; moreover, (2.1)(b) is a simpli�ed
notation instead of the common entry (2.1)(a) in the case when εk(ȳk, z̄k) coincides
with ȳk = z̄k for all k 6 s.

Starting from a model M of signature σ together with a tuple κ of any of the
forms (2.1)(a,b), we are going to construct a new model M1 of signature

(2.2) σ1 = σ ∪ {U1, U1
1 , U

1
2 , . . . , U

1
s } ∪ {K

m1+1
1 ,Km2+1

2 , . . . ,Kms+1
s }

as follows. As the universe, we take |M1| = |M| ∪ A1 ∪ A2 ∪ . . . ∪ As, where all
speci�ed parts are pairwise disjoint sets. On the set |M|, all symbols of signature σ
are de�ned exactly as they were de�ned in M; in the remainder, they are de�ned
trivially; predicate U(x) distinguishes |M|; predicate Uk(x) distinguishes Ak; the
other predicates are de�ned by speci�c rules depending on the case. In the case
(2.1)(b), each predicate Kk(x̄k, u) in (2.2) should be de�ned so that it would
represent a one-to-one correspondence between the set of tuples {ā | M |= ϕk(ā)}
and the set Ak = Uk(M1). Turn to the most common case (2.1)(a). Denote by
Equiv(εk, ϕk) a sentence stating that εk is an equivalence relation on the set of
tuples distinguished by the formula ϕk(x̄k) inM. In this case, (mk+1)-ary predicate
Kk(x̄k, u) should be de�ned so that it would represent a one-to-one correspondence
between the quotient set {ā | M |= ϕk(ā)}/ε′k and the set Uk(M1), where

(2.3) ε′k(ȳk, z̄k) = εk(ȳk, z̄k) ∨ q Equiv(εk, ϕk).

The model M1 obtained from M and κ as explained above is denoted by M〈κ〉.
The aim of replacement of εk by ε′k using Equiv(εk, ϕk) is to provide the total

de�niteness of the operation M 7→M〈κ〉 independently of whether the formulas εk,
k = 1, 2, ..., s, represent equivalence relations in corresponding domains or not. In
the case (2.1)(a), M〈κ〉 is said to be a Cartesian-quotient extension of M, while in
the case (2.1)(b), the model M〈κ〉 is said to be a Cartesian extension of M by a
sequence of formulas κ.

Mention some kind of determinism for the operation under consideration.

Lemma 2.1. [26, Lem. 2.1+Sect. 3] Given a model N of signature σ and a tuple
κ of the form (2.1)(a). For a �xed choice of signature (2.2), Cartesian-quotient
extension M = N〈κ〉 of the model N is de�ned uniquely, up to an isomorphism
over N. Moreover, we have |M| = acl(U(M)). Thus, any automorphism λ : N→ N
can be extended, by a unique way, up to an automorphism λ∗ : N〈κ〉→ N〈κ〉.

Proof. This statement is a simple consequence of the construction. �

Expand the operation of an extension (initially de�ned for models) on theories.
Given a theory T and a tuple κ of the form (2.1). Using a �xed signature (2.2) for
extensions of models, we de�ne a new theory T ′ = T 〈κ〉 as follows: T ′ = Th(K),
K = {M〈κ〉 | M ∈ Mod(T )}. In the case (2.1)(a) it is called a Cartesian-quotient
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extension, while in the case (2.1)(b) it is called a Cartesian extension of T by a
sequence κ.
Lemma 2.2. [26, Lem. 2.2] For any model M of theory T 〈κ〉, there is a model N of
theory T such that M ∼= N〈κ〉.

Proof. Immediately, from the description of the operation T 7→ T 〈κ〉. �

In theory T 〈κ〉, the domain U(x) represents a model of theory T . Particularly,
the transformation T 7→ T 〈κ〉 de�nes a natural interpretation IT,κ of T in T 〈κ〉. It
is called a plain Cartesian-quotient interpretation. Similar de�nition applies to the
other case of the tuple κ; thereby, the concept of a plain Cartesian interpretation is
also de�ned. Considering theories up to an algebraic isomorphism, we may use
a simpler term Cartesian-quotient or, respectively, Cartesian interpretation, cf.
[26,Def. 2.A].

