
S e©MR ISSN 1813-3304

ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Òîì 17, ñòð. 1598�1679 (2020) ÓÄÊ 004.423.4, 519.681.2, 519.681.3

DOI 10.33048/semi.2020.17.112 MSC 18C10, 68Q55, 68Q85

DISCRETE TIME STOCHASTIC AND DETERMINISTIC

PETRI BOX CALCULUS DTSDPBC

I.V. TARASYUK

Abstract. We propose dtsdPBC, an extension with deterministically
timed multiactions of discrete time stochastic and immediate Petri box
calculus (dtsiPBC), previously presented by I.V. Tarasyuk, H. Maci�a
and V. Valero. dtsdPBC enhances the expressiveness of dtsiPBC and
extends the application area of the associated speci�cation and analysis
techniques. In dtsdPBC, non-negative integers are used to specify �xed
(including zero) time delays of deterministic multiactions. The step ope-
rational semantics of the calculus is constructed via labeled probabilistic
transition systems. The Petri net denotational semantics of the calculus
is de�ned on the basis of dtsd-boxes, a subclass of novel labeled discrete
time stochastic Petri nets with deterministic transitions (LDTSDPNs).

We also de�ne step stochastic bisimulation equivalence of the algebraic
expressions, used to compare the qualitative and quantitative behaviour
of the speci�ed processes. The consistency of the operational and de-
notational semantics of dtsdPBC up to that bisimulation equivalence is
established. The interrelations of the mentioned equivalence with other
behavioural notions of the calculus are investigated. A series of examples
that construct the transition systems and dtsd-boxes for the expressions
with di�erent types of multiactions and operations demonstrates both
the speci�cation capabilities and semantic features of the new calculus.

Keywords: stochastic process algebra, stochastic Petri net, Petri box
calculus, discrete time, stochastic multiaction, deterministic multiaction,
transition system, operational semantics, stochastic transition, determi-
nistic transition, dtsd-box, denotational semantics, stochastic bisimulation.

Tarasyuk, I.V., Discrete time stochastic and deterministic Petri box calculus

dtsdPBC.

© 2020 Tarasyuk I.V.

Received March, 13, 2020, published October, 21, 2020.

1598



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1599

1. Introduction

Algebraic process calculi like CSP [37], ACP [6] and CCS [56] are well-known
formal models for speci�cation of computing systems and analysis of their behavi-
our. In such process algebras (PAs), systems and processes are speci�ed by formulas,
and veri�cation of their properties is accomplished at a syntactic level via equivalen-
ces, axioms and inference rules. In recent decades, stochastic extensions of PAs were
proposed, such as MTIPP [34], PEPA [36] and EMPA [14]. Unlike standard PAs,
stochastic process algebras (SPAs) do not just specify actions which can occur
(qualitative features), but they associate with the actions the distribution parame-
ters of their random time delays (quantitative characteristics).

1.1. Petri box calculus. PAs specify concurrent systems in a compositional way
via an expressive formal syntax. On the other hand, Petri nets (PNs) provide a
graphical representation of such systems and capture explicit asynchrony in their
behaviour. To combine the advantages of both models, a semantics of algebraic
formulas via PNs was de�ned.

Petri box calculus (PBC) [15, 17, 16] is a �exible and expressive process algebra
developed as a tool for speci�cation of the PNs structure and their interrelations.
Its goal was also to propose a compositional semantics for high level constructs
of concurrent programming languages in terms of elementary PNs. Formulas of
PBC are combined not from single (visible or invisible) actions and variables,
like in CCS, but from multisets of elementary actions and their conjugates, called
multiactions (basic formulas). The empty multiset of actions is interpreted as the
silent multiaction specifying some invisible activity. In contrast to CCS, synchroni-
zation is separated from parallelism (concurrent constructs). Synchronization is
a unary multi-way stepwise operation, based on communication of actions and
their conjugates. This extends the CCS approach with conjugate matching labels.
Synchronization in PBC is asynchronous, unlike that in Synchronous CCS (SCCS)
[56]. Other operations are sequence and choice (sequential constructs). The calculus
includes also restriction and relabeling (abstraction constructs). To specify in�nite
processes, re�nement, recursion and iteration operations were added (hierarchical
constructs). Thus, unlike CCS, PBC has an additional iteration operation to specify
in�nite behaviour when the semantic interpretation in �nite PNs is possible. PBC
has a step operational semantics in terms of labeled transition systems, based on the
rules of structural operational semantics (SOS). The operational semantics of PBC
is of step type, since its SOS rules have transitions with (multi)sets of activities,
corresponding to simultaneous executions of activities (steps). A denotational se-
mantics of PBC was proposed via a subclass of PNs equipped with an interface and
considered up to isomorphism, called Petri boxes. For more detailed comparison
of PBC with other process algebras and the reasoning about importance of non-
interleaving semantics see [15, 16].

The extensions of PBC with a deterministic, a nondeterministic or a stochastic
model of time were presented.

1.2. Time extensions of Petri box calculus. To specify systems with time
constraints, deterministic (�xed) or nondeterministic (interval) delays are used.

A time extension of PBC with a nondeterministic time model, called time Petri
box calculus (tPBC), was proposed in [41]. In tPBC, timing information is added by
associating time intervals (the earliest and the latest �ring time) with instantaneous



1600 I.V. TARASYUK

actions. tPBC has a step time operational semantics in terms of labeled transition
systems. Its denotational semantics was de�ned in terms of a subclass of labeled
time Petri nets (LtPNs), based on tPNs [55] and called time Petri boxes (ct-boxes).

Another time enrichment of PBC, called Timed Petri box calculus (TPBC), was
de�ned in [51, 52], it accommodates a deterministic model of time. In contrast
to tPBC, multiactions of TPBC are not instantaneous, but have time durations.
Additionally, in TPBC there exist no �illegal� multiaction occurrences, unlike tPBC.
The complexity of �illegal� occurrences mechanism was one of the main intentions
to construct TPBC though this calculus appeared to be more complicated than
tPBC. TPBC has a step timed operational semantics in terms of labeled transition
systems. The denotational semantics of TPBC was de�ned in terms of a subclass
of labeled Timed Petri nets (LTPNs), based on TPNs [62] and called Timed Petri
boxes (T-boxes). tPBC and TPBC di�er in ways they capture time information,
and they are not in competition but complement each other.

The third time extension of PBC, called arc time Petri box calculus (atPBC),
was constructed in [59, 60], and it implements a nondeterministic time. In atPBC,
multiactions are associated with time delay intervals. atPBC possesses a step time
operational semantics in terms of labeled transition systems. Its denotational se-
mantics was de�ned on a subclass of labeled arc time Petri nets (atPNs), based of
those from [18, 33], where time restrictions are associated with the arcs, called arc
time Petri boxes (at-boxes).

tPBC, TPBC and atPBC, all adopt the discrete time approach, but TPBC has
no immediate (multi)actions.

1.3. Stochastic extensions of Petri box calculus. The set of states for the
systems with deterministic or nondeterministic delays often di�ers drastically from
that for the timeless systems, hence, the analysis results for untimed systems may be
not valid for the time ones. To solve this problem, stochastic delays are considered,
which are the random variables with a (discrete or continuous) probability distribu-
tion. If the random variables governing delays have an in�nite support then the
corresponding SPA can exhibit all the same behaviour as its underlying untimed PA.

A stochastic extension of PBC, called stochastic Petri box calculus (sPBC),
was proposed in [47, 43]. In sPBC, multiactions have stochastic delays that follow
(negative) exponential distribution. Each multiaction is equipped with a rate that
is a parameter of the corresponding exponential distribution. The instantaneous
execution of a stochastic multiaction is possible only after the corresponding stoc-
hastic time delay. The calculus has an interleaving operational semantics de�ned
via transition systems labeled with multiactions and their rates. Its denotational
semantics was de�ned in terms of a subclass of labeled continuous time stochastic
PNs, based on CTSPNs [53, 3] and called stochastic Petri boxes (s-boxes). In sPBC,
performance of the processes is evaluated by analyzing their underlying continuous
time Markov chains (CTMCs). In [44], new equivalence relations were proposed for
regular terms of sPBC to choose later a suitable candidate for a congruence.

sPBC was enriched with immediate multiactions having zero delay in [45, 46].
We call such an extension generalized sPBC (gsPBC). An interleaving operational
semantics of gsPBC was constructed via transition systems labeled with stochastic
or immediate multiactions together with their rates or probabilities. A denotational
semantics of gsPBC was de�ned via a subclass of labeled generalized stochastic PNs,
based on GSPNs [53, 3, 4] and called generalized stochastic Petri boxes (gs-boxes).



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1601

PBC has a step operational semantics, whereas sPBC has an interleaving one.
In step semantics, parallel executions of activities (steps) are permitted while in
interleaving semantics, we can execute only single activities. Hence, a stochastic
extension of PBC with a step semantics was needed to keep the concurrency degree
of behavioural analysis at the same level as in PBC. As mentioned in [57, 58],
in contrast to continuous time approach (used in sPBC), discrete time approach
allows for constructing models of common clock systems and clocked devices. In
such models, multiple transition �rings (or executions of multiple activities) at
time moments (ticks of the central clock) are possible, resulting in a step semantics.
Moreover, employment of discrete stochastic time �lls the gap between the models
with deterministic (�xed) time delays and those with continuous stochastic time
delays. As argued in [1], arbitrary delay distributions are much easier to handle in
a discrete time domain. In [49, 50, 48], discrete stochastic time was preferred to
enable simultaneous expiration of multiple delays.

In [64, 65, 66, 67], a discrete time stochastic extension dtsPBC of �nite PBC
was presented. In dtsPBC, the residence time in the process states is geometri-
cally distributed. A step operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational semantics was de�ned in
terms of a subclass of labeled discrete time stochastic PNs (LDTSPNs), based
on DTSPNs [57, 58] and called discrete time stochastic Petri boxes (dts-boxes).
The performance evaluation in dtsPBC is accomplished via the underlying discrete
time Markov chains (DTMCs) of the algebraic processes. A variety of stochastic
equivalences were proposed to identify stochastic processes with similar behaviour
which are di�erentiated by the semantic equivalence. The interrelations of all the
introduced equivalences were studied. Since dtsPBC has a discrete time semantics
and geometrically distributed sojourn time in the process states, unlike sPBC
with continuous time semantics and exponentially distributed delays, the calculi
apply two di�erent approaches to the stochastic extension of PBC, in spite of some
similarity of their syntax and semantics inherited from PBC. The main advantage of
dtsPBC is that concurrency is treated like in PBC having step semantics, whereas in
sPBC parallelism is simulated by interleaving, obliging one to collect the information
on causal independence of activities before constructing the semantics.

In [68, 69, 70, 71, 72], we presented an enhanced calculus dtsiPBC, an extension
with immediate multiactions of dtsPBC. Immediate multiactions increase the speci-
�cation capability: they can model logical conditions, probabilistic branching, in-
stantaneous probabilistic choices and activities whose durations are negligible in
comparison with those of others. They are also used to specify urgent activities
and the ones that are not relevant for performance evaluation. Thus, immediate
multiactions can be considered as a kind of instantaneous dynamic state adjustment
and, in many cases, they result in a simpler and more clear system representation.
The step operational semantics of dtsiPBC was constructed with the use of labeled
probabilistic transition systems. Its denotational semantics was de�ned via a sub-
class of labeled discrete time stochastic and immediate PNs (LDTSIPNs), based on
the extension of DTSPNs [57, 58] with transition labeling and immediate transitions,
called dtsi-boxes. The corresponding stochastic process, the underlying SMC, was
investigated, with the purpose of performance evaluation. In addition, the alterna-
tive solution methods were developed, based on the underlying (reduced) DTMC.



1602 I.V. TARASYUK

1.4. Equivalence relations. A notion of equivalence is important in theory of
computing systems. Equivalences are applied both to compare behaviour of systems
and reduce their structure. There is a wide diversity of behavioural equivalences,
and their interrelations are well explored in the literature. The best-known and
widely used one is bisimulation. Typically, the mentioned equivalences take into
account only functional (qualitative) but not performance (quantitative) aspects.
Additionally, the equivalences are usually interleaving ones, i.e. they interpret con-
currency as sequential nondeterminism. Interleaving equivalences permit to imitate
parallel execution of actions via all possible occurrence sequences (interleavings)
of them. Step equivalences require instead simulating such a parallel execution by
simultaneous occurrence (step) of all the involved actions. To respect quantitative
features of behaviour, probabilistic equivalences have an additional requirement
on the execution probabilities. A di�erent kind of quantitative relations is called
Markovian equivalences, which take rate (the parameter of exponential distribution
that governs time delays) instead of probability. Note that the probabilistic equi-
valences can be seen as discrete time analogues of the Markovian ones, since the
latter are de�ned as the continuous time relations.

Interleaving probabilistic weak trace equivalence was introduced in [30] on labeled
probabilistic transition systems. Interleaving probabilistic strong bisimulation equi-
valence was proposed in [42] on the same model. Interleaving probabilistic equivalen-
ces were de�ned for probabilistic processes in [40, 32]. Interleaving Markovian strong
bisimulation equivalence was constructed in [34] for MTIPP, in [36] for PEPA and
in [14, 13, 7] for EMPA. Some variants of interleaving Markovian weak bisimulation
equivalence were considered in [25] on Markovian process algebras, in [26] on labeled
CTSPNs and in [27] on labeled GSPNs. In [10, 11], interleaving probabilistic and
Markovian trace, test and bisimulation equivalences on the respective sequential
probabilistic (PPC) and Markovian (MPC) process calculi were logically characte-
rized. In [8, 9], a comparison of interleaving Markovian trace, test, strong and
weak bisimulation equivalences was carried out on sequential (SMPC or MPC)
and concurrent (CMPC) Markovian process calculi. Nevertheless, no appropriate
equivalence notion was de�ned for concurrent SPAs. The non-interleaving bisimula-
tion equivalence in GSMPA [21, 20] uses ST-semantics for action particles while in
Sπ [61] it is based on a sophisticated labeling.

1.5. Our contributions. In this paper, we present an extension of dtsiPBC with
deterministic multiactions, called discrete time stochastic and deterministic Petri
box calculus (dtsdPBC), which enhances the expressiveness of dtsiPBC and extends
the application area of the associated speci�cation and analysis techniques. In
dtsdPBC, besides the probabilities from the real-valued interval (0; 1) that are
used to calculate discrete time delays of stochastic multiactions, also non-negative
integers are used to specify �xed time delays of deterministic multiactions (including
zero delay, which is the case of immediate multiactions). To resolve con�icts among
deterministic multiactions, they are additionally equipped with positive real-valued
weights. As argued in [78, 74, 75], a combination of deterministic and stochastic
delays �ts well to model technical systems with constant (�xed) durations of the
regular non-random activities and probabilistically distributed (stochastic) durati-
ons of the randomly occurring activities.

It should be stressed that dtsdPBC is rather a qualitative than merely a quanti-
tative extension of dtsiPBC. The main reason is that in the former calculus, the



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1603

probability of transitions between markings (untimed states, represented by over-
bars and underbars in the process expressions) generally depends both on the
current marking and for how long the deterministic multiactions were enabled.
Hence, the marking change probabilities in dtsdPBC may not possess the Markov
(memoryless) property. Thus, the timer values should be associated with determi-
nistic multiactions to specify the process states and then obtain the (semi-)Marko-
vian state change probabilities as a result of �unfolding� the discrete residence times
at the markings. In other words, the longer that one delays at the markings should
be splitted into one time units and be allocated with the consecutive process states,
in order to obtain a (semi-)Markovian model.

Another reason is that, unlike dtsiPBC, the activities of di�erent types can be
executed from the the same marking in dtsdPBC, depending on the (decreasing)
timer values of the enabled deterministic multiactions. In particular, the enabled
stochastic multiactions may preempt the enabled waiting (positively delayed deter-
ministic) ones that cannot be executed at the next time moment from a marking.
Otherwise, only enabled waiting multiactions are executed from it. Immediate mul-
tiactions are always executed �rst and separately from other types of activities. The
activities are ordered according to their priorities as follows: immediate (highest
priority), waiting (middle priority) and stochastic (lowest priority) multiactions.

Our novel approach was inspired by some ideas on combining deterministic and
stochastic discrete time transition delays in DTSPNs [57, 58], discrete time deter-
ministic and stochastic PNs (DTDSPNs) [78, 74, 75], dts-nets [1], non-Markovian
SPNs (NMSPNs) [38] and stochastic preemptive time PNs (spTPNs) [24] (all with
parallel step semantics), as well as in defective discrete phase SPNs (DDP-SPNs)
[31], discrete deterministic and stochastic PNs (DDSPNs) [76, 77] and DTDSPNs
from [80, 81, 79] (all featuring interleaving semantics). The key idea was to interpret
the waiting multiactions with the timer values (remaining times to execute) one as
the (stochastic) transitions of DTSPNs [57, 58] with the conditional probability 1.
Then the waiting multiactions with the timer values greater than one are ignored,
i.e. when enabled, they are executed with the probability 0 at the next time moment.

The step operational semantics of dtsdPBC is constructed with the use of labeled
probabilistic transition systems. The Petri net denotational semantics of dtsdPBC
is de�ned in terms of a special interface-featured subclass of labeled discrete time
stochastic and deterministic PNs (LDTSDPNs), based on the extension of DTSPNs
[57, 58] with transition labeling and deterministic transitions, called dtsd-boxes.

We also propose step stochastic bisimulation equivalence allowing one to identify
algebraic processes with similar behaviour that are however di�erentiated by the
semantics of the calculus. It enhances the corresponding relation from dtsiPBC,
in that we now have to make di�erence between the states with positive sojourn
times (called tangible states) and those with zero sojourn times (called vanishing
states). Therefore, in the de�nition of step stochastic bisimulation for dtsdPBC, we
add a condition stating that vanishing states may only be related with vanishing
states. We establish consistency of the operational and denotational semantics up
to step stochastic bisimulation equivalence, meaning that the transition systems of
the process expressions are equivalent to the reachability graphs of their dtsd-boxes.
We examine the interrelations of the proposed equivalence with other behavioural
notions of the algebra.



