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WEIGHTED SOBOLEV SPACES, CAPACITIES AND

EXCEPTIONAL SETS

I.M. TARASOVA, V.A. SHLYK

Abstract. We consider the weighted Sobolev space Wm,p
ω (Ω), where

Ω is an open subset of Rn, n ≥ 2, and ω is a Muckenhoupt Ap-weight
on Rn, 1 ≤ p <∞, m ∈ N. For the equalities Wm,p

ω (Ω \ E) = Wm,p
ω (Ω),

◦
W

m,p

ω (Ω \E) =
◦

W
m,p

ω (Ω) to hold, conditions are obtained in terms of E
as a set of zero (p,m, ω)-capacity, or an NCp,ω-set for the �rst equality.

For the equality Wm,p(Ω) =
◦

W
m,p

(Ω), the conditions are established
for Rn \Ω as a set of zero (p,m, ω)-capacity. Similar results are partially
true for Wm

p,ω(Ω), Lmp,ω(Ω).

Keywords: Sobolev space, capacity, Muckenhoupt weight, exceptional
set.

1. Introduction

Suppose that Ω is an open set on the Euclidean space Rn, n ≥ 2, and E is a relatively
closed subset on Ω. Let W (Ω) be a Sobolev space with a norm (with a semi-norm)
‖ · ‖W (Ω), whose elements are functions (classes of equivalent functions) defined on Ω, and
whose partial derivatives satisfy certain integrability conditions. We denote the closure of

C∞0 (G) on W (Ω) by
◦

W (Ω).
The following problems are well-known in the theory of Sobolev spaces: find the con-

ditions for E which need to be satisfied for the equalities W (Ω \ E) = W (Ω) (problem

(i));
◦

W (Ω) =
◦

W (Ω \E) (problem (ii)); W (Ω) =
◦

W (Rn \E), where E = Rn \Ω (problem
(iii)), to hold respectively. More information about the equality of spaces can be found in
Remark 1 below.

In problems (i)–(iii), the set E, for which the equalities are realized, is called excep-
tional. In particular, with regard to the equation W (Ω) = L1

p(Ω), the criterion for the
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set E to be exceptional in (i) was obtained by S. Vodop’yanov and V. Gol’dstein [15] in
terms of E as an NCp-set, 1 < p <∞. L. Hedberg obtained a criterion for the exceptional
set E in problem (ii) as a set of zero p-capacity, where in our notation W (Ω) = L1

p(Ω),
1 < p <∞, and Ω is a bounded set in Rn [7, Theorems 1,2].

For a weighted space H1,p(Ω, µ) with a p-admissible measure µ, 1 < p < ∞, all three
problems (i)–(iii) were solved in [8, Theorems 2.43–2.45] in terms of E as a set of zero
Sobolev (p, µ)-capacity. The necessary and sufficient conditions for an exceptional set E
in (ii)–(iii) for W (Ω) = Wm,p(Ω) are provided in [1, Theorems 3.28, 3.33] in terms of E
as a (m, p)-polar set. The criteria for the exceptional set E in (iii) for W (Ω) = Wm

p (Ω)
are obtained in [10, §9.2, Theorems 1,2] in terms of E as a (m, p)-polar set and a set of
zero (p,m)-capacity.

In this paper, the criteria for the exceptional set E in (i) for W (Ω) = Wm,p
ω (Ω),

Wm
p,ω(Ω), Lmp,ω(Ω), 1 < p <∞, and m ∈ N, are established in terms of E as an NCp,ω-set,

see Theorems 6,7. The criteria for the exceptional set E in (ii) forW (Ω) = Wm,p
ω (Ω),Wm

p,ω(Ω)
and (iii) for Wm,p

ω (Ω) are established in terms of E as a set of zero (p,m, ω)-capacity, where
1 ≤ p <∞, m ∈ N, see Theorems 9,10.

In addition, sufficient condition for the exceptional set E in (i) for

W (Ω) = Wm,p
ω (Ω),Wm

p,ω(Ω), Lmp,ω(Ω)

are given in terms of E as a zero (p,m, ω)-capacity set, where 1 ≤ p < ∞, m ∈ N, see
Theorem 8, Corollary 6.

2. Preliminaries

2.1. Some definitions and notations. Throughout the text, Ω is used to denote an
open set on Rn = {x = (x1, . . . , xn)}, while E denotes a relatively closed subset on Ω.

The norm of a point x = (x1, . . . , xn) ∈ Rn has the form |x| =

(
n∑
i=1

x2
i

)1/2

. We put

N = {1, 2, . . . }, R = (−∞,+∞). If F ⊂ Rn, then ∂F, F̄ denote the boundary and the
closure of F on Rn, respectively. The distance between two sets A,B ⊂ Rn is denoted by
dist(A,B).

For an open set U ⊂ Rn, we use the notation U b Ω in order to indicate that U is
bounded and Ū ⊂ Ω. The restriction of the function f to the set F is denoted by f |F .
Let χF be a characteristic function of the set F .

Given x ∈ Rn and r > 0, suppose that B(x, r) or Br(x) = {y ∈ Rn : |y − x| < r}. If
a > 0, then we have that aBr(x) = Bar(x). We use the symbol Hs to denote an ordinary
s-dimensional Hausdorff measure on Rn; mn is Lebesgue measure on Rn, and we put
mn(F ) = |F |.

Let C∞(Ω) be a space of infinitely differentiable functions on Ω; the space of functions
in C∞(Rn) with a compact support on Ω is denoted by C∞0 (Ω).

The support of a function u will be denoted by suppu.
For 1 ≤ p <∞, we define Lp(Ω) as a set of mn-measurable functions f on Ω, such that

‖f‖Lp(Ω) =

∫
Ω

|f |p dx

1/p

<∞,

and suppose that Lp(Ω, loc) is a space of mn-measurable functions f on Ω, such that |f |p
is a locally integrable function on Ω.

We will use the abbreviation ”a.e.” for the phrase ”almost everywhere” with respect to
mn-measure. Similarly, when we use the words ”measurable” and ”locally integrable”, we
always mean ”Lebesgue measurable” and ”locally integrable with respect to mn-measure”.

For the case Ω = Rn, we normally drop the reference to Ω in the notation of spaces and
norms. Integration without specifying integration limits is extended to Rn by agreement.
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Within proofs of, say, theorems, the letter C will be used to denote a generic positive
constant which depends only on the parameters in the statement of the theorem. The
quantities A and B are said to be ”equivalent”, if there exist two positive constants, C1

and C2, such that C1A ≤ B ≤ C2A.
If α = (α1, . . . , αn) is an n-tuple of non-negative integers αi, we call α a multi-index

and denote by xα the monomial xα1
1 . . . xαn

n , which has a degree |α| =
n∑
i=1

αi.

Similarly, if Dj = ∂
∂xj

, then Dα = Dα1
1 . . . Dαn

n denotes a differential operator of order

|α|. Note that D(0,0,...,0)u = u.
If α and β are multi-indices, we say that β ≤ α provided that βi ≤ αi for 1 ≤ i ≤ n.

In this case, α− β is also a multi-index and |α− β|+ |β| = |α|. Put α! = α1! . . . αn!, then
for β ≤ α, we have that (

α

β

)
=

α!

β!(α− β)!
=

(
α1

β1

)
. . .

(
αn
βn

)
.

This allows us to write the Leibnitz formula in the form

(1) Dα(uv)(x) =
∑
β≤α

(
α

β

)
Dβu(x)Dα−βv(x),

which holds for functions u and v, that are |α| times continuously differentiable near x.
We use the notations ∇m = {Dα : |α| = m}, ∇ = ∇1.
By a weight we mean a locally integrable function ω on Rn, such that ω > 0 for a.e.

x ∈ Rn.
Then for 1 ≤ p <∞, we define Lp,ω(Ω) as a set of measurable functions f on Ω, such

that

‖f‖Lp,ω(Ω) =

∫
Ω

|f |pω dx

1/p

<∞.

As usual, any two functions f and g from Lp,ω(Ω) that are equal a.e. on Ω will be
identified. It is well-known (see [9, Theorem 2.7]) that Lp,ω(Ω) is complete with respect
to the norm ‖ · ‖Lp,ω(Ω).

Let F1 be a space of functions given on Ω, and F2 be another space of functions given
on Ω′, where Ω′ ⊂ Ω. Below, if f ∈ F1, then f ∈ F2 implies that f |Ω′ ∈ F2.

We denote by Lp,ω(Ω, loc) a set of all mn-measurable functions f on Ω, such that
f ∈ Lp,ω(Ω′) for all open sets Ω′ b Ω.

2.2. Ap-weights. Suppose that 1 ≤ p <∞. According to B. Muckenhoupt [11], a weight
ω is called an Ap-weight, if there exists a positive constant A, such that for every ball
B ⊂ Rn, the inequality

(2)

 1

|B|

∫
B

ω dx

 1

|B|

∫
B

ω
− 1

p−1 dx

p−1

≤ A,

holds, if p > 1, and

(3)

 1

|B|

∫
B

ω dx

 ess sup
x∈B

1

ω(x)
≤ A,

holds, if p = 1. The infimum of all such constants A is called the Ap-constant of ω.
We denote by Ap, 1 ≤ p < ∞, a set of Ap-weights. Throughout the text, suppose that
1 ≤ p <∞, m ∈ N, ω ∈ Ap, unless otherwise stated.