We study main properties of plain Cartesian-type interpretations.

Lemma 2.3. [26, Lem. 2.3] Given a theory T of signature σ and a tuple κ of the
form (2.1)(a). For a �xed choice of signature (2.2), Cartesian-quotient interpretation
IT,κ : T � T 〈κ〉 has the following properties:

(a) the model-kernel passage is de�ned by rule K(N〈κ〉)= N, for all N ∈ Mod(T ),
(b) IT,κ(ϕ) = (ϕ)U , for all ϕ ∈ SL(σ),
(c) IT,κ is ∃ ∩ ∀-presentable,
(d) IT,κ is e�ective, faithful, auto-free, model-bijective, and isostone,
(e) interpretation IT,κ determines in accordance with rule (1.1) a computable

isomorphism µT,κ : L(T )→ L(T 〈κ〉) between the Tarski-Lindenbaum algebras.

Proof. (a), (b), (c) Immediately, from construction.
(d) E�ectiveness of the interpretation is checked immediately. By Lemma 2.1 and

Lemma 2.2, the mapping of passage to the model-kernel is a one-to-one correspon-
dence between isomorphism types of models of the classes Mod(T 〈κ〉) and Mod(T );
thereby, interpretation IT,κ is model bijective. By Lemma 1.3, the interpretation
IT,κ is faithful, model-free, and isostone.

(e) By applying Lemma 1.3. �

Normally, we consider passages T 7→ T 〈κ〉 for which sequence (2.1) satis�es the
following technical condition:

(2.4) ϕk(x̄k) and εk(ȳk, z̄k) are ∃ ∩ ∀-presentable, for all k 6 s.
Denote by κD(σ) and κC(σ) the sets of tuples of formulas of signature σ of the

forms, respectively, (2.1)(a) and (2.1)(b), while κD and κC are unions of these sets
for all possible (enumerable) signatures σ. We denote by κC∃∩∀ the set of all tuples
(2.1)(b) satisfying (2.4), while κD ε

∃∩∀ denotes the set of all tuples (2.1)(a) satisfying
(2.4). By applying an entry T 〈κ〉, we always suppose that theory T is applicable to
the tuple κ, while if we use an entry T 〈κ〉 with κ in either κC∃∩∀ or κD ε

∃∩∀, we
count that T ` DomEA(κ) ensuring that each of the formulas ϕk(x̄k) and εk(ȳkz̄k),
i = 1, ...,m, in the tuple κ is ∃ ∩ ∀-presentable in T .

When using an extra speci�er algebraic, we explicitly indicate that the algebraic
approach is accepted, i.e., demands (2.4) for the passage T 7→ T 〈κ〉 take place. For
instance, passage T 7→ T 〈κ〉 is called an algebraic Cartesian-quotient extension
whenever κ ∈ κD ε

∃∩∀, interpretation IT,κ is called a plain algebraic Cartesian
interpretation if κ ∈ κC∃∩∀, etc.

In this paper, we systematically follow the algebraic approach. Moreover, we
focus our attention on the case of Cartesian extensions (2.1)(b). As for the common
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case (2.1)(a) of a Cartesian-quotient extension, we concern this case of the operation
just for comparison purposes.

Let us study formal properties of Cartesian-quotient extensions of theories.
Consider a theory T of signature σ together with a sequence κ ∈ κD(σ). New

domains Ui(x), i = 1, 2, ..., s, are obtained by applying the standard quotient
construction of �rst-order de�nable sets modulo de�nable equivalences in theory
T . These relations are presented in theory T 〈κ〉 by the following formulas:

(2.5) (a) ϕ̌k(x̄) = (x̄ ⊆ U) & (ϕk(x̄))U ,

(b) ε̌′k(x̄, ȳ) = (x̄ ⊆ U) & (ȳ ⊆ U) & (ε′k(x̄, ȳ))U .