1604 I.V. TARASYUK

With a number of interesting and non-trivial examples, we demonstrate how to
construct the transition systems of the expressions with di�erent types of multiac-
tions (stochastic and deterministic, the latter consisting of immediate and waiting)
and various operations, as well as the reachability graphs of the corresponding dtsd-
boxes. The resulted transition systems and reachability graphs have all 3 possible
kinds of states (stochastically tangible, waitingly tangible and vanishing) and all
4 kinds of transitions (that capture executions of the empty multiset, stochastic,
waiting or immediate multiactions). From stochastically tangible (s-tangible) states,
only the empty set or stochastic multiactions can be executed at the next time
moment (after one unit delay). From waitingly tangible (w-tangible) states, only
waiting multiactions can be executed at the next time moment. From vanishing
states, only immediate multiactions can be executed at the same time moment
(after zero delay). The examples show as speci�cation �exibility and expressive po-
wer of the calculus, as the most important features and pecularities of its semantics.

Thus, the main contributions of the paper are the following.

• New discrete time SPA with stochastic and deterministic activities dtsdPBC.
• Step operational semantics via labeled probabilistic transition systems.
• Denotational semantics via discrete time stochastic and deterministic PNs.
• Stochastic bisimulation equivalence providing consistency of both semantics.

1.6. Structure of the paper. The paper is organized as follows. In Section 2, the
syntax of stochastic process algebra dtsdPBC is proposed. In Section 3, we construct
the operational semantics of the calculus in terms of labeled probabilistic transition
systems and present examples of expressions with their transition systems. In
Section 4, we propose the Petri net denotational semantics of the calculus, based
on a subclass of novel LDTSDPNs, and give examples of dtsd-boxes with their
reachability graphs. Step stochastic bisimulation equivalence, used to prove consis-
tency of the both semantics, is de�ned and investigated in Section 5. Finally, Section
6 summarizes the results obtained and outlines research perspectives in this area.

2. Syntax

In this section, we propose the syntax of dtsdPBC. First, we recall a de�nition of
multiset that is an extension of the set notion by allowing several identical elements.

De�nition 1. Let X be a set. A �nite multiset (bag) M over X is a mapping
M : X → N such that |{x ∈ X | M(x) > 0}| < ∞, i.e. it can contain a �nite
number of elements only.

We denote the set of all �nite multisets over a set X by NXfin. LetM,M ′ ∈ NXfin.
The cardinality of M is |M | =

∑
x∈XM(x). We write x ∈ M if M(x) > 0 and

M ⊆ M ′ if ∀x ∈ X M(x) ≤ M ′(x). We de�ne (M +M ′)(x) = M(x) +M ′(x) and
(M −M ′)(x) = max{0,M(x)−M ′(x)}. When ∀x ∈ X, M(x) ≤ 1, M can be seen
as a proper set M ⊆ X. The set of all subsets (powerset) of X is denoted by 2X .

Let Act = {a, b, . . .} be the set of elementary actions. Then Âct = {â, b̂, . . .}
is the set of conjugated actions (conjugates) such that â 6= a and ˆ̂a = a. Let

A = Act∪ Âct be the set of all actions, and L = NAfin be the set of all multiactions.

Note that ∅ ∈ L, this corresponds to an internal move, i.e. the execution of a
multiaction that contains no visible action names. The alphabet of α ∈ L is de�ned
as A(α) = {x ∈ A | α(x) > 0}.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1605

A stochastic multiaction is a pair (α, ρ), where α ∈ L and ρ ∈ (0; 1) is the
probability of the multiaction α. This probability is interpreted as that of indepen-
dent execution of the stochastic multiaction at the next discrete time moment.
Such probabilities are used to calculate those to execute (possibly empty) sets
of stochastic multiactions after one time unit delay. The probabilities of stochastic
multiactions are required not to be equal to 1 to avoid extra model complexity, since
in this case one should assign with them weights, needed to make a choice when
several stochastic multiactions with probability 1 can be executed from a state. The
di�culty is that when the stochastic multiactions with probability 1 occur in a step
(parallel execution), all other with the less probabilities do not. In this case, the
con�icts resolving requires a special attention, as discussed in [57, 58] within SPNs.
This decision also allows us to avoid technical di�culties related to conditioning
events with probability 0. The probability 1 is left for (implicitly assigned to) waiting
multiactions (positively delayed deterministic multiactions, to be de�ned later),
which are delayed for at least one time unit before their execution and have weights
to resolve con�icts with other waiting multiactions. On the other hand, there is no
sense to allow probability 0 of stochastic multiactions, since they would never be
performed in this case. Let SL be the set of all stochastic multiactions.

A deterministic multiaction is a pair (α, \θl ), where α ∈ L, θ ∈ N is the non-
negative integer-valued (�xed) delay and l ∈ R>0 = (0;∞) is the positive real-
valued weight of the multiaction α. This weight is interpreted as a measure of
importance (urgency, interest) or a bonus reward associated with execution of
the deterministic multiaction at the discrete time moment when the corresponding
delay has expired. Such weights are used to calculate the probabilities to execute
sets of deterministic multiactions after their time delays. An immediate multiaction
is a deterministic multiaction with the delay 0 while a waiting multiaction is a
deterministic multiaction with a positive delay. In case of no con�icts among waiting
multiactions, whose remaining times to execute (RTEs, to be explained later in
more detail) are equal to one time unit, they are executed with probability 1 at
the next time moment. Deterministic multiactions have a priority over stochastic
ones, and there is also di�erence in priorities between immediate and waiting
multiactions. One can assume that all immediate multiactions have (the highest)
priority 2 and all waiting multiactions have (the medium) priority 1, whereas all
stochastic multiactions have (the lowest) priority 0. This means that in a state where
all kinds of multiactions can occur, immediate multiactions always occur before
waiting ones that, in turn, are always executed before stochastic ones. Di�erent
types of multiactions cannot participate together in some step (parallel execution),
i.e. just the steps consisting only of immediate multiactions or waiting ones, or
those including only stochastic multiactions, are allowed. Let DL be the set of all
deterministic multiactions, IL be the set of all immediate multiactions and WL be
the set of all waiting multiactions. Obviously, we have DL = IL ∪WL.

Let us note that the same multiaction α ∈ L may have di�erent probabilities,
(�xed) delays and weights in the same speci�cation. An activity is a stochastic or
a deterministic multiaction. Let SDL = SL ∪ DL = SL ∪ IL ∪ WL be the set
of all activities. The alphabet of an activity (α, κ) ∈ SDL is de�ned as A(α, κ) =
A(α). The alphabet of a multiset of activities Υ ∈ NSDLfin is de�ned as A(Υ) =

∪(α,κ)∈ΥA(α). For an activity (α, κ) ∈ SDL, we de�ne its multiaction part as



1606 I.V. TARASYUK

L(α, κ) = α and its probability or weight part as Ω(α, κ) = κ if κ ∈ (0; 1); or
Ω(α, κ) = l if κ = \θl , θ ∈ N, l ∈ R>0.

Activities are combined into formulas (process expressions) by the following
operations: sequence ;, choice [], parallelism ‖, relabeling [f ] of actions, restriction rs
over a single action, synchronization sy on an action and its conjugate, and iteration
[ ∗ ∗ ] with three arguments: initialization, body and termination.

Sequence (sequential composition) and choice (composition) have a standard
interpretation, like in other process algebras, but parallelism (parallel composition)
does not include synchronization, unlike the corresponding operation in CCS [56].

Relabeling functions f : A → A are bijections preserving conjugates, i.e. ∀x ∈
A f(x̂) = f̂(x). Relabeling is extended to multiactions in the usual way: for α ∈
L we de�ne f(α) =

∑
x∈α f(x). Relabeling is extended to activities as follows:

for (α, κ) ∈ SDL, we de�ne f(α, κ) = (f(α), κ). Relabeling is extended to the
multisets of activities as follows: for Υ ∈ NSDLfin we de�ne f(Υ) =

∑
(α,κ)∈Υ(f(α), κ).

Remember that sums are considered with the multiplicity when applied to multisets:
for example, f(α) =

∑
x∈α f(x) =

∑
x∈A α(x)f(x).

Restriction over an elementary action a ∈ Act means that, for a given expression,
any process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some elementary action a ∈ Act
we have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then, synchronization of α and β

by a is de�ned as (α⊕a β)(x) =

{
α(x) + β(x)− 1, if x = a or x = â;
α(x) + β(x), otherwise.

In other words, we require that α⊕aβ = α+β−{a, â}, i.e. we remove one exemplar
of a and one exemplar of â from the multiset sum α+ β, since the synchronization
of a and â produces ∅. Activities are synchronized with the use of their multiaction
parts, i.e. the synchronization by a of two activities, whose multiaction parts α
and β possess the properties mentioned above, results in the activity with the
multiaction part α⊕aβ. We may synchronize activities of the same type only: either
both stochastic multiactions or both deterministic ones with the same delay, since
stochastic, waiting and immediate multiactions have di�erent priorities, and diverse
delays of waiting multiactions contradict their joint timing. Hence, the multiactions
of di�erent types cannot be executed together (note also that the execution of
immediate multiactions takes no time, unlike that of waiting or stochastic ones).
Synchronization by a means that, for a given expression with a process behaviour
containing two concurrent activities that can be synchronized by a, there exists also
the process behaviour that di�ers from the former only in that the two activities
are replaced by the result of their synchronization.

In the iteration, the initialization subprocess is executed �rst, then the body is
performed zero or more times, and �nally, the termination subprocess is executed.

Static expressions specify the structure of processes, i.e. how activities are com-
bined by operations in order to construct the composite process-algebraic formulas.
As we shall see, static expressions correspond to unmarked labeled discrete time
stochastic and deterministic Petri nets (LDTSDPNs), which are marked by de�ni-
tion. A marking is the allocation of tokens in the places of a PN and markings are
used to describe dynamic behaviour of PNs in terms of transition �rings.

We assume that every waiting multiaction has a countdown timer associated,
whose value is the discrete time amount left till the moment when the waiting
multiaction can be executed. Therefore, besides standard (unstamped) waiting



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1607

multiactions in the form of (α, \θl ) ∈ WL, a special case of the stamped waiting
multiactions should be considered in the de�nition of static expressions. Each
(time) stamped waiting multiaction in the form of (α, \θl )

δ has an extra superscript
δ ∈ {1, . . . , θ} assigned that speci�es a time stamp indicating the latest value
of the countdown timer associated with that multiaction. The standard waiting
multiactions have no time stamps, to demonstrate irrelevance of the timer values
for them (for example, their timers have not yet started or have already �nished
their operation). The notions of the alphabet, multiaction part, weight part for (the
multisets of) stamped waiting multiactions are de�ned, respectively, like those for
(the multisets of) unstamped waiting multiactions.

By reasons of simplicity, we do not assign the timer value superscripts δ to imme-
diate multiactions, which are a special case of deterministic multiactions (α, \θl ) with
the delay θ = 0 in the form of (α, \0l ), since their timer values can only be equal to 0.
Analogously, the superscript δ might be omitted for the waiting multiactions (α, \θl )
with the delay θ = 1 in the form of (α, \1l ), since the corresponding timer can only
have a single value 1. Nevertheless, to maintain syntactic uniformity among waiting
multiactions, we leave the timer value superscripts for those that are 1-delayed.

De�nition 2. Let (α, κ) ∈ SDL, (α, \θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
static expression of dtsdPBC is de�ned as

E ::= (α, κ) | (α, \θl )δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

Let StatExpr denote the set of all static expressions of dtsdPBC.
To make the grammar above unambiguous, one can add parentheses in the

productions with binary operations: (E;E), (E[]E), (E‖E). However, here and
further we prefer the PBC approach and add them to resolve ambiguities only.

To avoid technical di�culties with the iteration operator, we should not allow
any concurrency at the highest level of the second argument of iteration. This is
not a severe restriction though, since we can always pre�x parallel expressions by
an activity with the empty multiaction part. Relaxing the restriction can result
in PNs which are not safe. Alternatively, we can use a di�erent, safe, version of
the iteration operator, but its net translation has six arguments. See also [16] for
discussion on this subject. Remember that a PN is n-bounded (n ∈ N) if for all its
reachable (from the initial marking by the sequences of transition �rings) markings
there are at most n tokens in every place, and a PN is safe if it is 1-bounded.

De�nition 3. Let (α, κ) ∈ SDL, (α, \θl ) ∈ WL, δ ∈ {1, . . . , θ} and a ∈ Act. A
regular static expression of dtsdPBC is de�ned as

E ::= (α, κ) | (α, \θl )δ | E;E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, κ) | (α, \θl )δ | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions of dtsdPBC.
Let E be a regular static expression. The underlying timer-free regular static

expression �E of E is obtained by removing from it all timer value superscripts.
The set of all stochastic multiactions (from the syntax) of E is SL(E) = {(α, ρ) |

(α, ρ) is a subexpression of E}. The set of all immediate multiactions (from the
syntax) of E is IL(E) = {(α, \0l ) | (α, \0l ) is a subexpression of E}. The set of all
waiting multiactions (from the syntax) of E isWL(E) = {(α, \θl ) | (α, \θl ) or (α, \θl )

δ



1608 I.V. TARASYUK

is a subexpression of E for δ ∈ {1, . . . , θ}}. Thus, the set of all deterministic multi-
actions (from the syntax) of E is DL(E)=IL(E)∪WL(E) and the set of all activi-
ties (from the syntax) of E is SDL(E)=SL(E)∪DL(E)=SL(E)∪IL(E)∪WL(E).

Dynamic expressions specify the states of processes, i.e. particular stages of the
process behaviour. As we shall see, dynamic expressions correspond to LDTSDPNs,
which are marked by default. Dynamic expressions are obtained from static ones, by
annotating them with upper or lower bars which specify the active components of
the system at the current moment of time. The dynamic expression with upper bar
(the overlined one) E denotes the initial, and that with lower bar (the underlined
one) E denotes the �nal state of the process speci�ed by a static expression E.

For every overlined stamped waiting multiaction in the form of (α, \θl )
δ, the

superscript δ ∈ {1, . . . , θ} speci�es the current value of the running countdown
timer associated with the waiting multiaction. That decreasing discrete timer is
started with the initial value θ (equal to the delay of the waiting multiaction) at
the moment when the waiting multiaction becomes overlined. Then such a newly

overlined stamped waiting multiaction (α, \θl )
θ may be seen similar to the freshly

overlined unstamped waiting multiaction (α, \θl ). Such similarity will be captured
by the structural equivalence, to be de�ned later.

While the stamped waiting multiaction stays overlined with the process executi-
on, the timer decrements by one discrete time unit with each global time tick until
the timer value becomes 1. This means that one unit of time remains till execution
of that multiaction (the remaining time to execute, RTE, equals one) that should
follow in the next moment with probability 1, in case the stamped waiting multiac-
tion is still overlined, there are no con�icting with it waiting multiactions, whose
RTEs equal to one, and it is not a�ected by restriction. An activity is a�ected by re-
striction, if it is within the scope of a restriction operation with the argument action,
such that it or its conjugate is contained in the multiaction part of that activity.

De�nition 4. Let E ∈ StatExpr and a ∈ Act. A dynamic expression of dtsdPBC
is de�ned as

G ::= E | E | G;E | E;G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗ E ∗G].

Let DynExpr denote the set of all dynamic expressions of dtsdPBC.
Let G be a dynamic expression. The underlying static (line-free) expression bGc

of G is obtained by removing from it all upper and lower bars. Note that if the
underlying static expression of a dynamic one is not regular, the corresponding
LDTSDPN can be non-safe (though, it is 2-bounded in the worst case [16]).

De�nition 5. A dynamic expression G is regular if its underlying static expression
bGc is regular.

Let RegDynExpr denote the set of all regular dynamic expressions of dtsdPBC.
Let G be a regular dynamic expression. The underlying timer-free regular dyna-

mic expression �G of G is obtained by removing from it all timer value superscripts.
The set of all stochastic (immediate or waiting, respectively) multiactions (from

the syntax) of G is de�ned as SL(G) = SL(bGc) (IL(G) = IL(bGc) or WL(G) =
WL(bGc), respectively). Thus, the set of all deterministic multiactions (from the
syntax) of G is DL(G) = IL(G) ∪ WL(G) and the set of all activities (from the
syntax) of G is SDL(G) = SL(G) ∪ DL(G) = SL(G) ∪ IL(G) ∪WL(G).



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1609

3. Operational semantics

In this section, we de�ne the operational semantics via labeled transition systems.

3.1. Inaction rules. The inaction rules for dynamic expressions describe their

structural transformations in the form of G ⇒ G̃ which do not change the states
of the speci�ed processes. The goal of those syntactic transformations is to obtain
the well-structured resulting expressions called operative ones to which no inaction
rules can be further applied. As we shall see, the application of an inaction rule to a
dynamic expression does not lead to any discrete time tick or any transition �ring
in the corresponding LDTSDPN, hence, its current marking stays unchanged.

Thus, an application of every inaction rule does not require any delay, i.e. the
dynamic expression transformation described by the rule is accomplished instantly.

In Table 1, we de�ne inaction rules for regular dynamic expressions being overli-
ned and underlined static ones. In this table, (α, \θl ) ∈ WL, δ ∈ {1, . . . , θ}, E, F,K∈
RegStatExpr and a ∈ Act. The �rst inaction rule suggests that the timer value of
each newly overlined waiting multiaction is set to the delay of it.

Table 1. Inaction rules for overlined and underlined regular static expressions

(α, \θl )⇒ (α, \θl )
θ E;F ⇒ E;F E;F ⇒ E;F

E;F ⇒ E;F E[]F ⇒ E[]F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E‖F ⇒ E‖F
E‖F ⇒ E‖F E[f ]⇒ E[f ] E[f ]⇒ E[f ]

E rs a⇒ E rs a E rs a⇒ E rs a E sy a⇒ E sy a

E sy a⇒ E sy a [E ∗ F ∗K]⇒ [E ∗ F ∗K] [E ∗ F ∗K]⇒ [E ∗ F ∗K]

[E ∗ F ∗K]⇒ [E ∗ F ∗K] [E ∗ F ∗K]⇒ [E ∗ F ∗K] [E ∗ F ∗K]⇒ [E ∗ F ∗K]

In Table 2, we introduce inaction rules for regular dynamic expressions in the

arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈ RegDynExpr and
a ∈ Act. By reason of brevity, two distinct inaction rules with the same premises
are collated in some cases, resulting in the inaction rules with double conclusion.