We should mention one result concerning Ap-weight [14, Remark 1.2.4].
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Proposition 1. If ω ∈ Ap, then Lp,ω(Ω) is a complete space with respect to the norm
‖ · ‖Lp,ω(Ω), and Lp,ω(Ω) ⊂ L1(Ω, loc).

2.3. Weighted Sobolev spaces. Suppose that u : Ω→ R is a function of class L1(Ω, loc).
The function u on Ω has a weak derivative of order |α|, if there is a locally integrable func-
tion (denoted by Dαu), such that∫

Ω

u ·Dαϕdx = (−1)|α|
∫
Ω

Dαu · ϕdx

for all ϕ ∈ C∞0 (Ω). For 1 ≤ p < ∞, m ∈ N and every ω ∈ Ap, L
m
p,ω(Ω) is a space of

functions which have weak derivatives Dαu of all orders |α|, |α| ≤ m, and that satisfy the
condition

‖f‖Lm
p,ω(Ω) =

∫
Ω

|∇mu|pω dx

1/p

<∞,

where |∇mu| =

( ∑
|α|=m

(Dαu)2

)1/2

. For m = 0, set Lmp,ω(Ω) = Lp,ω(Ω), ∇0u = u.

We introduce the spaces

Wm
p,ω(Ω) = Lmp,ω(Ω) ∩ Lp,ω(Ω), Wm,p

ω (Ω) =

m⋂
k=0

Lkp,ω(Ω),

equipped with the norms

‖u‖Wm
p,ω(Ω) = ‖u‖Lm

p,ω(Ω) + ‖u‖Lp,ω(Ω), ‖u‖Wm,p
ω (Ω) =

m∑
k=0

‖∇ku‖Lp,ω(Ω).

We denote by
◦
L
m

p,ω(Ω),
◦

W
m

p,ω(ω),
◦

W
m,p

ω (Ω) the closures of C∞0 (Ω) in Lmp,ω(Ω), Wm
p,ω(ω),

Wm,p
ω (Ω), respectively. In addition, we set Wm,p

ω (Ω, loc) =
⋂
Ω′
Wm,p
ω (Ω′), where the in-

tersection is taken over all open sets Ω′ b Ω. Below, Wm,p
ω (Ω, loc) will be considered a

countably normed space with a system of semi-norms ‖u‖Wm,p
ω (Ωk). Here, {Ωk}k≥1 is a

sequence of open sets Ωk, Ωk b Ωk+1 ⊂ Ω,
⋃
k

Ωk = Ω.

For the case when ω ≡ 1, the weighted spaces considered above with the weight ω will
be written below without the symbol ω.

Next, let Pm−1 be a collection of all polynomials of degree ≤ m − 1. Consider the
factor space Ľ

m
p,ω(Ω) = Lmp,ω(Ω)/Pm−1 (with the norm ‖ · ‖Lm

p,ω(Ω)). Elements of the space

Ľ
m
p,ω(Ω) are classes ǔ = {u+ P}, where u ∈ Lmp,ω(Ω) and P ∈ Pm−1.

Note that a number of important properties of spaces Wm,p
ω (Ω), Lmp,ω(Ω) (in other

notations and with equivalent norms) were obtained in [3, 14]. Below, we use the following
properties.

Proposition 2 ([3, Theorem 4.9]). If Ω is an open connected set and ω ∈ Ap, 1 ≤ p <∞,

then Ľ
m
p,ω(Ω) is a Banach space. In particular, if {uj} is a Cauchy sequence in Lmp,ω(Ω),

then there exists u0 ∈ Lmp,ω(Ω), such that ∇muj → ∇mu0 in Lp,ω(Ω) as j →∞.

Proposition 3 ([3, Corollary 4.10]). Suppose that Ω is an open connected set, {uj} is
a Cauchy sequence in Lmp,ω(Ω), and u is a function in Lmp,ω(Ω), such that ‖∇m(uj −
u)‖Lp,ω(Ω) → 0. Then there exists a sequence of polynomials {Pj} ⊂ Pm−1 with ui−Pj →
u in Lp,ω(K) for all compact sets K ⊂ Ω.

Proposition 4 ([3, Theorem 4.2]). Suppose that 1 ≤ p < ∞, ω ∈ Ap. If u ∈ Lmp,ω(Ω),
then

(4)

∫
K

|Dαu|pω dx <∞
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for all compact K ⊂ Ω, 0 ≤ |α| ≤ m.

Proposition 5 ([14, Theorem 2.1.14]). Suppose that ω ∈ Ap, 1 ≤ p <∞, and k,m ∈ N,
1 ≤ k < m. Let B ⊂ Rn be a ball. Then there is a positive constant C depending only on
k,m, p, n and the Ap-constant of ω, such that

(5)

∫
B

|∇ku|pω dx ≤ C

|B|− kp
n

∫
B

|u|pω dx+ |B|
(m−k)p

n

∫
B

|∇mu|pω dx


for all u ∈Wm,p

ω (B).

Remark 1. If there is an isometric isomorphism between two normed or countably normed
spaces X and Y , then we have that X = Y . In particular, Wm,p

ω (Ω, loc) = Wm,p
ω (Ω\E, loc)

implies that |E| = 0, and for every function u ∈ Wm,p
ω (Ω \ E, loc) there is a function

v ∈ Wm,p
ω (Ω, loc), for which v|Ω\E = u. Therefore, similar conditions can be written for

Wm,p
ω (Ω), Wm

p,ω(Ω), and, by Proposition 4, for Lmp,ω(Ω) as subspaces of Wm,p
ω (Ω, loc). For

example, Lmp,ω(Ω \E) = Lmp,ω(Ω) implies that |E| = 0, and for every u ∈ Lmp,ω(Ω \E) there

is a function v ∈ Lmp,ω(Ω), for which v|Ω\E = u. Similarly, for example, by
◦

W
m

p,ω(Ω\E) =
◦

W
m

p,ω(Ω), we mean that every function u ∈
◦

W
m

p,ω(Ω) can be approximated in ‖ · ‖Wm
p,ω(Ω)

by functions from C∞0 (Ω \ E). Finally, for example, by Wm
p,ω(Ω) =

◦
W

m

p,ω(Ω), we imply
that every function u ∈ Wm

p,ω(Ω) can be approximated in ‖ · ‖Wm
p,ω(Ω) by functions from

C∞0 (Ω).

Remark 2. Suppose that u ∈ Lmp,ω(Ω). Then by virtue of Propositions 1,4, partial deriva-

tives Dαu belong to the space W 1,1(Ω, loc) for all 0 ≤ |α| ≤ m − 1. In addition, Dαu
belongs to the space L1

p,ω(Ω) for every multi-index α of order m− 1. Hence (see [10, Sec.
1.1.3, Theorem 1], [13, Theorem 2.5]), every partial derivative Dαu (perhaps, modified on
a set of zero mn-measure) is absolutely continuous in Ω on almost all straight lines (see
[13, p.19] for a detailed discussion on ”almost all straight lines”) parallel to any coordi-
nate axis, 0 ≤ |α| ≤ m − 1. The weak gradient of Dαu coincides a.e. with the ordinary
gradient. Conversely (see [10, Sec. 1.1.3, Theorem 2]), if every partial derivative Dαu is
absolutely continuous on Ω on almost all lines which are parallel to the coordinate axes,
and its first-order derivatives belong to Lp,ω(Ω, loc) for 0 ≤ |α| < m − 1 and to Lp,ω(Ω)
for |α| = m− 1, then u ∈ Lmp,ω(Ω).

2.4. Mollifications. Let ψ ∈ C∞0 (Rn) be a non-negative function, such that suppψ ⊂
B1(0) and

∫
ψ(x)dx = 1. For any function u ∈ L1(Ω) extended by zero on Rn \ Ω, we

define the family of its mollifications by the equalities

(Mεu)(x) = ε−n
∫
u(y)ψ

(y − x
ε

)
dy =

∫
|ξ|<1

u(x+ εξ)ψ(ξ) dξ, 0 < ε ≤ 1.

The number ε is called a radius of mollification.
The following result is well-known.

Proposition 6 ([14, Theorem 2.1.4, Corollary 2.1.5]). Suppose that u ∈ Wm,p
ω (Ω), and

let Ω′ be an open set, Ω′ b Ω. Then (Mεu)(x) ∈ C∞(Ω) ∩ Lp,ω(Ω), and for 0 < ε <
min(dist(Ω′, ∂Ω), 1) the equality DαMεu = MεD

αu is true on Ω′, 1 ≤ |α| ≤ m; and
Mεu→ u holds on Wm,p

ω (Ω′) as ε→ 0. For the case when Ω = Rn, we have a convergence
Mεu→ u on Wm,p

ω (Rn).