Now, we formalize the operation of a Cartesian-quotient extension T 7→ T 〈κ〉,
κ ∈ κD, in accordance with the informal description given earlier in this section.

System of axioms of theory T 〈κ〉 includes the following sentences:

1◦. (∃x)U(x),

2◦. (∃x)Ui(x), i = 1, 2, ..., s,

3◦. (∀x) [U(x)→ qUi(x) ], i = 1, 2, ..., s,

4◦. (∀x) [Ui(x)→ qUj(x) ], 1 6 i < j 6 s,

5◦. All σ-predicates are de�ned trivially outside the domain U(x),

6◦. All σ-functions are de�ned trivially outside the domain U(x),

7◦. (Φ)U , for all Φ ∈ SL(σ), such that Φ ∈ Σ (Σ is a set of axioms of T ),

8◦. (∀x1...xmk
z)

[
Kk(x1, ..., xmk

, z)→ U(x1) & ...&U(xmk
) &Uk(z)

]
, k = 1, ..., s,

9◦. (∀x̄z)
[
Kk(x̄, z)→ x̄ ⊆ U & ϕ̌k(x̄) &Uk(z)

]
, k = 1, ..., s,

10◦. (∀x̄)
[
x̄ ⊆ U & ϕ̌k(x̄)→ (∃z)Kk(x̄, z)

]
, k = 1, ..., s,

11◦. (∀z)
[
Uk(z)→ (∃x̄)

(
x̄ ⊆ U & ϕ̌k(x̄) &Kk(x̄, z)

) ]
, k = 1, ..., s,

12◦. (∀x̄ ȳzu)
[
ϕ̌k(x̄) & ϕ̌k(ȳ) & ε̌′k(x̄, ȳ) &Kk(x̄, z) &Kk(ȳ, u) → z = u

]
, k =

1, ..., s,

13◦. (∀x̄ ȳ z)
[
ϕ̌k(x̄) & ϕ̌k(ȳ) &Kk(x̄, z) &Kk(ȳ, z)→ ε̌′k(x̄, ȳ)

]
, k = 1, ..., s,

14◦. (∀x̄ ȳ z)
[
ϕ̌k(x̄) & ϕ̌k(ȳ) &Kk(x̄, z) & ε̌′(x̄, ȳ)→ Kk(ȳ, z)

]
, k = 1, ..., s.

By FRM(κ), we denote the set of sentences included in Axioms 1◦-6◦ and 8◦-14◦.
The set FRM(κ) is called the framework of the operation T 7→ T 〈κ〉. This part of
axioms participates in the operation with the same tuple κ for all input theories T .
By construction, the set of sentences FRM(κ) is �nite, it does not depend on theory
T , and we have the following presentation for all theories T of signature σ:

(2.6) T 〈κ〉 =
[
FRM(κ) + { I(ϕ) | ϕ ∈ SL(σ), T ` ϕ }

]σ1
.

Actually, FRM(κ) depends not only on κ, but also on signature σ of theory T , and
on a signature (2.2) �xed for the construction T 7→ T 〈κ〉.

Lemma 2.4. Given a theory T of signature σ together with a tuple of formulas
κ ∈ κC∃∩∀(σ). Consider computable isomorphism µT,κ : L(T ) → L(T 〈κ〉) de�ned
in Lemma 2.3. For an arbitrary theory T ′ ⊇ T and corresponding theory S′ ⊇ T 〈κ〉
linked by S′ = µT,κ(T ′), as pointed out in (0.2), we have S′ = T ′〈κ〉.

Proof. By Lemma 2.3(d), interpretation IT,κ : T � T 〈κ〉 is model-bijective, while
Lemma 2.3(a) establishes details of the model-kernel operation for the interpretation.
On the one hand, we obtain from requirement (1.5)(a) that the class of models of
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theory S′ = µT,κ(T ′) equals to M = {K(N) | N ∈ Mod(T ′)}. On the other hand,
from relation (2.6) considered with respect to theories T ′ and T ′〈κ〉 we obtain
that Mod(T ′〈κ〉) is equal to the same class M . From this we obtain �nally that
µT,κ(T ′) = S′ = T ′〈κ〉. �

3. Preservation of the property of being a model complete theory

In this section, we present main statements of the paper.