Table 2. Inaction rules for arbitrary regular dynamic expressions

G⇒ G̃, ◦ ∈ {; , []}
G ◦ E ⇒ G̃ ◦ E, E ◦G⇒ E ◦ G̃

G⇒ G̃

G‖H ⇒ G̃‖H, H‖G⇒ H‖G̃

G⇒ G̃

G[f ]⇒ G̃[f ]

G⇒ G̃, ◦ ∈ {rs, sy}
G ◦ a⇒ G̃ ◦ a

G⇒ G̃

[G ∗ E ∗ F ]⇒ [G̃ ∗ E ∗ F ]

G⇒ G̃

[E ∗G ∗ F ]⇒ [E ∗ G̃ ∗ F ]

G⇒ G̃

[E ∗ F ∗G]⇒ [E ∗ F ∗ G̃]

Example 1. Let E = ({a}, \31)[]({b}, 1
3 ). The following inferences by the inaction

rules are possible from E:

({a}, \31)[]({b}, 1
3 )⇒ ({a}, \31)[]({b}, 1

3 )⇒ ({a}, \31)3[]({b}, 1
3 ),

({a}, \31)[]({b}, 1
3 )⇒ ({a}, \31)[]({b}, 1

3 ).



1610 I.V. TARASYUK

De�nition 6. A regular dynamic expression G is operative if no inaction rule can
be applied to it.

Let OpRegDynExpr denote the set of all operative regular dynamic expressions
of dtsdPBC. Note that any dynamic expression can be always transformed into a
(not necessarily unique) operative one by using the inaction rules.

In the following, we consider regular expressions only and omit the word �regular�.

De�nition 7. The relation ≈ = (⇒ ∪ ⇐)∗ is a structural equivalence of dynamic
expressions in dtsdPBC, where ∗ is the re�exive and transitive closure operation.
Thus, two dynamic expressions G and G′ are structurally equivalent, denoted by
G ≈ G′, if they can be reached from each other by applying the inaction rules in a
forward or a backward direction.

Let X be some set. We denote the Cartesian product X×X by X2. Let E ⊆ X2

be an equivalence relation on X. Then the equivalence class (with respect to E) of
an element x ∈ X is de�ned by [x]E = {y ∈ X | (x, y) ∈ E}. The equivalence E
partitions X into the set of equivalence classes X/E = {[x]E | x ∈ X}.

Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H} is the equivalence
class of G with respect to the structural equivalence, called the (corresponding)
state. Next, G is an initial dynamic expression, denoted by init(G), if ∃E ∈
RegStatExpr G ∈ [E]≈. Further, G is a �nal dynamic expression, denoted by
final(G), if ∃E ∈ RegStatExpr G ∈ [E]≈.

Example 2. Let E be from Example 1. We have init(E) and

[E]≈ = {({a}, \31)[]({b}, 1
3 ), ({a}, \31)[]({b}, 1

3 ), ({a}, \31)[]({b}, 1
3 ), ({a}, \31)3[]({b}, 1

3 ),

({a}, \31)3[]({b}, 1
3 ), {({a}, \31)3[]({b}, 1

3 )}. Then [E]≈ ∩OpRegDynExpr =

{({a}, \31)[]({b}, 1
3 ), ({a}, \31)3[]({b}, 1

3 ), ({a}, \31)3[]({b}, 1
3 )}.

Let G be a dynamic expression and s = [G]≈. The set of all enabled stochastic

multiactions of s is EnaSto(s) = {(α, ρ) ∈ SL | ∃H ∈ s∩OpRegDynExpr (α, ρ) is
a subexpression of H}, i.e. it consists of all stochastic multiactions that, being over-
lined, are the subexpressions of some operative dynamic expression from the state
s. Analogously, the set of all enabled immediate multiactions of s is EnaImm(s) =

{(α, \0l ) ∈ IL | ∃H ∈ s∩OpRegDynExpr (α, \0l ) is a subexpression of H}. The set
of all enabled waiting multiactions of s is EnaWait(s) = {(α, \θl ) ∈ WL | ∃H ∈ s∩
OpRegDynExpr (α, \θl )

δ, δ ∈ {1, . . . , θ}, is a subexpression of H}, i.e. it consists
of all waiting multiactions that, being superscribed with the values of their timers
and overlined, are the subexpressions of some operative dynamic expression from the
state s. The set of all newly enabled waiting multiactions of s is EnaWaitNew(s) =

{(α, \θl ) ∈ WL | ∃H ∈ s ∩ OpRegDynExpr (α, \θl )
θ is a subexpression of H}, i.e.

it consists of all waiting multiactions that, being superscribed with the initial
values of their timers (delays of those waiting multiactions) and overlined, are the
subexpressions of some operative dynamic expression from the state s.

Thus, the set of all enabled deterministic multiactions of s is EnaDet(s) =
EnaImm(s) ∪ EnaWait(s) and the set of all enabled activities of s is Ena(s) =
EnaSto(s) ∪ EnaDet(s) = EnaSto(s) ∪ EnaImm(s) ∪ EnaWait(s). As we shall
see, Ena(s) = Ena([G]≈) is an algebraic analogue of the set of all transitions
enabled at the initial marking of the LDTSDPN corresponding to G. Note that the
activities, resulted from synchronization, are not present explicitly in the syntax of



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1611

the dynamic expressions. Nevertheless, their enabledness status can be recovered
by observing that of the pair of synchronized activities from the syntax (they both
should be enabled for enabling their synchronous product), even if they are a�ected
by restriction after the synchronization.

Example 3. Let E be from Example 1. Then we have EnaSto([E]≈) = {({b}, 1
3 )},

EnaImm([E]≈) = ∅ and EnaWait([E]≈) = EnaWaitNew([E]≈) = {({a}, \31)},
hence, Ena([E]≈) = {({a}, \31), ({b}, 1

3 )}.
De�nition 8. An operative dynamic expression G is saturated (with the values of
timers), if each enabled waiting multiaction of [G]≈, being (certainly) superscribed
with the value of its timer and possibly overlined, is the subexpression of G.

Let SaOpRegDynExpr denote the set of all saturated operative dynamic expres-
sions of dtsdPBC.

Proposition 1. Any operative dynamic expression can be always transformed into
the saturated one by applying the inaction rules in a forward or a backward direction.

Proof. Let G be a dynamic expression, (α, \θl ) ∈ EnaWait([G]≈) and there exists

H ∈ [G]≈∩OpRegDynExpr that contains a subexpression (α, \θl )
δ, δ ∈ {1, . . . , θ−

1}. Then all operative dynamic expressions from [G]≈ ∩ OpRegDynExpr contain

a subexpression (α, \θl )
δ or (α, \θl )

δ, i.e. the (possibly overlined) enabled waiting

multiaction (α, \θl ) with the (non-initial) timer value superscript δ ≤ θ − 1. Note
that the timer value superscript δ is the same for all such structurally equivalent
operative dynamic expressions. Indeed, all inaction rules, besides the �rst one, do
not change the values of timers, but those rules just modify the overlines and
underlines of dynamic expressions. The �rst inaction rule just sets up the timer of

each overlined waiting multiaction (α, \θl ) with the initial value δ = θ, equal to the

delay of that waiting multiaction, as follows: (α, \θl )
θ. Then the remaining inaction

rules can shift out the overline of that enabled waiting multiaction before setting
up its timer, which results in a non-overlined enabled waiting multiaction without
timer value superscript (α, \θl ). Thus, for (α, \θl ) ∈ EnaWait([G]≈), it may happen

that (α, \θl )
θ a subexpression of some H ∈ [G]≈ ∩OpRegDynExpr and (α, \θl ) is a

subexpression of a di�erent H ′ ∈ [G]≈ ∩OpRegDynExpr.
Let now G be an operative dynamic expression that is not saturated. By the

arguments above, the saturation can be violated only if G contains as a subexpres-
sion at least one newly enabled waiting multiaction (α, \θl ) of [G]≈ that is not
superscribed with the timer value. By the de�nition of the new-enabling, there exists

H ∈ [G]≈ ∩OpRegDynExpr such that (α, \θl )
θ is a subexpression of H. Since G ≈

H, there is a sequence of the inaction rules applications (in a forward or a backward
direction) that transforms G into H. Then the reverse sequence transforms H into
G. Let us remove from that reverse sequence the following backward application of

the �rst inaction rule: (α, \θl )⇐ (α, \θl )
θ. Then such a reduced reverse sequence will

turn H into G1 ∈ [G]≈ ∩OpRegDynExpr, by replacing (α, \θl ) in G with (α, \θl )
θ.

Let us start from G1 and apply the above procedure to the remaining not super-
scribed with the timer values newly enabled waiting multiactions of [G]≈ (which
are also those of such kind of [G1]≈). After repeated application of the mentioned
procedure for all n ≥ 1 non-superscribed newly enabled waiting multiactions of



1612 I.V. TARASYUK

G, we shall get from it the saturated operative dynamic expression Gn = G̃ ∈
[G]≈ ∩OpRegDynExpr. Note that the presented transformation of G into G̃ does
not change the enabling, since it does not change any overlines or underlines in the
syntax of the traversed operative dynamic expressions, but only iteratively assigns
the timer value superscripts to all newly enabled waiting multiactions of G. Hence,

EnaWait([G]≈)=EnaWait([G1]≈)= · · ·=EnaWait([Gn]≈)=EnaWait([G̃]≈). �

Thus, any dynamic expression can be always transformed into a (not necessarily
unique) saturated operative one by (possibly reverse) applying the inaction rules.

Example 4. Let E be from Example 1. We have [E]≈ ∩ SaOpRegDynExpr =

{({a}, \31)3[]({b}, 1
3 ), ({a}, \31)3[]({b}, 1

3 )}. Consider the sequence of inaction rules,
applied (in a forward or a backward direction) in the following transformation of
a non-saturated G ∈ [E]≈ ∩ OpRegDynExpr with the non-superscribed with the
timer value (unstamped) enabled waiting multiaction ({a}, \31) into (a saturated)
H ∈ [E]≈ ∩OpRegDynExpr, in which ({a}, \31) is stamped:

G = ({a}, \31)[]({b}, 1
3 ) ≈ ({a}, \31)[]({b}, 1

3 ) ≈ ({a}, \31)[]({b}, 1
3 ) ≈

({a}, \31)3[]({b}, 1
3 ) = H.

The reduced reverse sequence of inaction rules induces the following transforma-

tions of H that result in a saturated G1 = G̃ ∈ [E]≈ ∩ OpRegDynExpr, in which
({a}, \31) is stamped:

H = ({a}, \31)3[]({b}, 1
3 ) ≈ ({a}, \31)3[]({b}, 1

3 ) ≈ ({a}, \31)3[]({b}, 1
3 ) = G1 = G̃.

Let G be a saturated operative dynamic expression. Then 	G is written for the
timer decrement operator 	, applied to G. It denotes a saturated operative dynamic
expression, obtained from G via decrementing by one time unit all greater than 1
values of the timers associated with all (if any) stamped waiting multiactions from
the syntax of G. Thus, each such stamped waiting multiaction changes its timer
value from δ in G to max{1, δ−1} in 	G, where δ ∈ N≥1. More formally, the timer
decrement operator a�ects the (possibly overlined) stamped waiting multiactions
being the subexpressions of G as follows. The overlined stamped waiting multiaction

(α, \θl )
δ is replaced with (α, \θl )

max{1,δ−1} while the stamped waiting multiaction

without overline or underline (α, \θl )
δ is replaced with (α, \θl )

max{1,δ−1}.
Note that when δ = 1, we have max{1, δ− 1} = max{1, 0} = 1, hence, the timer

value δ = 1 may remain unchanged for a stamped waiting multiaction that is not
executed by some reason at the next time moment, but stays stamped. For example,
that stamped waiting multiaction may be a�ected by restriction. If the timer values
cannot be decremented with a time tick for all stamped waiting multiactions (if any)
from G then 	G = G and we obtain so-called empty loop transition, de�ned later.

Observe that the timer decrement operator keeps stamping of the waiting multi-
actions, since it does not change any overlines or underlines, but it may only decrease
their timer values, so that the stamped waiting multiactions stay stamped (with
their timer values, possibly decremented by one).

Example 5. Let E be from Example 1. We have Ena([E]≈) = {({a}, \31), ({b}, 1
3 )}

and Ena([E]≈)∩WL = {({a}, \31)}. The following one time unit timer decrements
are possible from the saturated operative dynamic expressions belonging to [E]≈:



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1613

	(({a}, \31)3[]({b}, 1
3 )) = ({a}, \31)2[]({b}, 1

3 ),

	(({a}, \31)3[]({b}, 1
3 )) = ({a}, \31)2[]({b}, 1

3 ).

Let G be a dynamic expression. Then IG :WL(G)→ N≥1 is the timer valuation
function of the waiting multiactions of G, de�ned as follows. For (α, \θl ) ∈ WL(G),

let IG((α, \θl )) = δ ∈ {1, . . . θ}, if ∃H ∈ [G]≈ ∩ SatOpRegDynExpr (α, \θl )
δ or

(α, \θl )
δ is a subexpression of H. Otherwise, we let IG((α, \θl )) = ∞, where `∞'

denotes the unde�ned value (in�nite time till the activity execution). The de�-
nition is correct by the argumentation from the proof of Proposition 1. Indeed, for
each waiting multiaction of G, its timer value superscript (if any) is the same for
every H ∈ [G]≈ ∩SatOpRegDynExpr, in which that waiting multiaction, possibly
being superscribed with the value of its timer and overlined or underlined, is a
subexpression. We may have IG((α, \θl )) <∞ for (α, \θl ) ∈ WL(G)\EnaWait([G]≈),
i.e. the non-enabled waiting multiactions of [G]≈ may have �nite timer valuations.
The latter is allowed only in the �incomplete� speci�cations by the compositionality
reasons. It is assumed that all such non-enabled waiting multiactions have in�nite
timer values in the �complete� speci�cation, hence, all and only enabled waiting
multiactions have �nite timer values there. Let G ∈ SatOpRegDynExpr. For all
(α, \θl ) ∈ WL(G), we have I	G((α, \θl )) = max{1, IG((α, \θl ))− 1}.

3.2. Action and empty move rules. The action rules are applied when some
activities are executed. With these rules we capture the prioritization among di�e-
rent types of multiactions. We also have the empty move rule, used to capture
a delay of one discrete time unit when no immediate or waiting multiactions are
executable. In this case, the empty multiset of activities is executed. The action and
empty move rules will be used later to determine all multisets of activities which can
be executed from the structural equivalence class of every dynamic expression (i.e.
from the state of the corresponding process). This information together with that
about probabilities or delays and weights of the activities to be executed from the
current process state will be used to calculate the probabilities of such executions.

The action rules with stochastic (immediate or waiting, respectively) multiactions

describe dynamic expression transformations in the form of G
Γ→ G̃ (G

I→ G̃ or

G
W→ G̃, respectively) due to execution of non-empty multisets Γ of stochastic

(I of immediate or W of waiting, respectively) multiactions. The rules represent
possible state changes of the speci�ed processes when some non-empty multisets
of stochastic (immediate or waiting, respectively) multiactions are executed. The
application of an action rule with stochastic (immediate or waiting, respectively)
multiactions to a dynamic expression leads in the corresponding LDTSDPN to a
discrete time tick at which some stochastic or waiting transitions �re (or to the
instantaneous �ring of some immediate transitions) and possible change of the
current marking. The current marking stays unchanged only if there is a self-loop
produced by the iterative execution of a non-empty multiset, which must be one-
element, i.e. a single stochastic (immediate or waiting, respectively) multiaction.
The reason is the regularity requirement that allows no concurrency at the highest
level of the second argument of iteration.



1614 I.V. TARASYUK

The empty move rule (applicable only when no immediate or waiting multiactions
can be executed from the current state) describes dynamic expression transformati-

ons in the form of G
∅→	G, called the empty moves, due to execution of the empty

multiset of activities at a discrete time tick. When no timer values are decremented
within G with the empty multiset execution at the next moment (for example, if G
contains no stamped waiting multiactions), we have 	G = G. In such a case, the

empty move from G is in the form of G
∅→ G, called the empty loop. The application

of the empty move rule to a dynamic expression leads to a discrete time tick in the
corresponding LDTSDPN at which no transitions �re and the current marking is
not changed, but the timer values of the waiting transitions enabled at the marking
(if any) are decremented by one. This is a new rule that has no prototype among
inaction rules of PBC, since it represents a time delay, but no notion of time exists in

PBC. The PBC rule G
∅→ G from [17, 16] in our setting would correspond to the rule

G⇒ G that describes staying in the current state when no time elapses. Since we do
not need the latter rule to transform dynamic expressions into operative ones and
it can destroy the de�nition of operative expressions, we do not have it in dtsdPBC.

Thus, an application of every action rule with stochastic or waiting multiactions
or the empty move rule requires one discrete time unit delay, i.e. the execution of
a (possibly empty) multiset of stochastic or (non-empty) multiset of waiting multi-
actions leading to the dynamic expression transformation described by the rule is
accomplished instantly after one time unit. An application of every action rule with
immediate multiactions does not take any time, i.e. the execution of a (non-empty)
multiset of immediate multiactions is accomplished instantly at the current moment.

Note that expressions of dtsdPBC can contain identical activities. To avoid
technical di�culties, such as the proper calculation of the state change probabilities
for multiple transitions, we can always enumerate coinciding activities from left to
right in the syntax of expressions. The new activities, resulted from synchronization
will be annotated with concatenation of numberings of the activities they come
from, hence, the numbering should have a tree structure to re�ect the e�ect of
multiple synchronizations. We now de�ne the numbering which encodes a binary
tree with the leaves labeled by natural numbers.

De�nition 9. The numbering of expressions is ι ::= n | (ι)(ι), where n ∈ N.

Let Num denote the set of all numberings of expressions.

Example 6. The numbering 1 encodes the binary tree in Figure 1(a) with the
root labeled by 1. The numbering (1)(2) corresponds to the binary tree in Figure
1(b) without internal nodes and with two leaves labeled by 1 and 2. The numbering
(1)((2)(3)) represents the binary tree Figure 1(c) with one internal node, which is
the root for the subtree (2)(3), and three leaves labeled by 1, 2 and 3.

The new activities resulting from synchronizations in di�erent orders should be
considered up to permutation of their numbering. In this way, we shall recognize
di�erent instances of the same activity. If we compare the contents of di�erent
numberings, i.e. the sets of natural numbers in them, we shall identify the mentioned
instances. The content of a numbering ι ∈ Num is

Cont(ι) =

{
{ι}, ι ∈ N;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1615

✉(a)
1

✉
✉ ✉
(b)

1 2

�
�

�

❅
❅
❅

✉
✉ ✉
(c)

1

�
�

�

❅
❅
❅

✉ ✉
2 3

�
�

�

❅
❅
❅

Fig. 1. The binary trees encoded with the numberings 1, (1)(2)
and (1)((2)(3))

After the enumeration, the multisets of activities from the expressions become the
proper sets. In the following, we suppose that the identical activities are enumerated
when needed to avoid ambiguity. This enumeration is considered to be implicit.