2.5. Capacity and NCp,ω-sets. A triple of sets (F0, F1,Ω), where F0 and F1 are disjoint
compact subsets of Rn, is called a condenser. Suppose that F0 ∪ F1 ⊂ Ω̄. Then we define
(see [2, Proposition 5]) (p, ω)-capacity of a condenser (F0, F1,Ω) by Cp,ω(F0, F1,Ω) = 0,
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if at least one of the following is true: F0 = ∅ or F1 = ∅. If F0 and F1 are nonempty sets,
then the definition has the form

Cp,ω(F0, F1,Ω) = inf
u

∫
Ω

|∇u|pω dx,

where the infimum is taken for all real-valued bounded functions u, such that u|Ω ∈
C∞(Ω) ∩ L1

p,ω(Ω) and u = j in some neighborhood of Fj , j = 0, 1.
We denote the set of all admissible functions of this kind by Admp,ω(F0, F1,Ω).
In general, we define a (p, ω)-capacity condenser (F0, F1,Ω) by

Cp,ω(F0, F1,Ω) = Cp,ω(F0 ∩ Ω̄, F1 ∩ Ω̄,Ω).

Consider a relatively closed subset E ⊂ Ω, and let Π be a coordinate rectangle

{x = (x1, . . . , xn) ∈ Rn : ai < xi < bi, i = 1, . . . , n}.

We denote the facets of this rectangle parallel to the hyperplane xi = 0 by
σ0i ⊂ {x : xi = ai} and σ1i ⊂ {x : xi = bi}. If

(6) Cp,ω(σ0i, σ1i,Π \ E) = Cp,ω(σ0i, σ1i,Π), i = 1, 2, . . . , n.

for every coordinate rectangle Π with Π̄ ⊂ Ω, then E is called an NCp,ω-set in Ω.
Similarly to the case ω = 1 [15], the NCp,ω-set has zero mn-measure (see [5, Lemma

5], [4, Theorem 1]) and τ \ E is an open connected set for every connected component τ
of Ω [4, Theorem 8].

Remark. We have provided a capacity definition of an NCp,ω-set. Since the capacity
of condenser is equal to the modulus of this condenser [4, Theorem 1], this definition is
equivalent to the modulus definition of an NCp,ω-set in [5, Sec. 3].

We now define another kind of capacity. For a compact set e ⊂ Ω, we put M(e,Ω) =
{u ∈ C∞0 (Ω) : u = 1 in some neighborhood of e} and suppose that Smp,ω(Ω) is one of
the spaces Wm,p

ω (Ω), Wm
p,ω(Ω), Lmp,ω(Ω). Following [10, §9.1], we define the capacity

Cap(e, Smp,ω(Ω)) of e by inf ‖u‖pSm
p,ω(Ω), where the infimum is taken for all u ∈ M(e,Ω).

The definition is extended to an arbitrary Borel set F ⊂ Ω by setting Cap(F, Smp,ω(Ω)) =
sup{Cap(e, Smp,ω(Ω)) : e ⊂ F, e compact}. The number Cap(F,Wm,p

ω (Rn)) will be called a
(p,m, ω)-capacity of the Borel set F ⊂ Rn. As usual, for the case when Ω = Rn, we will
drop the reference to Ω, as follows: Cap(F, Smp,ω).

Remark 3. Using the truncation [12, Theorem 4.14] v = min(max(0, u), 1) ∈ W 1,p
ω (Ω)

for u ∈ M(e,Ω) and its subsequent mollification in Rn (see Proposition 6), the M(e,Ω)
class in the definition of Cap(e, L1

p,ω(Ω)) can be replaced by the class

M̃(e,Ω) = {u ∈ C∞0 (Ω) : 0 ≤ u ≤ 1 in Ω, u = 1 in some neighborhood of e}.

Remark 4. From the definition of Cap(F,Wm,p
ω (Ω)), it immediately follows that

(7) Cap(F,L1
p,ω(Ω)) ≤ Cap(F,W 1,p

ω (Ω)) ≤ Cap(F,Wm,p
ω (Ω))

for 1 ≤ p <∞ and m ∈ N.

2.6. Coverings. First, we will present the following version of Besicovitch theorem [6,
Sec. 1, p. 5].

Proposition 7 ([10, Sec. 1.2.1, Theorem 1]). Let S be a bounded set in Rn. For each
x ∈ S, a ball Br(x)(x) is given, r(x) > 0. Then, one can choose among the given balls
{Br(x)(x)}x∈S a sequence {Bk} (possibly finite), such that 1) S ⊂

⋃
k

Bk; 2) no point of Rn

belongs to more than θn (a number which only depends on n) balls of the sequence {Bk},
i.e. for every z ∈ Rn, we have that

∑
k

χBk (z) ≤ θn.
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Now let Ωj be a sequence of open sets, such that Ωj b Ωj+1 ⊂ Ω and Ω =
⋃
j

Ωj . Set

F1 = Ω1, F2 = Ω2 \ Ω1, F3 = Ω3 \ Ω2, . . . . Suppose that Dj is another sequence of open
sets, such that Dj b Ωj b Dj+1.

For each x ∈ F1, we define a ball Br1(x)(x), where 0 < r1(x) < min (1, dist(F1, ∂D2)).

For j ≥ 2, we define an inequality 0 < rj(x) < min
(

1
j
, dist(Fj , Dj−1), dist(Fj , ∂Dj+1)

)
and a ball Brj(x)(x) if x ∈ Fj .

Assuming that in Proposition 7 we have that S = Fj , {Brj(x)(x)}x∈Fj , we get a finite

sequence of balls Bjk ∈ {Brj(x)(x)}x∈Fj , 1 ≤ k ≤ kj , for which

1) Fj ⊂
⋃
k

Bjk;

2)
∑
k

χBjk (x) ≤ θn, ∀x ∈ Rn.

Next, choosing the value of j from 1 to ∞, we come to another covering result.

Corollary 1. Given Ω, there exists a sequence of balls Bj = Brj (xj), rj > 0, such that
1)
⋃
j

Bj = Ω;

2) lim
j→∞

rj = 0;

3) for each x ∈ Rn, we have that
∑
j

χBj (x) ≤ 2θn, i.e. {Bj} is a covering of the set Ω

of bounded multiplicity;
4) {Bj} is a locally finite covering of Ω.

3. Approximation by smooth functions on Ω, completeness of Wm
p,ω(Ω)

3.1. Approximation on Smp,ω(Ω). The following two theorems state that functions from
Smp,ω(Ω) can be approximated by smooth functions on Smp,ω(Ω).

Theorem 1. If u ∈ Lmp,ω(Ω), then there exists a sequence of functions uk ∈ Lmp,ω(Ω) ∩
C∞(Ω), such that

1) uk → u in Lmp,ω(Ω);
2) uk → u in Wm,p

ω (Ω′) for every open set Ω′ b Ω;
3) from the estimate |u| ≤ C on Ω it follows that |uk| ≤ 2Cθn on Ω for all k ≥ 1, where

θn is the constant from Proposition 7.

Proof. We will prove assertions 1) and 2), using an approach by Maz’ya [10, Sec. 1.1.5,
Theorem 1]. Suppose that {Bj} is a covering of the bounded multiplicity on Ω from
Corollary 1, and {ϕj} is a partition of a unity subordinated to this covering. Consider
a function u ∈ Lmp,ω(Ω). Then, u ∈ Wm,p

ω (Bj) by Proposition 5, and u ∈ Wm,1(Bj) by
Proposition 1 for every ball Bj .

Since ϕj ∈ C∞0 (Bj), we have that uϕj ∈ Wm,1(Bj), and that every partial derivative
Dαu is written, as usual, using the Leibnitz formula (1) [9, Sec. 6.12]. This implies that
uϕj ∈Wm,p

ω (Bj). By virtue of suppϕj ⊂ Bj , we can assume that uϕj ∈Wm,p
ω (Rn), if we

put uϕj = 0 on Rn \Bj , j ≥ 1.
Here, note that Dα(uϕj) = 0 on Ω \ suppϕj for all 0 ≤ |α| ≤ m, j ≥ 1. We take

0 < ε < 1
2

and denote by zj the mollification of the function vj = uϕj , where the
radius of mollification is ρj , 0 < ρj < min(1, dist(suppϕj , ∂Bj)). Moreover, according to
Proposition 6, the choice of ρj is made in a way that

(8) ‖vj − zj‖Wm,p
ω (Rn) < εj .

By the choice of {Bj}, on every open set Ω′ b Ω, the equality u =
∑
j

vj is valid. Here,

the sum contains a finite number of non-zero terms vj . The same property holds for the
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sum g =
∑
j

zj on Ω′, and therefore g ∈ C∞(Ω). Thus, by (8), we have that

(9) ‖u− g‖Lm
p,ω(Ω′) ≤ ‖u− g‖Wm,p

ω (Ω′) ≤
∑
j

‖vj − zj‖Wm,p
ω (Rn) <

ε

1− ε ≤ 2ε.