Theorem 3.1. Given a theory T of signature σ together with a tuple of formulas
κ ∈ κD(σ). The following assertions are held:

(a) if theory T is model complete, the theory T 〈κ〉 is also model complete,
(b) if formulas ϕk(x̄k) and ε′k(ȳk, z̄k), k = 1, 2, ..., s, are ∃ ∩ ∀-presentable in T

and theory T 〈κ〉 is model complete, the theory T is also model complete,
(c) if formulas ϕk(x̄k) and εk(ȳk, z̄k), k = 1, 2, ..., s, are ∃ ∩ ∀-presentable in

theory T and T is complete, T 〈κ〉 is model complete if and only if T is model
complete.

Proof. (a) Suppose that T is model complete. Let M and M′ be models of theory
T 〈κ〉 such that M ⊆ M′. By construction, signature symbols of T are de�ned in
the domain U(x) of theory T 〈κ〉. From this, we obtain U(M) = U(M′) ∩ |M|;
moreover, we have K(M) ⊆ K(M′). By virtue of model completeness of T , we have
K(M) 4 K(M′) ensuring that the identical mapping f : K(M) → K(M′) is an
elementary embedding of these models of theory T . By applying Lemma 1.2, we
obtain that f : M � U(M) → M′ � U(M′) is an elementary embedding of subsets
in the models of theory T 〈κ〉. Therefore, it is possible to extend f to an elementary
embedding f∗ of the whole modelM into a suitable elementary extensionM′′ ofM′.
By virtue of Lemma 2.1, each element in the image f∗(M) is �rst-order de�nable
over its domain U(f∗(M)) coinciding with U(M), thus, the set f∗(M) must be a
subset of |M′|. As a result, we obtain M 4M′ ensuring that the target theory T 〈κ〉
is model complete.

(b) Now, we suppose that conditions of Part (b) are held and theory T 〈κ〉 is
model complete. Consider models N and N′ of theory T such, that N ⊆ N′. By
construction, we can �nd a model M′ of theory T 〈κ〉 such that N′ = K(M′). Since
formulas ϕi(x̄i) and εi(ȳi, z̄i), i = 1, 2, ..., s, are ∃ ∩ ∀-presentable in theory T , their
domains of true inN are restrictions on |N| of their domains of true computed inN′.
This allows us to de�ne a model M of theory T 〈κ〉 with the kernel N as a submodel
in the available model M′, i.e., we have U(M) = |N| and N = K(M) for the model
M. Since theory T 〈κ〉 is model complete, embedding M ⊆ M′ implies elementary
embedding M 4M′. From this, we immediately obtain N 4 N′ ensuring that the
theory T is model complete.

(c) In the case when theory T is complete, each sentence Equiv(εi, ϕi), i =
1, 2, ..., s, is either identically true or identically false in T . From (2.3) we obtain
that, for each i, formula ε′i(ȳi, z̄i) is ∃ ∩ ∀-presentable in T if and only if the formula
εi(ȳi, z̄i) is ∃ ∩ ∀-presentable in T . By applying Part (b), we obtain exactly what is
required. �

Corollary 3.2. Given a theory T and a tuple of formulas κ ∈ κC∃∩∀. Theory T 〈κ〉
is model complete if and only if the theory T is model complete.

Proof. In this case, formulas εi(ȳi, z̄i) are simple equalities ȳi = z̄i. In particular,
each formula εi(ȳi, z̄i) coincides with ε′i(ȳi, z̄i), i = 1, 2, ..., s. Thus, these formulas
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are ∃ ∩ ∀-presentable in T . By applying Theorem 3.1(a,b), we obtain exactly what
is required. �

Corollary 3.3. Given a complete theory T and a tuple of formulas κ ∈ κD ε
∃∩∀.

Theory T 〈κ〉 is model complete if and only if the theory T is model complete.