De�nition 10. Let G ∈ OpRegDynExpr. We de�ne the set of all non-empty
multisets of activities which can be potentially executed fromG, denoted by Can(G).
Let (α, κ) ∈ SDL, E, F ∈ RegStatExpr, H ∈ OpRegDynExpr and a ∈ Act.

(1) If final(G) then Can(G) = ∅.
(2) If G=(α, κ)δ and κ=\θl , θ∈N≥2, l∈R>0, δ∈{2, . . . , θ}, then Can(G)=∅.
(3) If G = (α, κ) and κ ∈ (0; 1) or κ = \0l , l ∈ R>0, then Can(G) = {{(α, κ)}}.
(4) If G = (α, κ)1 and κ = \θl , θ ∈ N≥1, l ∈ R>0, then Can(G) = {{(α, κ)}}.
(5) If Υ ∈ Can(G) then Υ ∈ Can(G ◦ E), Υ ∈ Can(E ◦G) (◦ ∈ {; , []}),

Υ ∈ Can(G‖H), Υ ∈ Can(H‖G), f(Υ) ∈ Can(G[f ]), Υ ∈ Can(G rs a)
(when a, â 6∈ A(Υ)), Υ ∈ Can(G sy a), Υ ∈ Can([G ∗ E ∗ F ]),
Υ ∈ Can([E ∗G ∗ F ]), Υ ∈ Can([E ∗ F ∗G]).

(6) If Υ ∈ Can(G) and Ξ ∈ Can(H) then Υ + Ξ ∈ Can(G‖H).
(7) If Υ ∈ Can(G sy a) and (α, κ), (β, λ) ∈ Υ are di�erent, a ∈ α, â ∈ β, then

(a) (Υ + {(α⊕a β, κ · λ)}− {(α, κ), (β, λ)}) ∈ Can(G sy a) if κ, λ ∈ (0; 1);
(b) (Υ + {(α⊕a β, \θl+m)} − {(α, κ), (β, λ)}) ∈ Can(G sy a) if κ = \θl ,

λ = \θm, θ ∈ N, l,m ∈ R>0.
When we synchronize the same multiset of activities in di�erent orders,
we obtain several activities with the same multiaction and probability or
delay and weight parts, but with di�erent numberings having the same
content. Then we only consider a single one of the resulting activities
to avoid introducing redundant ones.
The synchronization of stochastic multiactions (α, ρ)1 and (β, χ)2 in
different orders generates the activities (α⊕aβ, ρ·χ)(1)(2) and (β⊕aα, χ·
ρ)(2)(1). The synchronization of deterministic multiactions (α, \θl )1 and

(β, \θm)2 in di�erent orders generates the activities (α⊕a β, \θl+m)(1)(2)

and (β ⊕a α, \θm+l)(2)(1). Since Cont((1)(2)) = {1, 2} = Cont((2)(1)),
in both cases, only the �rst activity (symmetrically, the second one)
resulting from synchronization appears in a multiset from Can(G sy a).

If Υ ∈ Can(G) then by de�nition of Can(G), ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Can(G).
LetG ∈ OpRegDynExpr and Can(G) 6= ∅. Obviously, if there are only stochastic

(immediate or waiting, respectively) multiactions in the multisets from Can(G)
then these stochastic (immediate or waiting, respectively) multiactions can be
executed from G. Otherwise, besides stochastic ones, there are also deterministic
(immediate and/or waiting) multiactions in the multisets from Can(G). By the



1616 I.V. TARASYUK

note above, there are non-empty multisets of deterministic multiactions in Can(G)
as well, i.e. ∃Υ ∈ Can(G) Υ ∈ NDLfin \ {∅}. In this case, no stochastic multiactions

can be executed from G, even if Can(G) contains non-empty multisets of stochastic
multiactions, since deterministic multiactions have a priority over stochastic ones,
and should be executed �rst. Further, if there are no stochastic, but both waiting
and immediate multiactions in the multisets from Can(G), then, analogously, no
waiting multiactions can be executed from G, since immediate multiactions have a
priority over waiting ones (besides that over stochastic ones).

When there are only waiting and, possibly, stochastic multiactions in the multi-
sets from Can(G) then, from above, only waiting ones can be executed from G.
Then just maximal non-empty multisets of waiting multiactions can be executed
from G, since all non-con�icting waiting multiactions cannot wait anymore and
they should occur at the next time moment with probability 1. The next de�nition
formalizes these requirements.

De�nition 11. Let G ∈ OpRegDynExpr. The set of all non-empty multisets of
activities which can be executed from G is

Now(G)=


Can(G) ∩ NILfin, Can(G) ∩ NILfin 6= ∅;
{W ∈Can(G) ∩ NWLfin | (Can(G) ∩ NILfin=∅)∧
∀V ∈Can(G) ∩ NWLfin W ⊆V ⇒ V =W}, (Can(G) ∩ NWLfin 6=∅);
Can(G), otherwise.

Consider an operative dynamic expression G ∈ OpRegDynExpr. The expression
G is s-tangible (stochastically tangible), denoted by stang(G), if Now(G) ⊆ NSLfin \
{∅}. In particular, we have stang(G), if Now(G) = ∅. The expression G is w-
tangible (waitingly tangible), denoted by wtang(G), if ∅ 6= Now(G) ⊆ NWLfin \ {∅}.
The expression G is tangible, denoted by tang(G), if stang(G) or wtang(G), i.e.
Now(G) ⊆ (NSLfin∪NWLfin )\{∅}. Again, we particularly have tang(G), ifNow(G) = ∅.
Otherwise, the expression G is vanishing, denoted by vanish(G), and in this case
∅ 6= Now(G) ⊆ NILfin \ {∅}. Note that the operative dynamic expressions from [G]≈
may have di�erent types in general. The next example demonstrates two operative
dynamic expressions H and H ′ with H ≈ H ′, such that vanish(H), but stang(H ′).

Example 7. Let G = (({a}, \01)[]({b}, \02))‖({c}, 1
2 ) and G′ = (({a}, \01)[]({b}, \02))‖

({c}, 1
2 ). Then G ≈ G′, since G⇐ G′′ ⇒ G′ for G′′ = (({a}, \01)[]({b}, \02))‖({c}, 1

2 ),

but Can(G)={{({a}, \01)}, {({c}, 1
2 )}, {({a}, \01), ({c}, 1

2 )}}, Can(G′)={{({b}, \02)},
{({c}, 1

2 )}, {({b}, \02), ({c}, 1
2 )}}, Now(G)={{({a}, \01)}}, Now(G′)={{({b}, \02)}}.

Clearly, we have vanish(G) and vanish(G′). The executions like that of {({c}, 1
2 )}

(and all multisets including it) from G and G′ must be disabled using preconditions
in the action rules, since immediate multiactions have a priority over stochastic
ones, hence, the former are always executed �rst.

Let H = ({a}, \01)[]({b}, 1
2 ) and H ′ = ({a}, \01)[]({b}, 1

2 ). Then H ≈ H ′, since

H ⇐ H ′′ ⇒ H ′ for H ′′ = ({a}, \01)[]({b}, 1
2 ), but Can(H)=Now(H)={{({a}, \01)}}

and Can(H ′) = Now(H ′) = {{({b}, 1
2 )}}. We have vanish(H), but stang(H ′).

To make the action rules correct under structural equivalence, the executions like
that of {({b}, 1

2 )} from H ′ must be disabled using preconditions in the action rules,
since immediate multiactions have a priority over stochastic ones, hence, the choices
between them are always resolved in favour of the former.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1617

Let G ∈ RegDynExpr. We write stang([G]≈), if ∀H ∈ [G]≈ ∩OpRegDynExpr
stang(H). We write wtang([G]≈), if ∃H ∈ [G]≈ ∩OpRegDynExpr wtang(H) and
∀H ′ ∈ [G]≈ ∩ OpRegDynExpr tang(H ′). We write tang([G]≈), if stang([G]≈) or
wtang([G]≈). Otherwise, we write vanish([G]≈), and in this case ∃H ∈ [G]≈ ∩
OpRegDynExpr vanish(H).

In Table 3, we de�ne the action and empty move rules. In the table, (α, ρ), (β, χ)∈
SL, (α, \0l ), (β, \

0
m) ∈ IL and (α, \θl ), (β, \

θ
m) ∈ WL. Further, E,F ∈ RegStatExpr,

G,H ∈ SatOpRegDynExpr, G̃, H̃∈RegDynExpr,G[]E,E[]G, [E ∗G ∗F ], [E ∗F ∗
G] ∈ SatOpRegDynExpr and a ∈ Act. Next, Γ,∆ ∈ NSLfin \ {∅}, Γ′ ∈ NSLfin, I, J ∈
NILfin \ {∅}, I ′ ∈ NILfin, V,W ∈ NWLfin \ {∅}, V ′ ∈ NWLfin and Υ ∈ NSDLfin \ {∅}.

We use the following abbreviations in the names of the rules from the table:
�E� for �Empty move�, �B� for �Basis case�, �S� for �Sequence�, �C� for �Choice�,
�P� for �Parallel�, �L� for �reLabeling�, �R� for �Restriction�, �I� for �Iteraton� and
�Sy� for �Synchronization�. The �rst rule in the table is the empty move rule E. The
other rules are the action rules, describing transformations of dynamic expressions,
which are built using particular algebraic operations. If we cannot merge the rules
with stochastic, immediate ans waiting multiactions in one rule for some operation
then we get the coupled action rules. In such cases, the names of the action rules
with stochastic multiactions have a su�x `s', those with immediate multiactions
have a su�x `i', and those with waiting multiactions have a su�x `w'. To make
presentation more compact, the action rules with double conclusion are combined
from two distinct action rules with the same premises.

Almost all the rules in Table 3 (excepting E, Bw, P2s, P2i, P2w, Sy2s, Sy2i
and Sy2w) resemble those of gsPBC, but the former correspond to execution of
multisets of activities, not of single activities, as in the latter, and our rules have
simpler preconditions (if any), since all immediate multiactions in dtsdPBC have
the same priority level, unlike those of gsPBC.

The preconditions in rules E, Cs, P1s, and I2s are needed to ensure that (pos-
sibly empty) multisets of stochastic multiactions are executed only from s-tan-
gible saturated operative dynamic expressions, such that all dynamic expressions
structurally equivalent to them are s-tangible as well. For example, assuming that
stang([G]≈) in rule Cs, if init(G) then G ≈ F for a static expression F and G[]E ≈
F []E ≈ F []E ≈ F []E. Hence, it should be guaranteed stang([F []E]≈), which holds
i� stang([E]≈). The case E[]G is treated similarly. Assuming that stang([G]≈) in
rule P1s, it should be guaranteed stang([G‖H]≈) and stang([H‖G]≈), which holds
i� stang([H]≈). The precondition in rule I2s is analogous to that in rule Cs.

Analogously, the preconditions in rules Cw, and I2w are needed to ensure that
non-empty multisets of waiting multiactions are executed only from w-tangible
saturated operative dynamic expressions, such that all dynamic expressions structu-
rally equivalent to them are tangible. This requirement (about tangible expressions)
means that only (possibly empty) multisets of stochastic multiactions or non-
empty multisets of waiting multiactions, and no immediate multiactions, can be
executed from the subprocess that is composed alternatively (in choice) with the
subprocess G. Hence, the multisetW of waiting multiactions, executed from G, can
also be executed from the composition of G and that alternative subprocess, since
immediate multiactions cannot occur from the latter. Otherwise, it would prevent
the execution ofW from G in the composite process, by disregarding the alternative



1618 I.V. TARASYUK

Table 3. Action and empty move rules

E
stang([G]≈)

G
∅→	G

Bs (α, ρ)
{(α,ρ)}−→ (α, ρ) Bi (α, \0l )

{(α,\0l )}
−→ (α, \0l ) Bw (α, \θl )

1
{(α,\θl )}
−→ (α, \θl )

S
G

Υ→ G̃

G;E
Υ→ G̃;E, E;G

Υ→ E; G̃
Cs

G
Γ→ G̃, ¬init(G) ∨ (init(G) ∧ stang([E]≈))

G[]E
Γ→ G̃[]�E, E[]G

Γ→�E[]G̃

Ci
G

I→ G̃

G[]E
I→ G̃[]�E, E[]G

I→�E[]G̃
Cw

G
V→ G̃, ¬init(G) ∨ (init(G) ∧ tang([E]≈))

G[]E
V→ G̃[]�E, E[]G

V→�E[]G̃

P1s
G

Γ→ G̃, stang([H]≈)

G‖H Γ→ G̃‖ 	H, H‖G Γ→	H‖G̃
P1i

G
I→ G̃

G‖H I→ G̃‖H, H‖G I→ H‖G̃

P1w
G

V→ G̃, stang([H]≈)

G‖H V→ G̃‖ 	H, H‖G V→	H‖G̃
P2s

G
Γ→ G̃, H

∆→ H̃

G‖H Γ+∆−→ G̃‖H̃
P2i

G
I→ G̃, H

J→ H̃

G‖H I+J−→ G̃‖H̃

P2w
G

V→ G̃, H
W→ H̃

G‖H V+W−→ G̃‖H̃
L

G
Υ→ G̃

G[f ]
f(Υ)−→ G̃[f ]

R
G

Υ→ G̃, a, â 6∈ A(Υ)

G rs a
Υ→ G̃ rs a

I1
G

Υ→ G̃

[G ∗ E ∗ F ]
Υ→ [G̃ ∗ E ∗ F ]

I2s
G

Γ→ G̃, ¬init(G) ∨ (init(G) ∧ stang([F ]≈))

[E ∗G ∗ F ]
Γ→ [E ∗ G̃∗�F ], [E ∗ F ∗G]

Γ→ [E∗�F ∗ G̃]

I2i
G

I→ G̃

[E ∗G ∗ F ]
I→ [E ∗ G̃∗�F ], [E ∗ F ∗G]

I→ [E∗�F ∗ G̃]

I2w
G

V→ G̃, ¬init(G) ∨ (init(G) ∧ tang([F ]≈))

[E ∗G ∗ F ]
V→ [E ∗ G̃∗�F ], [E ∗ F ∗G]

V→ [E∗�F ∗ G̃]

Sy1
G

Υ→ G̃

G sy a
Υ→ G̃ sy a

Sy2s
G sy a

Γ′+{(α,ρ)}+{(β,χ)}−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}−−−−−−−−−−−→ G̃ sy a

Sy2i
G sy a

I′+{(α,\0l )}+{(β,\0m)}
−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
I′+{(α⊕aβ,\0l+m)}
−−−−−−−−−−−−→ G̃ sy a

Sy2w
G sy a

V ′+{(α,\θl )}+{(β,\θm)}
−−−−−−−−−−−−−−−→ G̃ sy a, a ∈ α, â ∈ β

G sy a
V ′+{(α⊕aβ,\θl+m)}
−−−−−−−−−−−−−→ G̃ sy a

choice of the branch speci�ed by G, due to the zero delays and priority (captured
by all action rules) of immediate multiactions over all other multiaction types.

The precondition in rule P1w is an exception from the above. It also ensures
that non-empty multisets of waiting multiactions are executed only from w-tangible
saturated operative dynamic expressions, such that all dynamic expressions structu-
rally equivalent to them are tangible, but all the expressions structurally equivalent
to H specifying parallel with G subprocess should be s-tangible. This stricter
requirement (about s-tangible, instead of just tangible, expressions) means that only
(possibly empty) multisets of stochastic multiactions, and no immediate or waiting
multiactions, can be executed from the subprocess H that is composed concurrently
(in parallel) with the subprocess G. Hence, the multiset W of waiting multiactions,
executed from G, is also a maximal (by the inclusion relation) multiset that can
be executed from the parallel composition of G and H. The reason is that only the
timers decrement by one time unit (by applying rule E) is actually possible in H
while executing W from G, due to priority (captured by all action rules) of waiting
multiactions over stochastic ones. Thus, taking the rule precondition stang([H]≈)



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1619

instead of tang([H]≈) preserves maximality of the steps of waiting multiactions
while applying parallel composition.

In rulesP1s andP1w, the timer value decrementing by one	H, applied to the s-
tangible saturated operative dynamic expressionH that is composed in parallel with
G, from which stochastic multiactions are executed at the next time tick, is used
to maintain the time progress uniformity in the composite expression. Although
rules P1s and P1w can be merged, we have not done it, aiming to emphasize the
exceptional precondition in rule P1w.

In rules Cs, Ci and Cw, the timer values discarding �E, applied to the static
expression E that is composed in choice with G, from which activities are executed,
signi�es that the timer values of the non-chosen subexpression (branch) become
irrelevant in the composite expression and thus may be removed. Analogously, in
rules I2s, I2i and I2w, the timer values discarding �F is applied to the static
expression F that is an alternative to G, from which activities are executed, since
the choice is always made between the body and termination subexpressions of the
composite iteration expression (between the second and third iteration arguments).

Rule E corresponds to one discrete time unit delay (passage of one unit of time)
while executing no activities and therefore it has no analogues among the rules of
gsPBC with the continuous time model. Rule E is a global one, i.e. it is applied only
to the whole (topmost level of) expressions, rather than to their parts. The reason
is that all other action rules describe dynamic expressions transformations due to
execution of non-empty multisets of activities. Hence, the actionless time move
described by rule E cannot �penetrate� with action rules through the expressions
structure. This guarantees that time progresses uniformly in all their subexpressions.

Rule Bw di�ers from the more standard ones Bs and Bi that both resemble
rule B in gsPBC. The reason is that in Bw, the overlined waiting multiaction
has an extra superscript `1', indicating that one time unit is remained until the
multiaction's execution (RTE equals one) that should follow in the next moment.

Rules P2s, P2i and P2w have no similar rules in gsPBC, since interleaving
semantics of the algebra allows no simultaneous execution of activities. On the
other hand, P2s, P2i and P2w have in PBC the analogous rule PAR that is used
to construct step semantics of the calculus, but the former two rules correspond
to execution of multisets of activities, unlike that of multisets of multiactions
in the latter rule. Rules P2s, P2i and P2w cannot be merged, since otherwise
simultaneous execution of di�erent types of multiactions would be allowed.

Rules Sy2s, Sy2i and Sy2w di�er from the corresponding synchronization rules
in gsPBC, since the probability or the weight of synchronization in the former rules
and the rate or the weight of synchronization in the latter rules are calculated
in two distinct ways. Rules Sy2i and Sy2w cannot be merged, since otherwise
synchronous execution of immediate and waiting multiactions would be allowed.