This inequality along with arbitrary choice of Ω′ imply that g ∈ Lmp,ω(Ω) and ‖u −
g‖Lm

p,ω(Ω) ≤ 2ε.

In (9), we set ε = 1
4k
, k ∈ N and denote the corresponding function g by uk. Then we

have that
‖u− uk‖Lm

p,ω(Ω) → 0, ‖u− uk‖Wm,p
ω (Ω′) → 0

for every open set Ω′ b Ω as k →∞. This implies assertions 1) and 2) of the Theorem.
Now, suppose that |u(x)| ≤ C on Ω, then obviously the estimates |vj(x)| ≤ C, |zj(x)| ≤

C are valid at every point x ∈ Ω for all j ≥ 1. In addition, in the equality z(x) =
∑
j

zj(x)

mentioned above, depending on the choice of {Bj}, the sum contains no more than 2θn
non-zero terms zj(x), x ∈ Ω. Hence, we have that |z(x)| ≤ 2Cθn, and therefore |uk(x)| ≤
2Cθn for all x ∈ Ω and k ≥ 1. This completes the proof of the theorem. �

Using the same reasoning as in Theorem 1, we get another result.

Theorem 2. If u ∈ Wm
p,ω(Ω), then there exists a sequence of functions uk ∈ Wm

p,ω(Ω) ∩
C∞(Ω), such that 1) uk → u in Wm

p,ω(Ω); 2) uk → u in Wm,p
ω (Ω′) for every open set,

Ω′ b Ω; 3) from the estimate |u| ≤ C on Ω it follows that |uk| ≤ 2Cθn on Ω for all k ≥ 1,
where θn is the constant from Proposition 7.

Similarly, if u ∈ Wm,p
ω (Ω), then there exists a sequence of functions uk ∈ Wm

p,ω(Ω) ∩
C∞(Ω), such that 1) uk → u in Wm,p

ω (Ω); 2) from the estimate |u| ≤ C on Ω it follows
that |uk| ≤ 2Cθn on Ω for all k ≥ 1.

Theorem 3. Wm,p
ω (Rn) =

◦
W

m,p

ω (Rn).

Proof. Here we use the same approach as in [1, Theorem 3.22]. According to Theorem 2,
it is sufficient to show that every function u ∈ C∞(Rn)∩Wm,p

ω (Rn) can be approximated
in Wm,p

ω (Rn) by functions from C∞0 (Rn). Let f be a fixed function in C∞0 (Rn), satisfying
the following conditions: 1) f(x) = 1, if |x| < 1; 2) f(x) = 0, if |x| ≥ 2; 3) |Dαf(x)| ≤ C1

(constant) for all x ∈ Rn, and 0 ≤ |α| ≤ m.
For ε > 0, suppose that fε(x) = f(εx). Then fε(x) = 1 for |x| ≤ 1

ε
, and also

|Dαfε(x)| ≤ C1ε
|α| ≤ C1, if ε ≤ 1.

If u ∈ Wm,p
ω (Rn) ∩ C∞(Rn), then uε = fεu belongs to Wm,p

ω (Rn) and has a bounded
support. For 0 < ε ≤ 1 and |α| ≤ m by (1), we have that

|Dαuε(x)| =

∣∣∣∣∣∣
∑
β≤α

(
α

β

)
Dβu(x) ·Dα−βfε(x)

∣∣∣∣∣∣ ≤ C1

∑
β≤α

(
α

β

)
|Dβu(x)|.

Therefore, setting Ωε =
{
x ∈ Ω : |x| > 1

ε

}
, we obtain

‖u− uε‖Wm,p
ω (Ω) = ‖u− uε‖Wm,p

ω (Ωε) ≤ ‖u‖Wm,p
ω (Ωε) + ‖uε‖Wm,p

ω (Ωε) ≤ C2‖u‖Wm,p
ω (Ωε),

where the constant C2 does not depend on the choice of u. The right side approaches to
zero as ε→ 0. The proof is complete. �

3.2. Completeness of Wm
p,ω(Ω).

Theorem 4. If 1 ≤ p <∞,m ∈ N, then Wm
p,ω(Ω) is a Banach space.

Proof. Let {uj} be a Cauchy sequence in Wm
p,ω(Ω), i.e. ‖ui − uj‖Wm

p,ω(Ω) → 0 as i, j →
∞. Because of completeness of Lp,ω(Ω) (see Proposition 1), there exist functions u, Tα,
|α| = m, such that uj → u, Dαuj → Tα in Lp,ω(Ω) for all α, |α| = m, as j → ∞. Then
by Proposition 4, we have that uj ∈ Wm,p

ω (Ω, loc) for all j ≥ 1. This, with Proposition
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5, allows us to conclude that {uj} is a Cauchy sequence in Wm,p
ω (B) for every B b Ω.

Hence, Dβuj → Dβu in Lp,ω(B) for these B, and Dβu ∈ Lp,ω(B) ∩ L1(Ω, loc) for all
multi-indices β, 1 ≤ |β| ≤ m− 1. In addition, we have that∫

Ω

uDαϕdx = lim
j→∞

∫
Ω

ujD
αϕdx = (−1)m lim

j→∞

∫
Ω

ϕDαuj dx = (−1)m
∫
Ω

ϕTα dx

for any function ϕ ∈ C∞0 (Ω) and for every multi-index α of order m. Consequently,
Dαu = Tα, and the sequence {uj} converges to the function u in Wm

p,ω(Ω). The theorem
is proved. �

Remark 5. The assertion about completeness of the space Wm,p
ω (Ω) can be found in [14,

Proposition 2.1.2].

4. Some properties of capacity Cap(F, Smp,ω(Ω))

Here we consider the question of equivalence of equalities Cap(F,Wm,p
ω (Ω)) = 0,

Cap(F,Wm
p,ω(Ω)) = 0, Cap(F,Lmp,ω(Ω)) = 0 on a Borel set F ⊂ Ω.

Lemma 1. If e is a compact subset of Ω, then the equalities Cap(e,Wm
p,ω(Ω)) = 0 and

Cap(e,Wm,p
ω (Ω)) = 0 are equivalent.

Proof. If Cap(e,Wm
p,ω(Ω)) = 0, then the inclusion M(e,Ω) ⊂ M(e,Rn) immediately im-

plies that Cap(e,Wm
p,ω) = 0. Conversely, suppose that Cap(e,Wm

p,ω) = 0, and that Ω1

and Ω2 are open sets, such that e ⊂ Ω1 b Ω2 b Ω. Consider the function ϕ ∈ C∞0 (Ω2),
satisfying the following conditions: 1) 0 ≤ ϕ(x) ≤ 1, if x ∈ Rn; 2) ϕ(x) = 1, if x ∈ Ω1.
By construction, max

|α|≤m
|Dαu| ≤ C1, if x ∈ Rn. Moreover, suppose that uj ∈ M(e,Rn),

j ≥ 1, and that ‖uj‖pWm
p,ω
→ Cap(e,Wm

p,ω) = 0 as j → ∞. Then from (5), we have that

‖uj‖Wm,p
ω (B) → 0 for every ball B ⊂ Rn as j →∞. Hence, lim

j→∞
‖uj‖Wm,p

ω (Ω2) → 0.

Since ϕuj ∈M(e,Ω), from (1) it follows that

lim
j→∞

‖ϕuj‖Wm,p
ω (Ω2) = lim

j→∞
‖ϕuj‖Wm,p

ω (Ω) = 0 = Cap(e,Wm,p
ω (Ω)).

It is obvious that Cap(e,Wm
p,ω(Ω)) ≤ Cap(e,Wm,p

ω (Ω)). Therefore,

0 = Cap(e,Wm,p
ω (Ω)) = Cap(e,Wm

p,ω(Ω)).

Thus, the required assertion of the Lemma is proved along with the equivalence of the
following equalities:

(10) Cap(e,Wm
p,ω(Ω)) = 0, Cap(e,Wm,p

ω (Ω)) = 0, Cap(e,Wm,p
ω ) = 0.

�

Taking into account (10), Lemma 1, and the definition of Cap(F, Smp,ω(Ω)), we also
obtain

Corollary 2. Let F be a Borel subset of Ω. Then the equalities

Cap(F,Wm
p,ω(Ω)) = 0, Cap(F,Wm,p

ω (Ω)) = 0, Cap(F,Wm,p
ω ) = 0

are equivalent.

Consider some compact e ⊂ Ω. For all u ∈M(e,Ω), it is easily seen that

‖u‖Lm
p,ω(Ω) ≤ ‖u‖Wm,p

ω (Ω).

In addition, for the case when p = 1, since we know the estimate ω(x) ≥ C
(1+|x|)n for a.e.

x ∈ Rn [14, Remark 1.2.4, Property 8], we obtain

(11) mn(e) =

∫
e

|u| dx ≤ C1

∫
Ω1

|u|ω dx ≤ C1‖u‖Wm,1
ω (Ω)

.
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Similarly, for the case when p > 1, due to Hölder’s inequality, we get that

(12) mn(e) =

∫
e

|u| dx ≤

∫
e

|u|pω dx

1/p∫
e

ω
− 1

p−1 dx


p−1
p

≤ C2‖u‖Wm,p
ω (Ω).