Proof. By applying Theorem 3.1(a,c). �

Theorem 3.4. Given a theory T of signature σ together with a tuple of formulas
κ ∈ κC∃∩∀(σ). Consider computable isomorphism µT,κ : L(T ) → L(T 〈κ〉) de�ned
in Lemma 2.3. For an arbitrary theory T ′ ⊇ T and corresponding theory S′ ⊇ T 〈κ〉
linked by S′ = µT,κ(T ′), as pointed out in (0.2), we have: theory S′ is model complete
if and only if theory T ′ is model complete.

Proof. Relations (0.3) characterize transition rules (0.2) between the extension T ′ ⊇
T and corresponding extension S′ ⊇ T 〈κ〉, S′ = µT,κ(T ′). By virtue of Lemma 2.4,
the theories T ′ and S′ are linked by the equality S′ = T ′〈κ〉. Thus, Corollary 3.2
ensures that theory S′ is model complete if and only if the theory T ′ is model
complete. �

Proposition 3.5. There is a theory T of a �nite signature together with a tuple
of formulas κ ∈ κDε∃∩∀ such that theory T is not model complete; however, theory
T 〈κ〉 is model complete.

Proof. For theory T , we use a pure predicate signature σ = {A1, B1, Γ 2}.
Axioms of T are the following statements:

1◦. A(x)↔ qB(x),

2◦. (∃>kx)A(x), k < ω,

3◦. (∃>kx)B(x), k < ω,

4◦. predicate Γ (x, y) is symmetric and antire�exive,

5◦. Γ (x, y)→
(
A(x) &A(y)

)
∨
(
B(x) &B(y)

)
,

6◦. (∃x y∈A)
[
x 6= y & (∀u v∈A)

(
u 6= v& {u, v} 6= {x, y} → Γ (u, v)

) ]
,

7◦. (∃x y∈B)
[
x 6= y & (∀u v∈B)

(
u 6= v& {u, v} 6= {x, y} → Γ (u, v)

) ]
,

8◦. (∃x y∈A)
[
x 6= y & qΓ (x, y)

]
↔ (∃u v∈B)

[
u 6= v & qΓ (u, v)

]
.

We put κ to be equal to 〈ϕ(x)/ε(y, z)〉, where ϕ(x) = (x = x), and ε(y, z) =
(y = z)∨ Γ (y, z). Obviously, both ϕ(x) and ε(y, z) are ∃ ∩ ∀-presentable in T . Any
modelN of theory T consists of two disjoin domains A and B, each having an in�nite
cardinality; moreover, Γ represents two separate graphs withinA and withinB, such
that these graphs are either total, or almost total, linking all elements excepting
just one pair. Isomorphism types of models of theory T can be characterized by
the expressions (α�, β�) and (α, β), where α and β are in�nite cardinals indicating
powers of the domains A and, respectively, B, while an upper index � points out
that Γ is not a full graph in the corresponding domain. There is an isomorphic
embedding of a model of type (α, β) into a model of type (α�, β�); moreover, this
embedding is not elementary. Thus, theory T is not model complete. As for theory
T 〈κ〉, embeddings between its models become limited by virtue of the Cartesian
superstructure. The sentence Equiv(ε, ϕ) is true in models of type (α, β). In these
models, ε′(y, z) is an equivalence relation consisting of two classes. In models of the
other type (α�, β�), Equiv(ε, ϕ) is failed, thus, ensuring ε′(y, z) to be an equivalence
relation with the only class. Based on this, it is possible to establish that theory
T 〈κ〉 is model complete. �
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4. Final Remarks

Section 3 presents main results of this paper establishing that algebraic Cartesian
interpretations preserve the property of being a model complete theory. In particular,
Theorem 3.4 establishes statement of Item 5 from Theorem 1 in the abstract [10].
An extra example in Proposition 3.5 shows that a more common class of algebraic
Cartesian-quotient interpretations does not preserve the property of being a model
complete theory.

Investigations on the expressive possibilities of �rst-order logic operate with
many concepts closely interacting with each other. Therefore, proofs of the statements
lead to large texts. In this paper, one speci�c result is presented in a compact close
presentation as part of a more general result in this direction, [11], [10].
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