Rule Sy2s establishes that the synchronization of two stochastic multiactions
is made by taking the product of their probabilities, since we are considering
that both must occur for the synchronization to happen, so this corresponds,
in some sense, to the probability of the independent event intersection, but the
real situation is more complex, since these stochastic multiactions can also be
executed in parallel. Nevertheless, when scoping (the combined operation consisting
of synchronization followed by restriction over the same action [16]) is applied over a
parallel execution, we get as �nal result just the simple product of the probabilities,



1620 I.V. TARASYUK

since no normalization is needed there. Multiplication is an associative and commu-
tative binary operation that is distributive over addition, i.e. it ful�lls all practical
conditions imposed on the synchronization operator in [35]. Further, if both argu-
ments of multiplication are from (0; 1) then the result belongs to the same interval,
hence, multiplication naturally maintains probabilistic compositionality in our mo-
del. Our approach is similar to the multiplication of rates of the synchronized
actions in MTIPP [34] in the case when the rates are less than 1. Moreover, for
the probabilities ρ and χ of two stochastic multiactions to be synchronized we have
ρ · χ < min{ρ, χ}, i.e. multiplication meets the performance requirement stating
that the probability of the resulting synchronized stochastic multiaction should be
less than the probabilities of the two ones to be synchronized. While performance
evaluation, it is usually supposed that the execution of two components together
require more system resources and time than the execution of each single one. This
resembles the bounded capacity assumption from [35]. Thus, multiplication is easy
to handle with and it satis�es the algebraic, probabilistic, time and performance
requirements. Therefore, we have chosen the product of the probabilities for the
synchronization. See also [23, 22] for a discussion about binary operations producing
the rates of synchronization in the continuous time setting.

In rules Sy2i and Sy2w, we sum the weights of two synchronized immediate
(waiting, respectively) multiactions, since the weights can be interpreted as the
rewards [63], thus, we collect the rewards. Moreover, we express that the synchro-
nized execution of immediate (waiting) multiactions has more importance than
that of every single one. The weights of immediate and waiting (i.e. deterministic)
multiactions can also be seen as bonus rewards associated with transitions [12].
The rewards are summed during synchronized execution of immediate (waiting)
multiactions, since in that case all the synchronized activities can be seen as partici-
pated in the execution. We prefer to collect more rewards, thus, the transitions
providing greater rewards will have a preference and they will be executed with a
greater probability. In particular, since execution of immediate multiactions takes
no time, we prefer to collect in a step (parallel execution) as many synchronized
immediate multiactions as possible to get more signi�cant progress in behaviour.
Under behavioural progress we understand an advance in executing activities, which
does not always imply a progress in time, as in the case when the activities are
immediate multiactions. This aspect will be used later, while evaluating performance
via analysis of the embedded discrete time Markov chains (EDTMCs) of expressions.
Since every state change in EDTMC takes one unit of (its local) time, greater
advance in operation of the EDTMC allows one to calculate quicker many perfor-
mance indices. As for waiting multiactions, only the maximal multisets of them,
executable from a state, occur with a time tick. The reason is that each waiting
multiaction has a probability 1 to occur in the next moment, when the remaining
time of its timer (RTE) equals one and there exist no con�icting waiting multiac-
tions. Hence, all waiting multiactions with the RTE being one that are executable
together from a state must participate in a step from that state. Since there may
exist di�erent such maximal multisets of waiting multiactions, a probabilistic choice
among all possible steps is made, imposed by the weights of those multiactions.
Thus, the steps of waiting multiactions always produce maximal overall weights,
but they are mainly used to calculate the probabilities of alternative maximal steps
rather than the cumulative bonus rewards.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1621

We do not have self-synchronization, i.e. synchronization of an activity with
itself, since all the (enumerated) activities executed together are considered to be
di�erent. This allows us to avoid rather cumbersome and unexpected behaviour, as
well as many technical di�culties [16].

Notice that the timers of all waiting multiactions that lose their enabledness
when a state change occurs become inactive (turned o�) and their values become
irrelevant while the timers of all those preserving their enabledness continue running
with their stored values. Hence, we adopt the enabling memory memory policy
[54, 1, 3, 4] when the process states are changed and the enabledness of deterministic
multiactions is possibly modi�ed (remember that immediate multiactions may be
seen as those with the timers displaying a single value 0, so we do not need to
store their values). Then the timer values of waiting multiactions are taken as the
enabling memory variables.

Similar in [41], we are mainly interested in the dynamic expressions, inferred by
applying the inaction rules (also in the reverse direction) and action rules from the
overlined static expressions, such that no stamped (i.e. superscribed with the timer
values) waiting multiaction is a subexpression of them. The reason is to ensure that
time proceeds uniformly and only enabled waiting multiactions are stamped. We
call such dynamic expressions reachable, by analogy with the reachable states of
LDTSDPNs, to be presented later. Formally, a dynamic expression G is reachable,
if there exists a static expression E without timer value superscripts, such that

E ≈ G or E ≈ G0
Υ1→ H1 ≈ G1

Υ2→ . . .
Υn→ Hn ≈ G for some Υ1, . . . ,Υn ∈ NSDLfin .

Therefore, we consider a dynamic expression G = ({a}, \21)1[]({b}, \32)1 as �illegal�

and that H = ({a}, \21)1[]({b}, \32)2 as �legal�, since the latter is obtained from the

overlined static expression without timer value superscripts E = ({a}, \21)[]({b}, \32)
after one time tick. On the other hand, G is �illegal� only when it is intended to
specify a complete process, but it may become �legal� as a part of some complete
speci�cation, like G rs a, since after two time ticks from E rs a, the timer values
cannot be decreased further when the value 1 is approached. Thus, we should allow
the dynamic expressions likeG, by assuming that they are incomplete speci�cations,

to be further composed. Further, a dynamic expression G = ({a}, 1
2 ); ({b}, \21)1 is

�illegal�, since the waiting multiaction ({b}, \21) is not enabled in [G]≈ and its timer
cannot start before the stochastic multiaction ({a}, 1

2 ) is executed. Enabledness of
the stamped waiting multiactions is considered in the next proposition.

Proposition 2. Let G be a reachable dynamic expression. Then only waiting
multiactions from EnaWait([G]≈) are stamped in G.

Proof. By the de�nition of reachability, there exists E ∈ StatExpr without stamped
waiting multiactions, such that G is derived from E by applying the inaction rules
(also those reversed) and action rules.

In that derivation, only the �rst inaction rule can add timer value superscripts
to the waiting multiactions from WL(G) = WL(E) that are overlined. The other
inaction rules (also reversed) can just �shift� the upper bars from / to those stamped
waiting multiactions while preserving the enabledness of all waiting multiactions
from WL(G). Thus, just the waiting multiactions from EnaWait([G]≈) become

stamped in the subexpressions of G, such as (α, \θl )
θ or (α, \θl )

θ.
Further, in the derivation, the action rules cannot add timer value superscripts to

the waiting multiactions from WL(G), but the action rules can make such waiting



1622 I.V. TARASYUK

Table 4. Comparison of inaction, action and empty move rules

Rules State change Time progress Activities execution

Inaction rules − − −
Action rules with ± + +

stochastic/waiting multiactions

Action rules with ± − +
immediate multiactions

Empty move rule − + −

multiactions non-enabled (disabled), i.e. belonging to WL(G) \ EnaWait([G]≈).
Such �disabling� action rules correspond either to the executing an overlined stam-
ped (with the value 1) waiting multiaction (rule Bw) or to the choice of some
alternative process branch (rules Cs, Ci, Cw, I2s, I2i, I2w). In the both cases, all
the disabled waiting multiactions loose their timer value superscripts. Thus, only
the waiting multiactions from EnaWait([G]≈) remain stamped in G.

Hence, E does not contain stamped waiting multiactions and in the derivation
of G from it, only the waiting multiactions from EnaWait([G]≈) become and
remain stamped in G. Therefore, only waiting multiactions from EnaWait([G]≈)
are stamped in G. �

In Table 4, inaction rules, action rules (with stochastic or immediate, or waiting
multiactions) and empty move rule are compared according to the three questions
about their application: whether it changes the current state, whether it leads to
a time progress, and whether it results in execution of some activities. Positive
answers to the questions are denoted by the plus sign while negative ones are
speci�ed by the minus sign. If both positive and negative answers can be given
to some of the questions in di�erent cases then the plus-minus sign is written.
Notice that the process states are considered up to structural equivalence of the
corresponding expressions, and time progress is not regarded as a state change.

3.3. Transition systems. We now construct labeled probabilistic transition sys-
tems associated with dynamic expressions. The transition systems are used to de�ne
the operational semantics of dynamic expressions.

Let G be a dynamic expression and s = [G]≈. The set of all multisets of activities

executable in s is de�ned as Exec(s) = {Υ | ∃H ∈ s ∃H̃ H
Υ→ H̃}. Here H Υ→ H̃

is an inference by the rules from Table 3. It can be proved by induction on the
structure of expressions that Υ ∈ Exec(s) \ {∅} implies ∃H ∈ s Υ ∈ Now(H). The
reverse statement does not hold in general, since the preconditions in the action
rules disable executions of the activities with the lower-priority types from every
H ∈ s, as the next example shows.

Example 8. Let H,H ′ be from Example 7 and s = [H]≈ = [H ′]≈. We have
Now(H) = {{({a}, \01)}} and Now(H ′) = {{({b}, 1

2 )}}. Since only rules Ci and Bi
can be applied to H while no action rule can be applied to H ′, we get Exec(s) =
{{({a}, \01)}}. Then, for H ′∈s and Υ={({b}, 1

2 )}∈Now(H ′), we get Υ 6∈ Exec(s).

The state s is s-tangible (stochastically tangible), denoted by stang(s), if Exec(s) ⊆
NSLfin. For an s-tangible state s we always have ∅ ∈ Exec(s) by rule E, hence, we

may have Exec(s) = {∅}. The state s is w-tangible (waitingly tangible), denoted



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1623

by wtang(s), if Exec(s) ⊆ NWLfin \ {∅}. The state s is tangible, denoted by tang(s),

if stang(s) or wtang(s), i.e. Exec(s) ⊆ NSLfin ∪ NWLfin . Again, for a tangible state s

we may have ∅ ∈ Exec(s) and Exec(s) = {∅}. Otherwise, the state s is vanishing,
denoted by vanish(s), and in this case Exec(s) ⊆ NILfin \ {∅}.

Since for every H ∈ s, Now(H) containing the multisets of activities with
the lower-priority types is not included into Exec(s), and the types of states are
determined from the highest-priority types of the executable activities, the state
type de�nitions based on Now(H), H ∈ s, and on Exec(s) are consistent.

If Υ ∈ Exec(s) and Υ ∈ NSLfin ∪ NILfin then by rules P2s, P2i, Sy2s, Sy2i and

de�nition of Exec(s) ∀Ξ ⊆ Υ, Ξ 6= ∅, we have Ξ ∈ Exec(s), i.e. 2Υ \{∅} ⊆ Exec(s).
Since the inaction rules only distribute and move upper and lower bars along

the syntax of dynamic expressions, all H ∈ s have the same underlying static
expression F . Process expressions always have a �nite length, hence, the number
of all (enumerated) activities and the number of all operations in the syntax of F
are �nite as well. The action rules Sy2s, Sy2i and Sy2w are the only ones that
generate new activities. They result from the handshake synchronization of actions
and their conjugates belonging to the multiaction parts of the �rst and second
constituent activity, respectively. Since we have a �nite number of operators sy in
F and all the multiaction parts of the activities are �nite multisets, the number of
the new synchronized activities is also �nite. The action rules contribute to Exec(s)
(in addition to the empty set, if rule E is applicable) only the sets consisting both
of activities from F and the new activities, produced by Sy2s, Sy2i and Sy2w.
Since we have a �nite number n of all such activities, we get |Exec(s)| ≤ 2n <∞.
Thus, summation and multiplication by elements from the �nite set Exec(s) are
well-de�ned. Similar reasoning can be used to demonstrate that for all dynamic
expressions H (not just for those from s), Now(H) is a �nite set.

De�nition 12. The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

• [G]≈ ∈ DR(G);

• if [H]≈ ∈ DR(G) and ∃Υ H
Υ→ H̃ then [H̃]≈ ∈ DR(G).

The set of all s-tangible states from DR(G) is denoted by DRST (G), and the
set of all w-tangible states from DR(G) is denoted by DRWT (G). The set of all
tangible states from DR(G) is denoted by DRT (G) = DRST (G)∪DRWT (G). The
set of all vanishing states from DR(G) is denoted by DRV (G). Then DR(G) =
DRT (G)]DRV (G) = DRST (G)]DRWT (G)]DRV (G) (] denotes disjoint union).

Let now G be a dynamic expression and s, s̃ ∈ DR(G).
Let Υ ∈ Exec(s)\{∅}. The probability that the multiset of stochastic multiactions

Υ is ready for execution in s or the weight of the multiset of deterministic multiacti-
ons Υ which is ready for execution in s is

PF (Υ, s)=


∏

(α,ρ)∈Υ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}
(1− χ), s∈DRST (G);∑

(α,\θl )∈Υ

l, s∈DRWT (G)∪DRV (G).

In the case Υ = ∅ and s ∈ DRST (G) we de�ne



1624 I.V. TARASYUK

PF (∅, s) =


∏

{(β,χ)}∈Exec(s)
(1− χ), Exec(s) 6= {∅};

1, Exec(s) = {∅}.
If s ∈ DRST (G) and Exec(s) 6= {∅} then PF (Υ, s) can be interpreted as a

joint probability of independent events (in a probability sense, i.e. the probability
of intersection of these events is equal to the product of their probabilities). Each
such an event consists in the positive or the negative decision to be executed of a
particular stochastic multiaction. Every executable stochastic multiaction decides
probabilistically (using its probabilistic part) and independently (from others),
if it wants to be executed in s. If Υ is a multiset of all executable stochastic
multiactions which have decided to be executed in s and Υ ∈ Exec(s) then Υ
is ready for execution in s. The multiplication in the de�nition is used because it
re�ects the probability of the independent event intersection. Alternatively, when
Υ 6= ∅, PF (Υ, s) can be interpreted as the probability to execute exclusively the
multiset of stochastic multiactions Υ in s, i.e. the probability of intersection of
two events calculated using the conditional probability formula in the form of
P(X ∩ Y ) = P(X|Y )P(Y ). The event X consists in the execution of Υ in s.
The event Y consists in the non-execution in s of all the executable stochastic
multiactions not belonging to Υ. Since the mentioned non-executions are obviously
independent events, the probability of Y is a product of the probabilities of the
non-executions: P(Y ) =

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1 − χ). The conditioning of X

by Y makes the executions of the stochastic multiactions from Υ independent, since
all of them can be executed in parallel in s by de�nition of Exec(s). Hence, the
probability to execute Υ under condition that no executable stochastic multiactions
not belonging to Υ are executed in s is a product of probabilities of these stochastic
multiactions: P(X|Y ) =

∏
(α,ρ)∈Υ ρ. Thus, the probability that Υ is executed

and no executable stochastic multiactions not belonging to Υ are executed in
s is the probability of X conditioned by Y multiplied by the probability of Y :
P(X ∩ Y ) = P(X|Y )P(Y ) =

∏
(α,ρ)∈Υ ρ ·

∏
{{(β,χ)}∈Exec(s)|(β,χ) 6∈Υ}(1 − χ). When

Υ = ∅, PF (Υ, s) can be interpreted as the probability not to execute in s any
executable stochastic multiactions, thus, PF (∅, s) =

∏
{(β,χ)}∈Exec(s)(1−χ). When

only the empty multiset of activities can be executed in s, i.e. Exec(s) = {∅}, we
take PF (∅, s) = 1, since nothing more can be executed in s in this case. Since the
probabilities of all stochastic multiactions are strictly less than 1, for s ∈ DRST (G)
we have PF (∅, s) ∈ (0; 1]. Hence, we always execute the empty multiset of activities
in s at the next moment with a certain positive probability.

If s ∈ DRWT (G) ∪DRV (G) then PF (Υ, s) could be interpreted as the overall
(cumulative) weight of the deterministic multiactions from Υ, i.e. the sum of all their
weights. The summation here is used since the weights can be seen as the rewards
which are collected [63]. This means that concurrent execution of the deterministic
multiactions has more importance than that of every single one. The weights of
deterministic multiactions can also be interpreted as bonus rewards of transitions
[12]. The rewards are summed when deterministic multiactions are executed in
parallel, because all of them participated in the execution. In particular, since
execution of immediate multiactions takes no time, we prefer to collect in a step
(parallel execution of activities) as many parallel immediate multiactions as possible
to get more progress in behaviour. This aspect will be used later, while while



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1625

evaluating performance on the basis of the EDTMCs of expressions. Concerning
waiting multiactions, only the maximal multisets of them executable from a state
occur in the next moment. Therefore, the steps of waiting multiactions produce
maximal overall weights, which are used to calculate probabilities of alternative
maximal steps rather than the cumulative bonuses. Note that this reasoning is
the same as that used to de�ne the weight of synchronized immediate (waiting,
respectively) multiactions in the rules Sy2i and Sy2w.

Note that the de�nition of PF (Υ, s) (and those of other probability functions we
shall present) is based on the enumeration of activities which is considered implicit.

Let Υ ∈ Exec(s). Besides Υ, some other multisets of activities may be ready for
execution in s, hence, a conditioning or normalization is needed to calculate the
execution probability. The probability to execute the multiset of activities Υ in s is

PT (Υ, s) =
PF (Υ, s)∑

Ξ∈Exec(s) PF (Ξ, s)
.

If s ∈ DRST (G) then PT (Υ, s) can be interpreted as the conditional probability
to execute Υ in s calculated using the conditional probability formula in the form

of P(Z|W ) = P(Z∩W )
P(W ) . The event Z consists in the exclusive execution of Υ in

s, hence, P(Z) = PF (Υ, s). The event W consists in the exclusive execution of
any set (including the empty one) Ξ ∈ Exec(s) in s. Thus, W = ∪jZj , where
∀j, Zj are mutually exclusive events (in a probability sense, i.e. intersection of
these events is the empty event) and ∃i, Z = Zi. We have P(W ) =

∑
j P(Zj) =∑

Ξ∈Exec(s) PF (Ξ, s), because summation re�ects the probability of the mutually

exclusive event union. Since Z ∩W = Zi ∩ (∪jZj) = Zi = Z, we have P(Z|W ) =
P(Z)
P(W ) = PF (Υ,s)∑

Ξ∈Exec(s) PF (Ξ,s) . Note that PF (Υ, s) can also be seen as the potential

probability to execute Υ in s, since we have PF (Υ, s) = PT (Υ, s) only when all
sets (including the empty one) consisting of the executable stochastic multiactions
can be executed in s. In this case, all the mentioned stochastic multiactions can
be executed in parallel in s and we have

∑
Ξ∈Exec(s) PF (Ξ, s) = 1, since this sum

collects the products of all combinations of the probability parts of the stochastic
multiactions and the negations of these parts. But in general, for example, for two
stochastic multiactions (α, ρ) and (β, χ) executable in s, it may happen that they
cannot be executed in s together, i.e. ∅, {(α, ρ)}, {(β, χ)} ∈ Exec(s), but {(α, ρ),
(β, χ)} 6∈ Exec(s). For s ∈ DRST (G) we have PT (∅, s) ∈ (0; 1], i.e. there is a non-
zero probability to execute the empty multiset of activities in s at the next moment.