Using these estimates for u = ϕuj and taking into account the proof of Lemma 1, we
easily deduce the following

Lemma 2. If e is a compact set of zero (p,m, ω)-capacity on Ω, then mn(e) = 0, and
Cap(e, Lmp,ω(Ω)) = 0.

Replacing e in Lemma 2 by a Borel set F ⊂ Ω, we get a more general result.

Corollary 3. If F is a Borel set of zero (p,m, ω)-capacity on Ω, then mn(F ) = 0, and
Cap(F,Lmp,ω(Ω)) = 0.

Lemma 3. Suppose that e is a compact set of zero (p,m, ω)-capacity and e ⊂ B1 =
B(a, r1), then B1 \ e is a connected open set.

Proof. First, assume that m = 1. Suppose, on the contrary, that the set B1 \ e has
a nonempty connected component G, where G b B1 and ∂G ⊂ e. By Lemma 2,
Cap(e, L1

p,ω(B1)) = 0 and mn(e) = 0.

According to Remark 3, there exists a sequence of functions uj ∈ M̃(e,B1), j ≥ 1, such
that

(13) lim
j→∞

‖uj‖L1
p,ω(B1) = 0.

Since uj ∈ C∞0 (B1), we have that uj = 0 on Rn \B1. Therefore, in (13), the ball B1 can
be replaced with the ball B2 = B(a, r2) for every r2 > r1. In other words,

(14) lim
j→∞

‖uj‖L1
p,ω(B2) = 0.

Set vj = 1, if x ∈ G, and vj = uj , if x ∈ Rn \ G. It is obvious that 0 ≤ vj ≤ 1,
supp vj ⊂ B1, vj = 1 in some neighborhood Oj of a compact set e ∪G, where Oj b B1.

Moreover, vj satisfies the Lipschitz condition on Rn, and so vj ∈ W 1,p
ω (B2). By con-

struction,
∫
B2

|∇vj |pω dx ≤
∫
B2

|∇uj |pω dx for all j ≥ 1. From this relation and equality

(14), we derive that

(15) lim
j→∞

‖∇vj‖Lp,ω(B2) = 0.

Equality (15), Propositions 3,4, and the arbitrariness of r2 > r1 imply the existence of a
sequence {cj} of constants, such that

(16) lim
j→∞

‖vj − cj‖W1,p
ω (B2)

= 0.

On the other hand, we know that vj = 0 on B2 \ B1 for all j ≥ 1. It follows that
lim
j→∞

cj = 0. Now, from (16) we deduce that lim
j→∞

‖vj‖W1,p
ω (B2)

= 0.

Using estimates (11), (12), we see that

(17) mn(G) ≤ C‖vj‖W1,p
ω (B2)

.

Since mn(G) > 0, setting j → ∞ in (17), we arrive at a contradiction. Thus, B1 \ e is a
connected open set.

Now suppose that m > 1 and Cap(e,Wm,p
ω ) = 0. Remark 4 implies that

Cap(e, L1
p,ω(B1)) = 0.

According to the above arguments, B1\e is a connected open set. The lemma is proved. �

Lemma 4. Let e be a compact subset of an open bounded set Ω. Then the equalities
Cap(e, Lmp,ω(Ω)) = 0 and Cap(e,Wm,p

ω (Ω)) = 0 are equivalent.
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Proof. Taking into account Corollary 2 and Lemma 2, it is enough to show that the
equality Cap(e, Lmp,ω(Ω)) = 0 implies Cap(e,Wm,p

ω (Ω)) = 0. In fact, suppose that

Cap(e, Lmp,ω(Ω)) = 0

and {uj} is a sequence of functions uj ∈M(e,Ω), such that

(18) ‖∇muj‖pLp,ω(Ω) → Cap(e, Lmp,ω(Ω)) = 0 as j →∞.

By construction, uj ∈ C∞0 (Ω), and therefore, uj ∈ C∞0 (B) for all j ≥ 1, and for ev-
ery ball, B = B(0, r), where Ω̄ ⊂ B. Obviously, Dαuj ∈ C∞0 (Ω), and Dαuj = 0 on
B \ Ω for all multi-indices α of order at most m. Moreover, from (18), it follows that
lim
j→∞

‖Dαuj‖L1
p,ω(B) = 0 for all multi-indices α of order m− 1. By Propositions 3, 4 there

exists a sequence {cj} of constants, such that

(19) lim
j→∞

‖Dαuj − cj‖W1,p
ω (B)

= 0

for all multi-indices α of order m− 1 and every ball B(0, r), Ω̄ ⊂ B(0, r).
Here, the equality lim

j→∞
cj = 0 is obtained in a similar way as in the proof of Lemma 3.

Therefore, (19) implies the relation

(20) lim
j→∞

‖Dαuj‖W1,p
ω (B)

= 0

with the same α and B.
Replacing the multi-index α, |α| = m−1, in the above argument sequentially by a multi-

index of order less than m − 1, if necessary, we conclude that lim
j→∞

‖Dαuj‖W1,p
ω (B)

= 0

with |α| ≤ m− 1, and B ⊃ Ω̄. Thus, lim
j→∞

‖uj‖Wm,p
ω (B) = 0.

Since uj ∈M(e,B), we have that Cap(e,Wm,p
ω (B)) = 0, and therefore, by Corollary 2,

we obtain Cap(e,Wm,p
ω ) = 0 = Cap(e,Wm,p

ω (Ω)). The Lemma is proved. �

For the case when m = 1, by Remark 3, the condition uj ∈ M(e,Ω) in the proof of

Lemma 4 can be replaced by the condition uj ∈ M̃(e,Ω), which gives rise to the following
result.

Corollary 4. Suppose that e is a compact subset of open bounded set Ω, and Cap(e,W 1,p
ω ) =

0. Then the class M(e,Ω) in the definition of Cap(e,W 1,p
ω ) can be replaced by the class

M̃(e,Ω). Moreover, if F is a Borel subset of open bounded set Ω, then the equalities
Cap(F,Lmp,ω(Ω)) = 0 and Cap(F,Wm,p

ω (Ω)) = 0 are equivalent.

Remark 6. For the case when ω = 1, the Lemma 4 was proved by Maz’ya [10, Sec. 9.1.4].

5. Exceptional sets in problem (i) for Smp,ω(Ω)

By Remark 1, the equality Smp,ω(Ω) = Smp,ω(Ω \ E) implies that mn(E) = 0, and for
each u ∈ Smp,ω(Ω \ E) there exists v ∈ Smp,ω(Ω), for which v|Ω\E = u.

Recall that by definition, E is a relatively closed subset on Ω. In this case, the function
v will be called the extension of u in Smp,ω(Ω).

First, we refine the statement of Theorem 1 for L1
p,ω(Ω).

Theorem 5. Let u ∈ L1
p,ω(Ω) and {Ωj} be some sequence of open sets Ωj, such that

Ωj b Ωj+1 ⊂ Ω, and
⋃
j

Ωj = Ω. Then there exists a sequence of bounded functions

uj ∈ L1
p,ω(Ω) ∩ C∞(Ω), j ≥ 1, such that

(21)

∫
Ωj

|u− uj |pω dx


1/p

<
1

j
, lim

j→∞
‖u− uj‖L1

p,ω(Ω) = 0.
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Proof. By Theorem 1, there exists a function vj ∈ C∞(Ω) ∩ L1
p,ω(Ω), for which the esti-

mates

(22)

∫
Ωj

|u− vj |pω dx <
1

(3j)p
,

(23)

∫
Ω

|∇u−∇vj |pω dx <
1

(3j)p

are valid for all j ≥ 1.
Now we choose an open set Gj b Ω, such that Ωj b Gj and

(24)

∫
Ω\Gj

|∇vj |pω dx <
1

2p+1(3j)p
.

For l ∈ N, we set Ωj,l = {x ∈ Ω : −l < vj < l} and choose l = lj , such that

(25)

∫
Ωj\Ω̃j

|vj |pω dx <
1

2p+1(3j)p
,

(26)

∫
Gj\Ω̃j

|∇vj |pω dx <
1

2p+1(3j)p
,

where Ω̃j = Ωj,lj .
Now suppose that hj = max(−lj , vj), gj = min(lj , hj). From the well-known properties

of truncation (see [8, Theorem 1.20],[12, Theorem 4.14] for detailed information), it follows

that hj = gj = vj and ∇hj = ∇gj = ∇vj on Ω̃j , |∇hj | ≤ |∇vj | and |∇gj | ≤ |∇hj | a.e. on
Ω, |gj | ≤ lj on Ω. Using these relations and the inequalities (22)–(26), we have that

(27)

∫
Ωj

|vj − gj |pω dx ≤ 2p
∫

Ωj\Ω̃j

|vj |pω dx <
1

(3j)p
,

(28)

∫
Ω

|∇vj −∇gj |pω dx ≤ 2p
∫

Ω\Gj

|∇vj |pω dx+ 2p
∫

Gj\Ω̃j

|∇vj |pω dx <
1

(3j)p
.