If s ∈ DRWT (G)∪DRV (G) then PT (Υ, s) can be interpreted as the weight of the
set of deterministic multiactions Υ which is ready for execution in s normalized by
the weights of all the sets executable in s. This approach is analogous to that used
in the EMPA de�nition of the probabilities of immediate actions executable from
the same process state [14] (inspired by way in which the probabilities of con�icting
immediate transitions in GSPNs are calculated [4]). The only di�erence is that we
have a step semantics and, for every set of deterministic multiactions executed in
parallel, we should use its cumulative weight. For the analogy with the interleaving
semantics of EMPA, we should interpret the weights of immediate actions of EMPA
as the cumulative weights of the sets of deterministic multiactions of dtsdPBC.

The advantage of our two-stage approach to de�nition of the probability to exe-
cute a set of activities is that the resulting probability formula PT (Υ, s) is valid



1626 I.V. TARASYUK

both for (sets of) stochastic and deterministic multiactions. It allows one to unify
the notation used later while constructing the operational semantics.

Note that the sum of outgoing probabilities for the expressions belonging to the
derivations of G is equal to 1. More formally, ∀s ∈ DR(G)

∑
Υ∈Exec(s) PT (Υ, s) =

1. This, obviously, follows from the de�nition of PT (Υ, s), and guarantees that it
de�nes a probability distribution.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Υ|∃H∈s ∃H̃∈s̃ H Υ→H̃}

PT (Υ, s).

The summation in the de�nition above re�ects the probability of the mutually
exclusive event union, since

∑
{Υ|∃H∈s, ∃H̃∈s̃, H Υ→H̃} PT (Υ, s) = 1∑

Ξ∈Exec(s) PF (Ξ,s) ·∑
{Υ|∃H∈s, ∃H̃∈s̃, H Υ→H̃} PF (Υ, s), where for each Υ, PF (Υ, s) is the probability of

the exclusive execution of Υ in s. Note that ∀s ∈ DR(G)∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H

Υ→H̃} PM(s, s̃) =
∑
{s̃|∃H∈s ∃H̃∈s̃ ∃Υ H

Υ→H̃}∑
{Υ|∃H∈s ∃H̃∈s̃ H Υ→H̃} PT (Υ, s) =

∑
Υ∈Exec(s) PT (Υ, s) = 1.

Example 9. Let E = ({a}, ρ)[]({a}, χ), where ρ, χ ∈ (0; 1). DR(E) consists of the
equivalence classes s1 = [E]≈ and s2 = [E]≈. We have DRT (E) = {s1, s2}. The
execution probabilities are calculated as follows. Since Exec(s1) = {∅, {({a}, ρ)},
{({a}, χ)}}, we get PF ({({a}, ρ)}, s1) = ρ(1 − χ), PF ({({a}, χ)}, s1) = χ(1 − ρ)
and PF (∅, s1) = (1−ρ)(1−χ). Then

∑
Ξ∈Exec(s1) PF (Ξ, s1) = ρ(1−χ)+χ(1−ρ)+

(1− ρ)(1− χ) = 1− ρχ. Thus, PT ({({a}, ρ)}, s1) = ρ(1−χ)
1−ρχ , PT ({({a}, χ)}, s1) =

χ(1−ρ)
1−ρχ and PT (∅, s1) = PM(s1, s1) = (1−ρ)(1−χ)

1−ρχ . Further, Exec(s2) = {∅}, hence,∑
Ξ∈Exec(s2) PF (Ξ, s2) = PF (∅, s2) = 1 and PT (∅, s2) = PM(s2, s2) = 1

1 = 1.

Finally, PM(s1, s2) = PT ({({a}, ρ)}, s1) +PT ({({a}, χ)}, s1) = ρ(1−χ)
1−ρχ + χ(1−ρ)

1−ρχ =
ρ+χ−2ρχ

1−ρχ . In Table 5, the calculation of the probability functions PF (Υ, s1),

PT (Υ, s1), PM(s1, s) is explained, where Υ ∈ Exec(s1), s ∈ {s1, s2} (the value of
s is depicted in the parentheses near the value of PM(s1, s)) and
Σ =

∑
Ξ∈Exec(s1) PX(Ξ, s1), PX ∈ {PF, PT, PM}.

Let E′ = ({a}, \0l )[]({a}, \0m), where l,m ∈ R>0. DR(E′) consists of the equiva-

lence classes s′1 = [E′]≈ and s′2 = [E′]≈. We have DRT (E′) = {s′2} and DRV (E′) =
{s′1}. The execution probabilities are calculated as follows. Since Exec(s′1) =
{{({a}, \0l )}, {({a}, \0m)}}, we get PF ({({a}, \0l )}, s′1) = l and PF ({({a}, \0m)}, s′1) =

m. Then
∑

Ξ∈Exec(s′1) PF (Ξ, s′1) = l + m. Thus, PT ({({a}, \0l )}, s′1) = l
l+m and

PT ({({a}, \0m)}, s′1) = m
l+m . Next, Exec(s′2) = {∅}, hence,∑Ξ∈Exec(s′2) PF (Ξ, s′2)=

PF (∅, s′2) = 1 and PT (∅, s′2) = PM(s′2, s
′
2) = 1

1 = 1. Finally, PM(s′1, s
′
2) =

PT ({({a}, \0l )}, s′1) + PT ({({a}, \0m)}, s′1) = l
l+m + m

l+m = 1. In Table 6, the calcu-

lation of the probability functions PF (Υ, s′1), PT (Υ, s′1), PM(s′1, s
′) is explained,

where Υ ∈ Exec(s′1), s′ ∈ {s′2} (the value of s′ is depicted in the parentheses near
the value of PM(s′1, s

′)) and Σ =
∑

Ξ∈Exec(s′1) PX(Ξ, s′1), PX ∈ {PF, PT, PM}.

De�nition 13. Let G be a dynamic expression. The (labeled probabilistic) transi-
tion system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1627

Table 5. Calculation of the probability functions PF, PT, PM
for s1 ∈ DR(E) and E = ({a}, ρ)[]({a}, χ)

s1\Υ ∅ {({a}, ρ)} {({a}, χ)} Σ

PF (1− ρ)(1− χ) ρ(1− χ) χ(1− ρ) 1− ρχ
PT (1−ρ)(1−χ)

1−ρχ
ρ(1−χ)
1−ρχ

χ(1−ρ)
1−ρχ 1

PM (1−ρ)(1−χ)
1−ρχ (s1) ρ+χ−2ρχ

1−ρχ (s2) 1

Table 6. Calculation of the probability functions PF, PT, PM

for s′1 ∈ DR(E
′
) and E′ = ({a}, \0l )[]({a}, \0m)

s′1\Υ {({a}, \0l )} {({a}, \0m)} Σ

PF l m l +m

PT l
l+m

m
l+m 1

PM 1 (s′2) 1

• the set of labels is LG = NSDLfin × (0; 1];

• the set of transitions is TG = {(s, (Υ, PT (Υ, s)), s̃) | s, s̃ ∈ DR(G), ∃H∈s
∃H̃ ∈ s̃ H Υ→ H̃};
• the initial state is sG = [G]≈.

Example 10. Let E be from Example 1. The next inferences by rule E are possible
from the elements of [E]≈:

({a}, \31)[]({b}, 1
3 ) ≈ ({a}, \31)3[]({b}, 1

3 )
∅→ ({a}, \31)2[]({b}, 1

3 ),

({a}, \31)[]({b}, 1
3 ) ≈ ({a}, \31)3[]({b}, 1

3 )
∅→ ({a}, \31)2[]({b}, 1

3 ).

The �rst and second inferences suggest the empty move transition [E]≈
∅→

[({a}, \31)2[]({b}, 1
3 )]≈ 6= [E]≈. The intuition is that the timer of the enabled waiting

multiaction ({a}, \31) is decremented by one time unit in the both cases, whenever it
is overlined or not. Later we shall see that in the both cases, the respective waiting
transition of the LDTSDPN corresponding to E will be enabled at a �common�
marking (that also enables a stochastic transition, matched up to ({b}, 1

3 )), so its
timer should be decreased by one with a time tick while staying at the same marking,
and such a time move will lead to a di�erent state of the LDTSDPN.

The de�nition of TS(G) is correct, i.e. for every state, the sum of the probabilities
of all the transitions starting from it is 1. This is guaranteed by the note after the
de�nition of PT (Υ, s). Thus, we have a generative model of probabilistic processes,
according to the classi�cation from [32]. The reason is that the sum of the probabili-
ties of the transitions with all possible labels should be equal to 1, not only of those
with the same labels (up to enumeration of activities they include) as in the reactive
models, and we do not have a nested probabilistic choice as in the strati�ed models.

The transition system TS(G) associated with a dynamic expression G describes
all the steps (parallel executions) that occur at discrete time moments with some
(one-step) probability and consist of multisets of activities. Every step consisting of
stochastic (waiting, respectively) multiactions or the empty step (i.e. that consisting
of the empty multiset of activities) occurs instantly after one discrete time unit
delay. Each step consisting of immediate multiactions occurs instantly without any



1628 I.V. TARASYUK

delay. The step can change the current state to a di�erent one. The states are the
structural equivalence classes of dynamic expressions obtained by application of
action rules starting from the expressions belonging to [G]≈. A transition

(s, (Υ,P), s̃) ∈ TG will be written as s
Υ→P s̃. It is interpreted as follows: the

probability to change the state s to s̃ as a result of executing Υ is P.
Note that from every s-tangible state the empty multiset of activities can always

be executed by rule E. Hence, for s-tangible states, Υ may be the empty multiset,
and its execution only decrements by one the timer values (if any) of the current

state (i.e. the equivalence class). Then we may have a transition s
∅→P	s from an s-

tangible state s to the tangible (i.e. s-tangible or w-tangible) state 	s =
⋃{[	H]≈ |

H ∈ s∩ SatOpRegDynExpr}. Thus, 	s is the union of the structural equivalence
classes of all saturated operative dynamic expressions from s, whose timer values
have been decremented by one, prior to combining them into the equivalence
classes. This corresponds to applying the empty move rule to all saturated operative
dynamic expressions from s, followed by unifying the structural equivalence classes
of all the resulting expressions. We have to keep track of such executions, called the
empty moves, because they a�ect the timers and have non-zero probabilities. The
latter follows from the de�nition of PF (∅, s) and the fact that the probabilities of
stochastic multiactions cannot be equal to 1 as they belong to the interval (0; 1).
When it holds ∀H ∈ s ∩ SatOpRegDynExpr 	H = H, we obtain 	 s = s by

de�nition of 	s. Then the empty move from s is in the form of s
∅→P s, called the

empty loop. For w-tangible and vanishing states Υ cannot be the empty multiset,
since we must execute some immediate (waiting, respectively) multiactions from
them at the current (next, respectively) time moment.

The step probabilities belong to the interval (0; 1], being 1 in the case when we
cannot leave an s-tangible state s and the only transition leaving it is the empty

move one s
∅→1	 s, or if there is just a single transition from a w-tangible or a

vanishing state to any other one.

We write s
Υ→ s̃ if ∃P s

Υ→P s̃ and s→ s̃ if ∃Υ s
Υ→ s̃.

The �rst equivalence we are going to introduce is isomorphism which is a coinci-
dence of systems up to renaming of their components or states.

De�nition 14. Let G,G′ be dynamic expressions and TS(G)=(SG, LG, TG, sG),
TS(G′)=(SG′ , LG′ , TG′ , sG′) be their transition systems. A mapping β : SG → SG′

is an isomorphism between TS(G) and TS(G′), denoted by β : TS(G) ' TS(G′), if

(1) β is a bijection such that β(sG) = sG′ ;

(2) ∀s, s̃ ∈ SG ∀Υ s
Υ→P s̃ ⇔ β(s)

Υ→P β(s̃).

Two transition systems TS(G) and TS(G′) are isomorphic, denoted by TS(G)'
TS(G′), if ∃β :TS(G)'TS(G′).

Transition systems of static expressions can also be de�ned. For E ∈ RegStatExpr,
let TS(E) = TS(E).

De�nition 15. Two dynamic expressions G and G′ are equivalent with respect to
transition systems, denoted by G =ts G

′, if TS(G) ' TS(G′).

3.4. Examples of transition systems. We now present a series of examples that
demonstrate how to construct the transition systems of the dynamic expressions
that include various compositions of stochastic, waiting and immediate multiactions.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1629

TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲
({a},♮21),1

∅,1

❄∅,1

☛✡ ✟✠s1

Fig. 2. The transition system of E for E = ({a}, \21)[]({b}, \32)

Example 11. Let E=({a}, \21)[]({b}, \32). DR(E) consists of the equivalence classes

s1 = [({a}, \21)2[]({b}, \32)3]≈ = [({a}, \21)2[]({b}, \32)3]≈,

s2 = [({a}, \21)1[]({b}, \32)2]≈ = [({a}, \21)1[]({b}, \32)2]≈,

s3 = [({a}, \21)[]({b}, \32)]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 2, the transition system TS(E) is shown. The s-tangible and w-tangible

states are placed in ordinary and double ovals, respectively. To simplify the graphical
representation, the singleton multisets of activities are written without outer braces.

This example demonstrates a choice between two waiting multiactions with di�e-
rent delays. It shows that the waiting multiaction ({a}, \21) with a less delay 2 is
always executed �rst, hence, the choice is resolved in favour of it in any case and
an absorbing state is then reached, so that the waiting multiaction ({b}, \32) with a
greater delay 3 is never executed.

Example 12. Let E = ({a}, \31)[]({b}, 1
3 ). DR(E) consists of the equivalence classes

s1 = [({a}, \31)3[]({b}, 1
3 )]≈ = [({a}, \31)3[]({b}, 1

3 )]≈,

s2 = [({a}, \31)2[]({b}, 1
3 )]≈ = [({a}, \31)2[]({b}, 1

3 )]≈,

s3 = [({a}, \31)1[]({b}, 1
3 )]≈ = [({a}, \31)1[]({b}, 1

3 )]≈,

s4 = [({a}, \31)[]({b}, 1
3 )]≈.

We have DRST (E) = {s1, s2, s4}, DRWT (E) = {s3} and DRV (E) = ∅.
In Figure 3, the transition system TS(E) is shown. The s-tangible and w-tangible

states are depicted in ordinary and double ovals, respectively.
This example demonstrates a choice between waiting and stochastic multiactions.

It shows that the stochastic multiaction ({b}, 1
3 ) can be executed until the timer

value of the waiting multiaction ({a}, \31) becomes 1, after which only the waiting
multiaction can be executed in the next moment, leading to an absorbing state.
Thus, in our setting, a waiting multiaction that cannot be executed in the next
time moment and whose timer is still running may be interrupted (preempted) by
executing a stochastic multiaction.

Example 13. Let E = (({a}, \31)[]({b}, 1
3 )) rs a. DR(E) consists of the equivalence

classes



1630 I.V. TARASYUK

TS(E)

☛✡ ✟✠
✚

✚❂
s2

☛✡ ✟✠s1

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠
s3

s4

❄

✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

❩
❩⑦

❈
❈
❈
❈❈❲ ❄({a},♮31),1

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Fig. 3. The transition system of E for E = ({a}, \31)[]({b}, 1
3 )

s1 = [(({a}, \31)3[]({b}, 1
3 )) rs a]≈ = [(({a}, \31)3[]({b}, 1

3 )) rs a]≈,

s2 = [(({a}, \31)2[]({b}, 1
3 )) rs a]≈ = [(({a}, \31)2[]({b}, 1

3 )) rs a]≈,

s3 = [(({a}, \31)1[]({b}, 1
3 )) rs a]≈ = [(({a}, \31)1[]({b}, 1

3 )) rs a]≈,

s4 = [(({a}, \31)[]({b}, 1
3 )) rs a]≈.

We have DRST (E) = {s1, s2, s3, s4} and DRWT (E) = ∅ = DRV (E).
In Figure 4, the transition system TS(E) is shown. The s-tangible states are

depicted in ordinary ovals.
This example is a modi�cation of the previous Example 12 by applying a restricti-

on operation by action a to the whole expression. The present example shows that
the stochastic multiaction ({b}, 1

3 ) can be executed until the timer value of the

�restricted� waiting multiaction ({a}, \31) becomes 1, after which the waiting multi-
action also cannot be executed in the next moment, since it is a�ected by the
restriction. Instead, the stochastic multiaction ({b}, 1

3 ) can be executed again, leading
to an absorbing state, or we return to the current state after one time tick (the empty
loop in that state). Thus, a waiting multiaction that cannot be executed because of
the restriction and whose timer runs until reaching its �nal value 1 may always be
preempted by executing a stochastic multiaction. To verify that the timer value 1
remains unchanged with the time progress, recall the empty move rule E from Table
3 and the de�nition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Note that the timer decrement of the �restricted� waiting multiaction ({a}, \31)
induces a partial (for the �rst 2 time ticks) unfolding of the behaviour consisting
in a choice between executing and non-executing the stochastic multiaction ({b}, 1

3 ).
In our setting, the timer values are kept even for the waiting multiactions that
cannot be executed because of the restriction, since they can potentially participate
in a synchronization, but the activities resulted from synchronization do not appear
explicitly in the syntax of the process expressions, and their timer values can be
detected only by observing those of the both synchronized waiting multiactions. We
shall see an importance of such a construction, particularly, in Examples 17 and 21.