For the bounded function gj , by Theorem 1, there exists a bounded function uj ∈ L1
p,ω(Ω)∩

C∞(Ω), j ≥ 1, such that

(29)

∫
Ωj

|gj − uj |pω dx <
1

(3j)p
,

∫
Ω

|∇gj −∇uj |pω dx <
1

(3j)p
.

Applying the properties of the norm ‖ · ‖Lp,ω(Ω) and combining (22)–(23) with (27)–(29),
we obtain the relations in (21), which completes the proof of the Theorem. �

It is known that an NCp,ω-set is exceptional for L1
p,ω(Ω), 1 < p < ∞ [5, Corollary 2].

Below, we will provide an addition to this result and extend it to Lmp,ω(Ω).

Theorem 6. Suppose that 1 < p < ∞ and m ∈ N. Then E is an exceptional set in
problem (i) for L1

p,ω(Ω), if and only if E is an NCp,ω-set in Ω. If E is an NCp,ω-set in
Ω, then Lmp,ω(Ω \ E) = Lmp,ω(Ω) for all m ∈ N.

Proof. Step 1. Suppose that E is an NCp,ω-set in Ω, and u ∈ L1
p,ω(Ω \E)∩C∞(Ω \E) is

a bounded function in Ω \E, where E as an NCp,ω-set has zero mn-measure (see Remark
in Sec. 2.4). First, we prove that u can be extended to a function in L1

p,ω(Ω). Indeed,
consider a sequence {Ωj} of open sets Ωj , where Ωj b Ωj+1 ⊂ Ω and

⋃
j

Ωj = Ω.
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For a fixed coordinate xi-axis, the function u is absolutely continuous on every segment
e ⊂ Ωj \ E parallel to the xi-axis, i = 1, 2, . . . , n and j ≥ 1. Then (see the proof for
sufficiency condition in Theorem 1 from [5]) the function u can be further defined on
Ωj ∩ E by uji, so that uji is absolutely continuous in Ωj on almost all straight lines
parallel to the xi-axis (see Remark 2).

Hence, the partial derivative
∂uji
∂xi

in the classical sense in Ωj is equal to
∂u

∂xi
on Ωj \E.

In addition, uji,
∂uji
∂xi

∈ L1(Ωj , loc) (by virtue of u,
∂u

∂xi
∈ L1(Ωj , loc)). Using integration

by parts and Fubini’s theorem, we obtain

(30)

∫
Ωj

ϕ
∂uji
∂xi

dx = −
∫
Ωj

uji
∂ϕ

∂xi
dx

for all ϕ ∈ C∞0 (Ωj).

Note now that for (30) it is possible to redefine the values of uji,
∂uji
∂xi

on a set of zero

mn-measure in Ωj . Then we change the values of uji on E ∩ Ωj , so that uji = uj1 on Ωj
for all i = 2, . . . , n.

We set vj = uj1 on Ωj and suppose that

v =

{
v1, x ∈ Ω1;
vj , x ∈ Ωj \ Ωj−1, if j ≥ 2.

Obviously, v ∈ L1
p,ω(Ω) and v|Ω\E = u. In other words, the function u is extended to a

function v ∈ L1
p,ω(Ω).

Step 2. Now, let u be an arbitrary function in L1
p,ω(Ω \ E), and {τk} be a sequence

(possibly, finite) of pairwise disjoint connected components of Ω. Then, τk \ E is the
connected component of Ω \ E (see Sec. 2.4), and Ω \ E =

⋃
k

(τk \ E).

By Theorem 5, there exists a sequence of bounded functions uj ∈ L1
p,ω(Ω\E)∩C∞(Ω\

E), j ≥ 1, such that

(31) lim
j→∞

‖uj − u‖L1
p,ω(Ω\E) = 0,

(32) lim
j→∞

‖uj − u‖Lp,ω(Ω′) = 0 for all Ω′ b Ω \ E.

According to Step 1, we assume that uj ∈ L1
p,ω(Ω) for all j ≥ 1. Taking into account

(31) and mn(E) = 0, we get that {uj} is a Cauchy sequence in L1
p,ω(Ω). Then, by

Proposition 2, {uj} converges in L1
p,ω(τk) to some function vk, k ≥ 1, as j →∞. Moreover,

from (31), |∇(u− vk)| = 0 a.e. on τk \ E, and therefore, u = vk + ck (see [3, Sec. 1.1.5])
on τk \ E. Using (32), it is easy to show that ck = 0, k ≥ 1.

For all x ∈ Ω, set v(x) = vk(x), if x ∈ τk. By construction,

‖∇v‖Lp,ω(Ω) = ‖∇u‖Lp,ω(Ω\E), v(x)|Ω\E = u(x).

Hence, E is an exceptional set in problem (i) for L1
p,ω(Ω), 1 < p <∞.

Step 3. Let E be an exceptional set in problem (i) for L1
p,ω(Ω). This implies that E is

an NCp,ω-set on Ω. To establish this fact, we first prove that τk \E is a domain for every
τk, k ≥ 1. Here, {τk} is a sequence from Step 2.

Suppose, on the contrary, that for some k, the set τk \ E has a nonempty connected
component η0, for which η1 = (τk \E)\η0 is a nonempty open set. Suppose that u0(x) = 0
on η0 ∪ (Ω \ τk) and u0(x) = 1 on η1. Obviously, u0 ∈ C∞(Ω \ E) ∩ L1

p,ω(Ω \ E).

By the choice of E, u0 can be extended to the function v0 ∈ L1
p,ω(Ω). On the other

hand, we will show that such extension is impossible. In fact, since τk is a domain,
mn(E) = 0, there exists a simple broken line γ ⊂ τk with a finite number of links, joining
two given points, a ∈ η0 and b ∈ η1, for which H1(γ ∩ E) = 0. By construction, γ ∩ E
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is a compact set in τk. Hence, we can find a ball B0 = B(a0, r0) satisfying the following

conditions: a0 ∈ γ ∩ η0 and B0 ⊂ τk, B0 ∩ η0 6= ∅ and B0 ∩ η1 6= ∅.
We consider a1 ∈ B0 ∩ η0, b1 ∈ B0 ∩ η1 and an arbitrary orthogonal transformation

P : Rn → Rn [5, Sec. 3.1]. Set T = a0 + P.
By the choice of T , T (B0) = B0, T (B(x, r)) is a ball B(a0+P (x), r) for all B(x, r) ⊂ Rn,

and the determinant of the Jacobian matrix is equal to 1: det(T ′(x)) = 1. Hence, applying
the change of the variable x = T−1(y), in (2), (3), we deduce that ω ◦ T−1 is also an Ap-
weight for 1 ≤ p <∞.

Then the linear operator Tp,ω : L1
p,ω(B0)→ L1

p,ω◦T−1(B0), defined by Tp,ω(u) = u◦T−1,

transforms L1
p,ω(B0) boundedly into L1

p,ω◦T−1(B0) and has a bounded inverse operator

[5, Theorem 3], [12, Corollary 6.1.6]. From Remark 2, it follows that every function
u ∈ L1

p,ω(B0) is absolutely continuous on almost all straight lines parallel to an arbitrary

pre-given straight line in Rn, and, in particular, to the line a1b1.
Suppose that P is a closed rectangle in B0, and that σ0, σ1 are its opposite facets,

where a1 ∈ σ0 ⊂ η0, b1 ∈ σ1 ⊂ η1, and the straight line a1b1 ⊥ σ0, σ1. We denote by Γ the
family of all straight segments e joining the facets σ0, σ1 in P and parallel to the straight
line a1b1.

According to the mentioned above, the function v0 is absolutely continuous on almost
every segment e ∈ Γ satisfying the additional condition H1(e ∩ E) = 0. This implies the
existence of a limit point xe ∈ E on each of such segments e simultaneously for e∩ η0 and
e ∩ η1. Consequently, v0(xe) = 0 and v0(xe) = 1, which contradicts the definition of the
function v0. Thus, τk \ E is a domain for all k ≥ 1.

Finally, we will prove that E is an NCp,ω-set in Ω for 1 < p < ∞. Suppose that
Π = {x = (x1, . . . , xn) : ai < xi < bi, i = 1, 2, . . . , n} is a coordinate rectangle with the
facets σ0i, σ1i, from the definition of an NCp,ω-set (see Sec. 2.4), Π̄ ⊂ Ω. According to
mn(E) = 0, we get that σ0i ∪ σ1i ⊂ ∂(Π \ E) for all i = 1, . . . , n. Now we choose the
connected component τk of the set Ω, for which Π̄ ⊂ τk.

In order to prove equality (6) for Π, given ε > 0 and i = 1, . . . , n, we find an admissible
function u ∈ Adm(σ0i, σli,Π), such that

Cp,ω(σ0i, σ1i,Π \ E) ≤
∫

Π\E

|∇u|pω dx ≤ Cp,ω(σ0i, σ1i,Π \ E) + ε.

Suppose that Gl is an open neighborhood of the facet σli, in which u = l, and that
G′l is another neighborhood of the facet σli, where G′l b Gl b τk, l = 0, 1. Set G =
G0∪G1∪Π and let the sequence {Bj} be a locally finite covering of the set G by the balls
Bj = B(aj , rj) ⊂ G.

By Corollary 1, we assume that the covering {Bj} has a bounded multiplicity, and that

the balls from {Bj}, which have common points with G′l, belong to Gl, l = 0, 1.
Let {ϕj} be a C∞-partition of the unity for G, subordinating to the covering {Bj}.

Here, by definition, ϕj ∈ C∞0 (Bj), and therefore there is a ball B′j = B(aj , ρj), such that

0 < ρj < rj and suppϕj ⊂ B′j . Suppose that ej = E ∩ B′j and uj(x) = u(x)ϕj(x), if

x ∈ B′j \ ej ; uj(x) = 0 if x ∈ Ω \B′j .
According to the above arguments, Bj \ ej is a domain. Moreover, it follows from the

inclusions u ∈ C∞(G \E), ϕj ∈ C∞0 (Bj), that uj |Bj\E = uϕj , and uj satisfies locally the

Lipschitz condition on Ω \ ej . This implies uj ∈ L1
p,ω(Ω \ ej).

With an appropriate choice of E, the function uj extends to the function vj ∈ L1
p,ω(Ω).

Moreover, vj ∈ L1
p,ω(G) and, by construction,

vj |Bj\E = uϕj , ‖vj‖L1
p,ω(Ω) = ‖uϕj‖L1

p,ω(Bj\E).
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Since u =
∑
j

uϕj on G \ E, then, setting v =
∑
j

vj on G, we conclude, similarly to the

proof of Theorem 1, that v ∈ L1
p,ω(G) and that

v|G\E = u, ‖v‖L1
p,ω(G) = ‖u‖L1

p,ω(G\E).

Below, for convenience of calculations, we denote the function v by u. In the proof of
Theorem 1, we replace the set Ω, the covering {Bj}, the partition {ϕj} of the unity for
Ω, u, with the set G, the covering {Bj}, the partition {ϕj} of the unity for G, and u,
considered here, respectively. In addition, note in this case, that zj = uϕj = 0 on every

Bj , Bj ∩G′0 6= ∅, and zj = uϕj = ϕj on every Bj , Bj ∩G′1 6= ∅.
Using the same reasoning as in Theorem 1, we get the proper function z =

∑
j

zj ∈

Admp,ω(σ0i, σ1i,Π), such that z = 0 on G′0, z = 1 on G′1, and
∫
Π

|∇(u − z)|pω dx → 0 as

ε→ 0. Hence, we have that

Cp,ω(σ0i, σ1i,Π) ≤
∫
Π

|∇z|pω dx =

∫
Π

|∇u|pω dx+ o(1) =

=

∫
Π\E

|∇u|pω dx+ o(1) < Cp,ω(σ0i, σ1i,Π \ E) + ε+ o(1),

where o(1)→ 0 as ε→ 0. Here, we suppose that ε→ 0 and conclude that

Cp,ω(σ0i, σ1i,Π) = Cp,ω(σ0i, σ1i,Π \ E)

for all i = 1, . . . , n and Π, Π̄ ⊂ Ω. Thus, E is an NCp,ω-set in Ω.
Step 4. Here we show that an NCp,ω-set in Ω is exceptional in problem (i) for Lmp,ω(Ω),

m = 2, 3, . . . .
Let u be a function in Lmp,ω(Ω \ E), where E is an NCp,ω-set in Ω, and m = 2, 3, . . . .

Below we will keep the previous notation for the extended functions. Obviously, if Dαu
is a weak partial derivative of order |α| = m − 1 in Ω \ E, then Dαu ∈ L1

p,ω(Ω \ E).

According to Step 1, it follows that Dαu ∈ L1
p,ω(Ω). Hence, by Proposition 4, we have that

Dαu ∈ Lp,ω(Ω, loc) for all α of order |α| = m−1. Replacing the set Ω in above arguments
with an arbitrary open set Ω′ b Ω, the derivative Dαu – by Dνu, |ν| = m− 2, we deduce
that Dνu ∈ L1

p,ω(Ω′). By Proposition 1, it follows that Dνu ∈W 1,p
ω (Ω, loc)∩W 1,1(Ω, loc).

Taking into account the continuity of this process, we obtain that Dαu ∈ W 1,p
ω (Ω, loc) ∩

W 1,1(Ω, loc) for all α, |α| ≤ m − 2. In other words, u ∈ Lmp,ω(Ω), which completes the
proof of the Theorem. �

Since Wm,p
ω (Ω) and Wm

p,ω(Ω) ⊂ Lmp,ω(Ω), a simple modification of the arguments in the
proof of Theorem 6 gives rise to another statement.

Theorem 7. If E is an NCp,ω-set in Ω, 1 < p < ∞, then Wm
p,ω(Ω \ E) = Wm

p,ω(Ω),
Wm,p
ω (Ω \ E) = Wm,p

ω (Ω).

The following theorem states that the set of zero (p,m, ω)-capacity is also exceptional
in problem (i) for Lmp,ω(Ω) for 1 ≤ p <∞.

Theorem 8. If E is a set of zero (p,m, ω)-capacity in Ω, 1 ≤ p < ∞ and m ∈ N, then
Lmp,ω(Ω \ E) = Lmp,ω(Ω), and E is an NCp,ω-set in Ω for 1 < p <∞.

Proof. First, suppose that m = 1 and E ⊂ Ω is a set of zero (p, 1, ω)-capacity or, in other
words, by Corollary 2, we obtain Cap(E,W 1,p

ω (Ω)) = 0. In addition, by Corollary 4, we
have that mn(E) = 0. We first prove that every bounded function u ∈ C∞(Ω \ E) ∩
L1
p,ω(Ω \ E) can be extended to a function in L1

p,ω(Ω).
Here we use the construction from Step 3 of the proof of Theorem 6. Let the sequence

{Bj} be a locally finite covering of Ω, similar to the one in Corollary 1, where, in particular,
Bj = B(aj , rj) ⊂ Ω. Suppose that {ϕj} is a C∞-partition of the unity for Ω, subordinated
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to the covering {Bj}. We fix j and take a ball B′j = B(aj , ρj), such that 0 < ρj < rj and
suppϕj ⊂ B′j .

Suppose that ej = E ∩B′j and set uj(x) = u(x)ϕj(x), if x ∈ B′j \ ej , and uj(x) = 0, if

x ∈ Ω \B′j . By the choice of uj , u, and by Lemma 3, we have that uj satisfies locally the

Lipschitz condition, and that uj ∈ W 1,p
ω (Ω \ ej). By construction, we see that uj = uϕj

on Ω \ E.
We need to show that uj can be extended to a function in W 1,p

ω (Ω). By virtue of uj = 0

on Ω\B′j , it is sufficient to show that uj can be extended to a function in W 1,p
ω (Bj). Using

Corollary 4, we find a sequence {ψk}, k ≥ 1, such that ψk ∈ M̃(ej , Bj) and

(33) ‖ψk‖p
W

1,p
ω (Bj)

→ Cap(ej ,W
1,p
ω (Bj)) = 0.

Here, by definition, ψk ∈ C∞0 (Bj), 0 ≤ ψk ≤ 1 on Bj and ψk = 1 on some open neighbor-
hood Ok of a compact set ej . Let O′k be another open neighborhood of the set ej , where
O′k b Ok and O′k+1 b O

′
k,
⋂
k

O′k = ej .

We set vjk = uj(1−ψk) on Bj \ ej , and for a given ε > 0, we choose k0 ∈ N, such that

(34)

∫
O′

k0
\ej

|∇uj |pω dx < ε.

In addition, note that ∇(ujψk) = uj∇ψk + ψk∇uj a.e. on Bj \ ej ; uj , ψk are bounded
functions on Bj \ ej , |∇uj | is a bounded function on Bj \O′k0 . Hence, (33) and (34) imply
the existence of k1 ∈ N

(35)

∫
O′

k0
\ej

|∇(ujψk)|pω dx = o(1),

(36)

∫
Bj\O′k0

|∇(ujψk)|pω dx = o(1)

for all k ≥ k1. Here, o(1)→ 0, if ε→ 0.
The equalities (35) and (36) imply that

(37) vjk → uj in W 1,p
ω (Bj \ ej) as k →∞.

On the other hand, set gjk = uj(1 − ψk) on Bj \ O′k, gjk = 0 on O′k. Obviously,
gjk ∈W 1,p

ω (Bj) and vjk = gjk on Bj \ ej .
Hence, from (33) and mn(ej) = 0, we conclude that {gjk} is a Cauchy sequence in

W 1,p
ω (Bj). Due to the completeness of the space W 1,p

ω (Bj), there exists a function vj , for
which vj = lim

k→∞
gjk in W 1,p

ω (Bj), and, along with that, in L1
p,ω(Bj). According to (37),

vj = uj on Bj \ ej , j ≥ 1. Therefore, uj is extended to vj in L1
p,ω(Bj), j ≥ 1.