Example 14. Let E = [({a}, 1
2 ) ∗ ({b}, \31) ∗ ({c}, 1

3 )]. DR(E) consists of the
equivalence classes



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1631

TS(E)

☛✡ ✟✠
✚

✚❂
s2

☛✡ ✟✠s1

☛✡ ✟✠☛✡ ✟✠
s3

s4

❄

✞✝ ✲

✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

∅, 2
3 ❩

❩⑦

❈
❈
❈
❈❈❲ ❄({b}, 1

3
), 1

3

({b}, 1
3
), 1

3

({b}, 1
3
),

1
3

Fig. 4. The transition system of E for E = (({a}, \31)[]({b}, 1
3 )) rs a

s1 = [[({a}, 1
2 ) ∗ ({b}, \31) ∗ ({c}, 1

3 )]]≈,

s2 = [[({a}, 1
2 ) ∗ ({b}, \31)3 ∗ ({c}, 1

3 )]]≈ = [[({a}, 1
2 ) ∗ ({b}, \31)3 ∗ ({c}, 1

3 )]]≈,

s3 = [[({a}, 1
2 ) ∗ ({b}, \31)2 ∗ ({c}, 1

3 )]]≈ = [[({a}, 1
2 ) ∗ ({b}, \31)2 ∗ ({c}, 1

3 )]]≈,

s4 = [[({a}, 1
2 ) ∗ ({b}, \31)1 ∗ ({c}, 1

3 )]]≈ = [[({a}, 1
2 ) ∗ ({b}, \31)1 ∗ ({c}, 1

3 )]]≈,

s5 = [[({a}, 1
2 ) ∗ ({b}, \31) ∗ ({c}, 1

3 )]]≈.

We have DRST (E) = {s1, s2, s3, s5}, DRWT (E) = {s4} and DRV (E) = ∅.
In Figure 5, the transition system TS(E) is shown. The s-tangible and w-tangible

states are depicted in ordinary and double ovals, respectively.
This example demonstrates an iteration loop with a waiting multiaction. The

iteration initiation is modeled by a (initiating) stochastic multiaction ({a}, 1
2 ). The

iteration body that corresponds to the loop consists of a (looping) waiting multiaction
({b}, \31). The iteration termination is represented by a (terminating) stochastic
multiaction ({c}, 1

3 ). The terminating stochastic multiaction can be executed until
the timer value of the waiting multiaction becomes 1, after which only the waiting
multiaction can be executed in the next moment. Thus, the iteration termination
can either complete the repeated execution of the iteration body or break its execution
when the waiting multiaction timer shows some intermediate value (that is less than
the initial value, being the multiaction delay, but greater than 1). The execution of
the waiting multiaction ({b}, \31) leads to the repeated start of the iteration body.
The execution of the terminating stochastic multiaction ({c}, 1

3 ) brings to the �nal
absorbing state of the iteration construction.

Example 15. Let E = ({a}, \01)‖({b}, \22)‖({c}, \33). DR(E) consists of the equiva-
lence classes

s1 = [({a}, \01)‖({b}, \22)2‖({c}, \33)3]≈, s2 = [({a}, \01)‖({b}, \22)2‖({c}, \33)3]≈,

s3 = [({a}, \01)‖({b}, \22)1‖({c}, \33)2]≈, s4 = [({a}, \01)‖({b}, \22)‖({c}, \33)1]≈,

s5 = [({a}, \01)‖({b}, \22)‖({c}, \33)]≈.

We have DRST (E) = {s2, s5}, DRWT (E) = {s3, s4} and DRV (E) = {s1}.



1632 I.V. TARASYUK

TS(E)

☛✡ ✟✠
✚

✚❂
s3

☛✡ ✟✠s2

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠s4 s5
❄ ❅

❅❘

∅, 2
3

∅, 2
3

({c}, 1
3
),

1
3

({b},♮31),1 ∅,1

✓

✒

✲

✑

☛✡ ✟✠s1
❄
({a}, 1

2
), 1

2

✂ ✁✻

❇
❇
❇
❇❇◆

✞✝ ✲

∅, 1
2

({c}, 1
3
), 1

3

Fig. 5. The transition system of E for E = [({a}, 1
2 ) ∗ ({b}, \31) ∗ ({c}, 1

3 )]

TS(E)

☛✡ ✟✠s2

☛✡ ✟✠s5

☛✡ ✟✠✞✝ ☎✆s4

❄

❄✞✝ ✲
({c},♮33),1

∅,1

s3
❄({b},♮

2
2),1

☛✡ ✟✠✞✝ ☎✆∅,1

({a},♮01),1

s1
❄

Fig. 6. The transition system of E for E = ({a}, \01)‖({b}, \22)‖({c}, \33)

In Figure 6, the transition system TS(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively, and the vanishing ones
are depicted in boxes.

This example demonstrates a parallel composition of an immediate and two
waiting multiactions with di�erent delays. It shows that the immediate multiaction
({a}, \01) is always executed before any parallel with it waiting multiaction. Further,
from the two parallel waiting multiactions, that ({b}, \22) with a less delay 2 executed
�rst in any case. Finally, the execution of the waiting multiaction ({c}, \33) with a
greater delay 3 leads to an absorbing state. Thus, in spite of parallelism of those three
deterministic multiactions, they are executed sequentially in fact, in the increasing
order of their (di�erent) delays. That sequence also includes the empty set, executed
after the immediate multiaction ({a}, \01), since the waiting multiaction ({b}, \22)
with a less delay will then need a passage of one time unit (one time tick) for its
timer value (RTE) become 1 and it can be executed itself. Though the example is
not complex, it shows a transition system with all three types of states: s-tangible,
w-tangible and vanishing.

Example 16. Let E = ({a}, \31)‖({b}, 1
3 ). DR(E) consists of the equivalence classes



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1633

TS(E)

☛✡ ✟✠☛✡ ✟✠
✚

✚❂ ❅❅❘
s2 s3

☛✡ ✟✠s1

☛✡ ✟✠☛✡ ✟✠s6 s7

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠✞✝ ☎✆s4 s5
❄

❄

❄

❄
✲

❅
❅❘

✞✝ ✲ ☎✆✛

∅, 2
3

({b}, 1
3
), 1

3

∅, 2
3

({b}, 1
3
), 1

3 ∅,1

({a},♮31),1 ({a},♮31),1({b}, 1
3
), 1

3

∅, 2
3

∅,1

Fig. 7. The transition system of E for E = ({a}, \31)‖({b}, 1
3 )

s1 = [({a}, \31)3‖({b}, 1
3 )]≈, s2 = [({a}, \31)2‖({b}, 1

3 )]≈,

s3 = [({a}, \31)2‖({b}, 1
3 )]≈, s4 = [({a}, \31)1‖({b}, 1

3 )]≈,

s5 = [({a}, \31)1‖({b}, 1
3 )]≈, s6 = [({a}, \31)‖({b}, 1

3 )]≈,

s7 = [({a}, \31)‖({b}, 1
3 )]≈.

We have DRST (E)={s1, s2, s3, s6, s7}, DRWT (E)={s4, s5} and DRV (E)=∅.
In Figure 7, the transition system TS(E) is shown. The s-tangible and w-tangible

states are depicted in ordinary and double ovals, respectively.
This example demonstrates a parallel composition of waiting and stochastic multi-

actions. It shows that the stochastic multiaction ({b}, 1
3 ) can be executed until the

timer value of the waiting multiaction ({a}, \31) becomes 1, after which only the
waiting multiaction can be executed in the next moment. The execution of the latter
leads to an absorbing state either directly or indirectly, via executing a possible empty
loop, followed (via sequential composition) by the stochastic multiaction ({b}, 1

3 ) that
has not been executed in the preceding states.

Example 17. Let E = (({a}, \21)‖({â}, \22)) sy a rs a. DR(E) consists of the
equivalence classes

s1 =[(({a}, \21)2‖({â}, \22)2) sy a rs a]≈, s2 =[(({a}, \21)1‖({â}, \22)1) sy a rs a]≈,

s3 =[(({a}, \21)‖({â}, \22)) sy a rs a]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.
In Figure 8, the transition system TS(E) is shown. The s-tangible and w-tangible

states are depicted in ordinary and double ovals, respectively.
This example demonstrates a parallel composition of two waiting multiactions

({a}, \21) and ({â}, \22), whose multiaction parts are singleton multisets with an
action a and its conjugate â, respectively. The resulting composition is synchronized
and then restricted by that action, which (and its conjugate) therefore �disappears�
from the composite process behaviour. From the initial state, only the empty multiset
of activities is executed that decrements by one the values of the timers. That
evolution follows by the execution of a new waiting multiaction (∅, \23) with the empty



1634 I.V. TARASYUK

TS(E)

☛✡ ✟✠✞✝ ☎✆s2☛✡ ✟✠s3
❄✞✝ ✲
(∅,♮23),1

∅,1

❄∅,1

☛✡ ✟✠s1

Fig. 8. The transition system of E for E = (({a}, \21)‖({â}, \22)) sy a rs a

multiaction part, resulted from synchronization of the two waiting multiactions,
which leads to an absorbing state.

Note that the timer values of the two waiting multiactions and that of the new
waiting multiaction (∅, \23) (being their synchronous product) coincide until all of
them remain enabled with the time progress. Thus, it is very useful that the expres-
sion syntax preserves such two enabled synchronized waiting multiactions, removed
by restriction from the behaviour, since their timer values suggest that of their
synchronous product, which is not explicit in the syntax. Thus, the timer values of
those two �virtual� enabled waiting multiactions cannot just be marked as unde�ned
in the syntax, provided that one keeps track of the timer value of their synchronous
product being only implicit in the syntax.

If both synchronized waiting multiactions lose their enabledness with the time
progress then their synchronous product (∅, \23) also loses its enabledness and all
of them obviously loose their timer value annotations. It may happen that one of
the synchronized waiting multiactions loses its enabledness (for example, when a
con�icting waiting multiaction is executed) while the other one keeps its enabledness.
Then their synchronous product also loses its enabledness, together with its timer
value annotation. In such a case, the timer value of the enabled synchronized waiting
multiaction does not suggest anymore that of the synchronous product. That �saved�
timer value merely decrements with every time tick unless it becomes equal to 1, after
which either the enabled synchronized waiting multiaction is executed or it cannot
be executed by some reason (for example, when a�ected by restriction) and then the
timer value 1 remains unchanged with the time progress. To verify this, recall the
empty move rule E from Table 3 and the de�nition of 	G with max{1, δ − 1} =
max{1, 0} = 1 when δ = 1.

Example 18. Let E = ((({a}, \11); ({b}, \32))‖({b̂}, \33)) sy b. DR(E) consists of the
equivalence classes

s1 = [((({a}, \11)1; ({b}, \32))‖({b̂}, \33)3) sy b]≈,

s2 = [((({a}, \11); ({b}, \32)3)‖({b̂}, \33)2) sy b]≈,

s3 = [((({a}, \11); ({b}, \32)2)‖({b̂}, \33)1) sy b]≈,

s4 = [((({a}, \11); ({b}, \32)1)‖({b̂}, \33)) sy b]≈,

s5 = [((({a}, \11); ({b}, \32))‖({b̂}, \33)) sy b]≈.

We have DRST (E) = {s2, s5}, DRWT (E) = {s1, s3, s4} and DRV (E) = ∅.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1635

TS(E)

☛✡ ✟✠s2

☛✡ ✟✠s5

☛✡ ✟✠✞✝ ☎✆s4

❄

❄✞✝ ✲
({b},♮32),1

∅,1

s3
❄({b̂},♮

3
3),1

☛✡ ✟✠✞✝ ☎✆∅,1

({a},♮11),1

☛✡ ✟✠✞✝ ☎✆s1
❄

Fig. 9. The transition system of E for E = ((({a}, \11); ({b}, \32))‖({b̂}, \33)) sy b

In Figure 9, the transition system TS(E) is shown. The s-tangible and w-tangible
states are depicted in ordinary and double ovals, respectively.

This example demonstrates a parallel composition of two subprocesses. The �rst
subprocess is a sequential composition of two waiting multiactions ({a}, \11) and

({b}, \32). The second subprocess consists of a single waiting multiaction ({b̂}, \33).
The resulting composition is synchronized by the action b, which (and its conjugate)
therefore �disappears� from the behaviour of their synchronous product. From the
initial state, only the waiting multiaction ({a}, \11) is executed and the timer of the
newly enabled waiting multiaction ({b}, \32) starts with the value 3 while the timer

value 3 of ({b̂}, \33) is decreased by one and becomes 2. That evolution follows by
the execution of the empty multiset of activities that further decrements the values
of those timers that become 2 and 1, respectively. Then the waiting multiaction

({b̂}, \33) is executed and its timer value annotation disappears while the timer value
of ({b}, \32) becomes 1. Then the execution of waiting multiaction ({b}, \32) �nally
leads to an absorbing state.

Thus, the new waiting multiaction (∅, \35), resulted from synchronization of

({b}, \32) and ({b̂}, \33), cannot be executed, since those synchronized waiting multiac-
tions cannot be executed together (in parallel) in any reachable state. Note that a
synchronous product cannot be executed even if one (the latest, in case the timers
are disbalanced) of the synchronized activities cannot be executed. Then only the ma-
ximum timer value of the two synchronized waiting multiactions suggests the timer
value of their synchronous product (∅, \35), until all of them remain enabled with
the time progress. The enabledness keeps the corresponding timer value annotations
present in the syntax and those values de�ned. Each de�ned timer value of ({b}, \32)

is always less by one than that of ({b̂}, \33), since the execution of the former waiting
multiaction is delayed for one time unit due to the execution of the preceding
({a}, \11). Then simultaneous starting the timers of the two synchronized waiting
multiactions is prevented, resulting in the disbalanced timers. If just one timer
value of the two synchronized waiting multiactions is unde�ned then that of their
synchronous product is unde�ned too, since it is not enabled in that case.

Example 19. Let E = ((({a}, \11); ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14))) sy x rs x.
DR(E) consists of the equivalence classes



1636 I.V. TARASYUK

TS(E)☛✡ ✟✠✞✝ ☎✆s1☛✡ ✟✠s2
❄✞✝ ✲

{({a},♮11),({c},♮
1
4)},1

∅,1

Fig. 10. The transition system of E for
E = ((({a}, \11); ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14))) sy x rs x

s1 = [((({a}, \11)1; ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14)1)) sy x rs x]≈ =

[((({a}, \11)1; ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14)1)) sy x rs x]≈,

s2 = [((({a}, \11); ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14))) sy x rs x]≈.

We have DRST (E) = {s2}, DRWT (E) = {s1} and DRV (E) = ∅.
In Figure 10, the transition system TS(E) is shown. The s-tangible and w-

tangible states are depicted in ordinary and double ovals, respectively.
This example demonstrates a parallel composition of two subprocesses, synchro-

nized and then restricted by an auxiliary action that (and its conjugate) hereupon
�disappears� from the composite process behaviour. The �rst subprocess is a sequen-
tial composition of the waiting ({a}, \11) and immediate ({b, x̂}, \02) multiactions.
The second subprocess is a choice between the immediate ({x}, \03) and waiting
({c}, \14) multiactions. The immediate multiactions ({b, x̂}, \02) and ({x}, \03) in the
�rst and second subprocesses are synchronized via an auxiliary action x that (and its
conjugate) is then removed from the behaviour by the restriction operation. Since
those immediate multiactions are within coverage of restriction by the auxiliary
action, they cannot be executed. The new immediate multiaction ({b}, \05), resulted
from that synchronization can only be executed if the waiting multiaction ({a}, \11)
(preceding it via sequential composition) in the �rst subprocess has occurred and the
waiting multiaction ({c}, \14) (con�icting with it via the choice composition) in the
second subprocess has not occurred. Since only maximal multisets of parallel waiting
multiactions may be executed, the waiting multiactions in both the subprocesses
must occur, thus preventing execution of the new immediate multiaction ({b}, \05),
generated by synchronization.

Example 20. Let E = ((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x rs x.
DR(E) consists of the equivalence classes

s1 = [((({a}, \21)2; ({b, x̂}, \22))‖(({x}, \23)2[]({c}, \24)2)) sy x rs x]≈ =

[((({a}, \21)2; ({b, x̂}, \22))‖(({x}, \23)2[]({c}, \24)2)) sy x rs x]≈,

s2 = [((({a}, \21)1; ({b, x̂}, \22))‖(({x}, \23)1[]({c}, \24)1)) sy x rs x]≈ =

[((({a}, \21)1; ({b, x̂}, \22))‖(({x}, \23)1[]({c}, \24)1)) sy x rs x]≈,

s3 = [((({a}, \21); ({b, x̂}, \22)2)‖(({x}, \23)[]({c}, \24))) sy x rs x]≈,

s4 = [((({a}, \21); ({b, x̂}, \22)1)‖(({x}, \23)[]({c}, \24))) sy x rs x]≈.

We have DRST (E) = {s1, s3, s4}, DRWT (E) = {s2} and DRV (E) = ∅.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1637

TS(E)

☛✡ ✟✠✞✝ ☎✆s2

☛✡ ✟✠s4

❄

✞✝ ✲

{({a},♮21),({c},♮
2
4)},1

∅,1

☛✡ ✟✠s1
❄∅,1

☛✡ ✟✠s3
❄∅,1

Fig. 11. The transition system of E for
E = (((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x rs x

In Figure 11, the transition system TS(E) is shown. The s-tangible and w-
tangible states are depicted in ordinary and double ovals, respectively.

This example is a modi�cation of the previous Example 19 by replacing all the
immediate multiactions with the waiting ones and by setting to 2 the delays of all the
waiting multiactions from the syntax. Thus, we examine a compound process, con-
structed with parallelism, synchronization and restriction operations from the follo-
wing two subprocesses. The �rst subprocess is a sequential composition of two wai-
ting multiactions ({a}, \21) and ({b, x̂}, \22). The second subprocess is a choice between
other two waiting multiactions ({x}, \23) and ({c}, \24). The second waiting multiacti-
on ({b, x̂}, \22) in the �rst subprocess and the �rst waiting multiaction ({x}, \23) in the
second subprocess are synchronized via an auxiliary action x that (and its conjugate)
is then removed from the behaviour by the restriction operation. The new waiting
multiaction ({b}, \25), resulted from that synchronization has the same delay 2 as the
two synchronized waiting multiactions. It can only be executed if the �rst waiting
multiaction ({a}, \21) (preceding it via sequential composition) in the �rst subprocess
has occurred and the second waiting multiaction ({c}, \24) (con�icting with it via the
choice composition) in the second subprocess has not occurred. Since only maximal
multisets of parallel waiting multiactions may be executed, the mentioned (��rst in
�rst� and �second in second�) waiting multiactions in both the subprocesses must
occur, thus preventing execution of the new waiting multiaction ({b}, \25), generated
by synchronization.