Setting v =
∑
j

vj in Ω, where vj = 0 on Ω \ Bj , j ≥ 1, as in the proof of Theorem 6

(see Step 3 there), we get that v ∈ L1
p,ω(Ω) and v|Ω\E = u.

Now let u be an arbitrary function in L1
p,ω(Ω \ E). Repeating verbatim the reasoning

in Step 2 of the proof of Theorem 6, we obtain that u extends to a function v ∈ L1
p,ω(Ω),

and v|Ω\E = u.
Finally, suppose that u is a function in Lmp,ω(Ω \E), where m ≥ 2, and that E is a set

of zero (p,m, ω)-capacity in Ω. By Remark 4, it follows that E is the set of zero (p, 1, ω)-
capacity, and mn(E) = 0. As was proved above, any function h ∈ L1

p,ω(Ω \E) extends to

the function z from L1
p,ω(Ω), and z|Ω\E = h. Using this fact and the arguments from Step

4 of the proof of Theorem 6, we deduce that the function u ∈ Lmp,ω(Ω \E) extends to the
function v ∈ Lmp,ω(Ω), v|Ω\E = u. Consequently, Lmp,ω(Ω \ E) = Lmp,ω(Ω) for 1 ≤ p < ∞,
and m ∈ N.
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Now, suppose that 1 < p < ∞, and that E is a set of zero (p,m, ω)-capacity. Then
E is a set of zero (p, 1, ω)-capacity, and L1

p,ω(Ω \ E) = L1
p,ω(Ω). By Theorem 6, E is an

NCp,ω-set. Thus, the second part and, hence, the entire theorem is proved. �

We will mention two other insertions that can be proved by a simple modification of
the arguments in the proof of Theorems 6, 8.

Corollary 5. If Cap(E,Wm,p
ω (Ω)) = 0, 1 ≤ p <∞, and m ∈ N, then τ \ E is a domain

for every connected component τ of Ω.

Corollary 6. If Cap(E,Wm,p
ω (Ω)) = 0, 1 ≤ p < ∞, and m ∈ N, then Wm,p

ω (Ω \ E) =
Wm,p
ω (Ω), Wm

p,ω(Ω \ E) = Wm
p,ω(Ω).

6. Exceptional sets in problems (ii)-(iii) for Smp,ω(Ω)

According to Remark 3, the equality
◦
S

m

p,ω(Ω) =
◦
S

m

p,ω(Ω \ E) implies that for every

function u ∈
◦
S

m

p,ω(Ω), there exists a sequence of functions uj ∈ C∞0 (Ω \ E), j ≥ 1, for

which lim
j→∞

‖u− uj‖Sm
p,ω(Ω) = 0. Similarly, from the equality Smp,ω(Ω) =

◦
S

m

p,ω(Ω) it follows

that for every function u ∈ Smp,ω(Ω) there exists a sequence of functions uj ∈ C∞0 (Ω),
j ≥ 1, for which lim

j→∞
‖u− uj‖Sm

p,ω(Ω) = 0.

Here and below, as always, E is a relatively closed subset of the open set Ω.
First, we will give the conditions under which the set E will be exceptional in problem

(ii) for Smp,ω(Ω).

Theorem 9. The equalities
◦

W
m

p,ω(Ω \ E) =
◦

W
m

p,ω(Ω),
◦

W
m,p

ω (Ω \ E) =
◦

W
m,p

ω (Ω) hold if

and only if Cap(E,Wm,p
ω ) = 0. In order for the equality

◦
L
m

p,ω(Ω \ E) =
◦
L
m

p,ω(Ω) to hold,
it is necessary that Cap(E,Lmp,ω(Ω)) = 0 and it is sufficient that Cap(E,Wm,p

ω ) = 0. In

addition, for the case of a bounded set Ω, the equality
◦
L
m

p,ω(Ω \E) =
◦
L
m

p,ω(Ω) holds if and
only if Cap(E,Wm,p

ω ) = 0.

Proof. Necessity. Suppose that
◦

W
m

p,ω(Ω \ E) =
◦

W
m

p,ω(Ω). Let e be a compact set in E.
We choose u ∈ C∞0 (Ω) with u = 1 in a neighborhood of e.

Since
◦

W
m

p,ω(Ω\E) =
◦

W
m

p,ω(Ω), we can choose a sequence of functions uj ∈ C∞0 (Ω\E),
such that uj → u in Wm

p,ω(Ω). By construction, u − uj ∈ M(e,Ω) for all j ≥ 1. This
implies

0 ≤ Cap(e,Wm
p,ω(Ω)) ≤ lim

j→∞
‖u− uj‖pWm

p,ω(Ω) = 0.

Hence, by Lemma 1 and Corollary 2, we have that

Cap(E,Wm
p,ω(Ω)) = Cap(E,Wm,p

ω (Ω)) = 0.

Similarly, from the equalities
◦

W
m,p

ω (Ω\E) =
◦

W
m,p

ω (Ω),
◦
L
m

p,ω(Ω\E) =
◦
L
m

p,ω(Ω), we obtain

Cap(E,Wm,p
ω ) = 0, Cap(E,Lmp,ω(Ω)) = 0,

respectively. Moreover, if Ω is a bounded set, from Corollaries 3 and 4, we have the
equivalence of the equalities Cap(E,Lmp,ω(Ω)) = 0 and Cap(E,Wm,p

ω ) = 0. The necessity
condition of the theorem is proved.

Sufficiency. Now suppose that Cap(E,Wm,p
ω ) = 0. We need to prove that

◦
L
m

p,ω(Ω\E) =
◦
L
m

p,ω(Ω). To do this, it is sufficient to prove that every function u ∈ C∞0 (Ω) can be
approximated in Lmp,ω(Ω) by functions from C∞0 (Ω \ E). Indeed, we take a function
u ∈ C∞0 (Ω) and suppose that Ω′ is an open set, such that suppu ⊂ Ω′ b Ω. Put

e = Ω′ ∩ E and note that e is a compact set of zero (p,m, ω)-capacity. Then there exists
a sequence of functions ϕj ∈ M(e,Rn), j ≥ 1, such that ‖ϕj‖Wm,p

ω
→ 0 = Cap(e,Wm,p

ω )
as j →∞.
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Since all partial derivatives Dαu, |α| ≤ m, are uniformly bounded in Ω, we have that
‖uϕj‖Wm,p

ω (Ω) → 0. This implies u(1−ϕj)→ u in Wm,p
ω (Ω), and therefore u(1−ϕj)→ u

in Lmp,ω(Ω) as j → ∞. Obviously, u(1 − ϕj) ∈ C∞0 (Ω \ E). Consequently,
◦
L
m

p,ω(Ω \ E) =
◦
L
m

p,ω(Ω). Similarly, we deduce that
◦

W
m

p,ω(Ω \ E) =
◦

W
m

p,ω(Ω),
◦

W
m,p

ω (Ω \ E) =
◦

W
m,p

ω (Ω).
Hence, the sufficiency condition of the theorem is proved. Thus, the theorem is also
proved. �

Next, we give the conditions under which the equality Smp,ω(Ω) =
◦
S

m

p,ω(Ω) holds.

Theorem 10. The equality Wm,p
ω (Ω) =

◦
W

m,p

ω (Ω) holds true if and only if Cap(Rn \
Ω,Wm,p

ω ) = 0. If Wm
p,ω(Ω) =

◦
W

m

p,ω(Ω) or Lmp,ω(Ω) =
◦
L
m

p,ω(Ω), then Cap(Rn\Ω,Wm,p
ω ) = 0

or Cap(Rn \ Ω, Lmp,ω) = 0, respectively.

Proof. Necessity. Suppose that, for example, Lmp,ω(Ω) =
◦
L
m

p,ω(Ω). Then we have that

◦
L
m

p,ω(Rn) ⊂ Lmp,ω(Rn) ⊂ Lmp,ω(Ω) =
◦
L
m

p,ω(Ω) ⊂
◦
L
m

p,ω(Rn).

This implies
◦
L
m

p,ω(Rn) =
◦
L
m

p,ω(Ω) =
◦
L
m

p,ω(Rn \ (Rn \ Ω)), and, consequently, by Theorem
9, we get Cap(Rn \ Ω, Lmp,ω) = 0.

Similarly, from Wm,p
ω (Ω) =

◦
W

m,p

ω (Ω) or Wm
p,ω(Ω) =

◦
W

m

p,ω(Ω), by Corollary 2, we
deduce that Cap(Rn \Ω,Wm

p,ω) = Cap(Rn \Ω,Wm,p
ω ) = 0. The necessity condition of the

theorem is proved.
Sufficiency. Suppose that Cap(Rn \Ω,Wm,p

ω ) = 0. By Theorems 3, 9, and Corollary 6,
we infer that

Wm,p
ω (Ω) = Wm,p

ω (Rn \ (Rn \ Ω)) = Wm,p
ω (Rn) =

◦
W

m,p

ω (Rn) =
◦

W
m,p

ω (Rn \ (Rn \ Ω)) =
◦

W
m,p

ω (Ω).

Theorem 10 is proved. �
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