The overlined second waiting multiaction in the �rst subprocess is within coverage
of restriction by the auxiliary action. Consider the state, reached from the initial
state by execution of the empty multiset of activities, followed by the parallel execu-
tion of the mentioned (`�rst in �rst� and �second in second�) waiting multiactions.
After the empty multiset execution from the considered state, the associated timer
value of that overlined waiting multiaction is decremented to 1. Then an absorbing
state is reached, from which only the empty loop is possible, which leaves that timer
value 1 unchanged though. To verify this, recall the empty move rule E from Table
3 and the de�nition of 	G with max{1, δ − 1} = max{1, 0} = 1 when δ = 1.

Example 21. Let E = ((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x. DR(E)
consists of the equivalence classes



1638 I.V. TARASYUK

s1 = [((({a}, \21)2; ({b, x̂}, \22))‖(({x}, \23)2[]({c}, \24)2)) sy x]≈ =

[((({a}, \21)2; ({b, x̂}, \22))‖(({x}, \23)2[]({c}, \24)2)) sy x]≈,

s2 = [((({a}, \21)1; ({b, x̂}, \22))‖(({x}, \23)1[]({c}, \24)1)) sy x]≈ =

[((({a}, \21)1; ({b, x̂}, \22))‖(({x}, \23)1[]({c}, \24)1)) sy x]≈,

s3 = [((({a}, \21); ({b, x̂}, \22)2)‖(({x}, \23)[]({c}, \24))) sy x]≈,

s4 = [((({a}, \21); ({b, x̂}, \22)1)‖(({x}, \23)[]({c}, \24))) sy x]≈,

s5 = [((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x]≈.

We have DRST (E) = {s1, s3, s5}, DRWT (E) = {s2, s4} and DRV (E) = ∅.
In Figure 12, the transition system TS(E) is shown. The s-tangible and w-

tangible states are depicted in ordinary and double ovals, respectively.
This example is a modi�cation of the previous Example 20 by removing restriction

from the syntax. Thus, we examine a compound process, constructed with parallelism
and synchronization operations from the two subprocesses being a sequential compo-
sition of two waiting multiactions ({a}, \21) and ({b, x̂}, \22) and a choice between
other two waiting multiactions ({x}, \23) and ({c}, \24), respectively. All the four wai-
ting multiactions have the same delay 2. The second waiting multiaction ({b, x̂}, \22)
in the �rst subprocess and the �rst waiting multiaction ({x}, \23) in the second
subprocess are synchronized via an auxiliary action x. The new waiting multiaction
({b}, \25), resulted from that synchronization has the same delay 2 as the two synchro-
nized waiting multiactions. It can only be executed if the �rst waiting multiaction
({a}, \21) (preceding it via sequential composition) in the �rst subprocess has occurred
and the second waiting multiaction ({c}, \24) (con�icting with it via the choice com-
position) in the second subprocess has not occurred. Since only maximal multisets
of parallel waiting multiactions may be executed, the mentioned (��rst in �rst�
and �second in second�) waiting multiactions in the subprocesses must occur, thus
preventing execution of the new waiting multiaction ({b}, \25), generated by synchro-
nization. The alternative maximal multiset of parallel waiting multiactions that may
be executed from the same state consists of the ��rst in �rst� ({a}, \21) and ��rst in
second� ({x}, \23) waiting multiactions in the subprocesses, but the `�rst in second�
waiting multiaction ({x}, \23) is the second of the two synchronized waiting multiac-
tions, and its occurrence prevents execution of their synchronous product ({b}, \25).

Example 22. Consider the expression Stop = ({g}, 1
2 ) rs g specifying the non-

terminating process that performs only empty loops with probability 1.
Let E = [({a}, 1

2 ) ∗ (({b}, \11)[](({c}, \12); ({d}, 1
3 ))) ∗ Stop]. DR(E) consists of the

equivalence classes

s1 = [[({a}, 1
2 ) ∗ (({b}, \11)[](({c}, \12); ({d}, 1

3 ))) ∗ Stop]]≈,

s2 = [[({a}, 1
2 ) ∗ (({b}, \11)1[](({c}, \12)1; ({d}, 1

3 ))) ∗ Stop]]≈ =

[[({a}, 1
2 ) ∗ (({b}, \11)1[](({c}, \12)1; ({d}, 1

3 ))) ∗ Stop]]≈,

s3 = [[({a}, 1
2 ) ∗ (({b}, \11)[](({c}, \12); ({d}, 1

3 ))) ∗ Stop]]≈.

We have DRST (E) = {s1, s3}, DRWT (E) = {s2} and DRV (E) = ∅.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1639

TS(E)

☛✡ ✟✠✞✝ ☎✆s2

☛✡ ✟✠s5
✞✝ ✲

{({a},♮21),
({c},♮24)},

5
9

{({a},♮21),

({x},♮23)},
4
9

∅,1

☛✡ ✟✠s1
❄∅,1

☛✡ ✟✠s3
❄∅,1☛✡ ✟✠✞✝ ☎✆s4
❄({b,x̂},♮22),1

✞
✝

☎
✆✲ ✛

Fig. 12. The transition system of E for
E = (((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x

TS(E)

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄

s2

s3

☛✡ ✟✠
❄

s1
({a}, 1

2
), 1

2

({c},♮12), 2
3

✞✝ ✲

∅, 1
2✞✝ ✲

({b},♮11), 1
3✞✝ ✲

∅, 2
3

✘

✙✚

✛

({d}, 1
3
), 1

3

Fig. 13. The transition system of E for E = [({a}, 1
2 ) ∗ (({b}, \11)[]

(({c}, \12); ({d}, 1
3 ))) ∗ Stop]

In Figure 13, the transition system TS(E) is presented. The s-tangible states are
depicted in ovals and the vanishing ones are depicted in boxes.

This example demonstrates an in�nite iteration loop. The loop is preceded with
the iteration initiation, modeled by a (�rst) stochastic multiaction ({a}, 1

2 ). The
iteration body that corresponds to the loop consists of the choice between two con�ic-
ting waiting multiactions ({b}, \11) and ({c}, \12) with the same delay 1, the second
of them followed (via sequential composition) by a (second) stochastic multiaction
({d}, 1

3 ). Hence, the iteration loop actually consists of the two alternative subloops,
such that the �rst one is a self-loop (one-state loop from a state to itself) with
the �rst waiting multiaction ({b}, \11), and the second one ({c}, \12) is a two-state
loop with an intermediate state, reached after the second waiting multiaction has
been executed, and from which the second stochastic multiaction ({d}, 1

3 ) is then
started. Thus, the iteration generates the self-loop with probability less than one
(since the two-state loop from the same state has a non-zero probability) from the
states in which only waiting multiactions are executed. The iteration termination
Stop demonstrates an empty behaviour, assuring that the iteration does not reach
its �nal state after any number of repeated executions of its body.



1640 I.V. TARASYUK

TS(E)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
({a},ρ),ρ

({b},♮1k),1

({c},♮0l ),1
l

l+m

({e},♮0m),
m

l+m

({d},θ),
θ

({f},φ),
φ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

Fig. 14. The transition system of E for E = [({a}, ρ) ∗ (({b}, \1k);
((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]

Example 23. Let E = [({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m);

({f}, φ)))) ∗ Stop], where ρ, θ, φ ∈ (0; 1) and k, l,m ∈ R>0. DR(E) consists of the
equivalence classes

s1 = [[({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈,

s2 = [[({a}, ρ) ∗ (({b}, \1k)1; ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈,

s3 = [[({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈ =

[[({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈,

s4 = [[({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈,

s5 = [[({a}, ρ) ∗ (({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ)))) ∗ Stop]]≈.

We have DRST (E) = {s1, s4, s5}, DRWT (E) = {s2} and DRV (E) = {s3}.
In Figure 14, the transition system TS(E) is presented. The s-tangible and

w-tangible states are depicted in ordinary and double ovals, respectively, and the
vanishing ones are depicted in boxes.

This example demonstrates an in�nite iteration loop. The loop is preceded with
the iteration initiation, modeled by a stochastic multiaction ({a}, ρ). The iteration
body that corresponds to the loop consists of a waiting multiaction ({b}, \1k), followed
(via sequential composition) by the probabilistic choice, modeled via two con�ic-
ting immediate multiactions ({c}, \0l ) and ({e}, \0m), followed by di�erent stochastic
multiactions ({d}, θ) and ({f}, φ). The iteration termination Stop demonstrates an
empty behaviour, assuring that the iteration does not reach its �nal state after any
number of repeated executions of its body.

Due to the time constraints and since waiting multiactions may be preempted
by stochastic ones, some simple dynamic expressions can have complex transition
systems (Examples 11�16, 18, 21), or vice versa (Examples 17, 19, 20, 22, 23).

4. Denotational semantics

In this section, we construct the denotational semantics in terms of a subclass of
labeled discrete time stochastic and deterministic PNs (LDTSDPNs), called discrete
time stochastic and immediate Petri boxes (dtsd-boxes).



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1641

4.1. Labeled DTSDPNs. Let us introduce a class of labeled discrete time sto-
chastic and deterministic PNs (LDTSDPNs), which are essentially a subclass of
DTSPNs [57, 58] (since we do not allow the stochastic transition probabilities
to be equal to 1) extended with transition labeling and deterministic transitions.
LDTSDPNs resemble in part discrete time deterministic and stochastic PNs
(DTDSPNs) [78, 74, 75, 80, 81, 79], as well as discrete deterministic and stochastic
PNs (DDSPNs) [76, 77]. DTDSPNs and DDSPNs are the extensions of DTSPNs
with deterministic transitions (having �xed delay that can be zero), inhibitor arcs,
priorities and guards. In addition, while stochastic transitions of DTDSPNs, like
those of DTSPNs, have geometrically distributed delays, stochastic transitions
of DDSPNs have discrete time phase-type distributed delays. At the same time,
LDTSDPNs are not subsumed by DTDSPNs or DDSPNs, by the following reasons.
First, in DTDSPNs from [78, 74, 75], both stochastic and deterministic (including
immediate) transitions have probabilities and weights associated, but in LDTSDPNs
only stochastic transitions have probabilities and only immediate ones have weights,
hence, the state change probabilities of the underlying Markov chains for those
PN classes are calculated in two di�erent ways. Second, LDTSDPNs have a step
semantics while DTDSPNs from [80, 81, 79] and DDSPNs have interleaving one,
since in in the �rst PN class simultaneous transition �rings are possible while
in the second and third PN classes only �rings of single transitions are allowed.
LDTSDPNs are somewhat similar to labeled weighted DTSPNs (LWDTSPNs)
from [28], but in LWDTSPNs there are no deterministic transitions, all (stochastic)
transitions have weights, the transition probabilities may be equal to 1 and only
maximal �reable subsets of the enabled transitions are �red.

Stochastic preemptive time PNs (spTPNs) [24] is a discrete time model with a
maximal step semantics, where both time ticks and instantaneous parallel �rings of
maximal transition sets are possible, but the transition steps in LDTSDPNs are not
obliged to be maximal (excepting the steps of waiting transitions). The transition
delays in spTPNs are governed by static general discrete distributions, associated
with the transitions, while the transitions of LDTSDPNs are only associated with
probabilities, used later to calculate the step probabilities after one unit (from
tangible markings) or zero (from vanishing markings) delay. Further, LDTSDPNs
have just geometrically distributed or deterministic zero delays at the markings.
Moreover, the discrete time tick and concurrent transition �ring are treated in
spTPNs as di�erent events while �ring every (possibly empty) set of stochastic
or waiting transitions in LDTSDPNs requires one unit time delay. spTPNs are
essentially a modi�cation and extension of unlabeled LWDTSPNs with additional
facilities, such as inhibitor arcs, priorities, resources, preemptions, schedulers etc.
However, the price of such an expressiveness of spTPNs is that the model is rather
intricate and di�cult to analyze.

Note also that guards in DTDSPNs and DDSPNs, inhibitor arcs and priorities
in DTDSPNs, DDSPNs and spTPNs, as well as the maximal step semantics of
LWDTSPNs and spTPNs make all these models Turing powerful, resulting in
undecidability of many important behavioural properties.

First, we present a formal de�nition of LDTSDPNs. The set of all row vectors of
n∈N≥1 elements from a set X is de�ned as Xn={(x1, . . . , xn) | xi∈X (1 ≤ i ≤ n)}.

De�nition 16. A labeled discrete time stochastic and deterministic PN
(LDTSDPN) is a tuple N = (PN , TN ,WN , DN ,ΩN ,LN , QN ), where



1642 I.V. TARASYUK

• PN and TN = TsN ]TdN are �nite sets of places and stochastic and deter-
ministic transitions, respectively, such that PN ∪TN 6= ∅ and PN ∩TN = ∅;
• WN : (PN × TN ) ∪ (TN × PN ) → N is a function providing the weights of
arcs between places and transitions;
• DN : TdN → N is the transition delay function imposing delays to deter-
ministic transitions;

An immediate transition is a deterministic transition with the delay 0
while a waiting transition is that with a positive delay. Then TdN = TiN ]
TwN consists of the sets of immediate and waiting transitions.
• ΩN is the transition probability and weight function such that

� ΩN |TsN :TsN→(0; 1) (it assigns probabilities to stochastic transitions);
� ΩN |TdN : TdN→R>0 (it assigns weights to deterministic transitions);

• LN:TN→L is the transition labeling function (assigns multiactions to them);

• QN = (MN , VN ) is the initial state, where MN ∈ NPNfin is the initial

marking (distribution of tokens in the places) and VN : TwN → N≥1 ∪
{∞} is the initial timer valuation function of the waiting transitions (in

the vector notation, VN ∈ (N≥1 ∪ {∞})|TwN |), where `∞' denotes the
unde�ned value of inactive timers (in�nite time till the transition �ring);
we de�ne ∀t ∈ TwN ∩ Ena(MN ) VN (t) = DN (t) (each enabled waiting
transition is initially valuated with its transition delay) and ∀t ∈ TwN \
Ena(MN ) VN (t) = ∞ (each non-enabled waiting transition is initially
valuated with the unde�ned value), where Ena(M) denotes the set of transi-
tions enabled at the marking M , to be de�ned later.

The graphical representation of LDTSDPNs is like that for standard labeled
PNs, but with probabilities or delays and weights written near the corresponding
transitions. Square boxes of normal thickness depict stochastic transitions, and
those with thick borders represent deterministic transitions. In the case the probabi-
lities or the delays and weights are not given in the picture, they are taken to be of
no importance in the corresponding examples. The weights of arcs are depicted with
them. The names of places and transitions are depicted near them when needed.

We now consider the semantics of LDTSDPNs. Let N be an LDTSDPN and
t ∈ TN , U ∈ NTNfin. The precondition •t and the postcondition t• of t are the multisets

of places de�ned as (•t)(p) = WN (p, t) and (t•)(p) = WN (t, p). The precondition •U
and the postcondition U• of U are the multisets of places de�ned as •U =

∑
t∈U

•t
and U• =

∑
t∈U t

•. Note that for U = ∅ we have •∅ = ∅ = ∅•.
Let Q = (M,V ), Q̃ = (M̃, Ṽ ) ∈ NPNfin × (N≥1 ∪ {∞})|TwN | be the states of N .
Deterministic transitions have a priority over stochastic ones, and there is also

di�erence in priorities between immediate and waiting transitions. One can assume
that all immediate transitions have (the highest) priority 2 and all waiting transi-
tions have (the medium) priority 1, whereas all stochastic transitions have (the
lowest) priority 0. This means that at a marking where all kinds of transitions can
occur, immediate transitions always occur before waiting ones that, in turn, are
always executed before stochastic ones.

A transition t ∈ TN is enabled at a marking M ∈ NPNfin, if •t ⊆ M , i.e. it has

enough tokens in its input places (i.e. in the places from its precondition) at the
marking. Let Ena(M) be the set of all transitions enabled at M .



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1643

Firings of transitions are atomic operations, and transitions can �re in parallel
by taking part in steps. We assume that all transitions participating in a step
should di�er, hence, only the sets (not multisets) of transitions may �re. Thus,
we do not allow self-concurrency, i.e. �ring of transitions in parallel to themselves.
This restriction is introduced to avoid some technical di�culties while calculating
probabilities for multisets of transitions as we shall see after the following formal
de�nitions. Moreover, we do not need to consider self-concurrency, since denotational
semantics of expressions will be de�ned via dtsd-boxes which are safe LDTSDPNs
(hence, no self-concurrency is possible).

The following de�nition of �reability respects the prioritization among di�erent
types of transitions. A set of transitions U ⊆ Ena(M) is �reable in a state Q =
(M,V ), if •U ⊆M and one of the following holds:

(1) ∅ 6= U ⊆ TiN ; or
(2) ∅ 6= U ⊆ TwN and

• ∀t ∈ U V (t) = 1,
• Ena(M − •U) ∩ {u ∈ TwN | V (u) = 1} = ∅,
• Ena(M) ⊆ TwN ∪ TsN ; or

(3) U ⊆ TsN and
• Ena(M) ⊆ TsN .

In other words, a set of transitions U is �reable in a state, if it has enough tokens in
its input places at the substituent markingM of the state and the following holds. If
U consists of immediate transitions then it is enabled, since no additional condition
is needed for its �reability. If U consists of waiting transitions then the countdown
timer value (called remaining time to �re or RTF) of each transition from U equals
one, U is a maximal (by the inclusion relation) set of the enabled at M waiting
transitions with the RTF equal to one and enough tokens in its input places at M ,
and there exist no immediate transitions enabled atM . If U is empty or it consists of
stochastic transitions then there exist no immediate or waiting transitions enabled
at M . Note that the second condition of item 2 of the above de�nition means that
no waiting transition (from Ena(M)) with the RTF being one can be added to U so
that the resulting transition set will still have enough tokens in its input places at
M . This condition is equivalent to the following maximality requirement (informally
mentioned above): ∀T ⊆ Ena(M), (∀u ∈ T V (u) = 1) ∧ (•T ⊆ M) ∧ (U ⊆ T ) ⇒
T = U . Let Fire(Q) be the set of all transition sets �reable in Q.

Thus, concerning the LDTSDPNs transitions �reable in a state, the enabled
waiting transitions with the RTF greater than one are ignored while those with the
RTF being one are treated like (stochastic) transitions of DTSPNs [57, 58] with
the conditional probability 1, which have a priority in �ring over the (stochastic)
transitions with the conditional probability less than 1.

By the de�nition of �reability, it follows that Fire(Q) ⊆ 2TiN \{∅} or Fire(Q) ⊆
2TwN \ {∅}, or Fire(Q) ⊆ 2TsN (to be convinced of it, check the de�nition's items
in the reverse order). The state Q is s-tangible (stochastically tangible), denoted
by stang(Q), if Fire(Q) ⊆ 2TsN . For an s-tangible state Q we always have ∅ ∈
Fire(Q) by the de�nition of �reability (item 3), hence, we may have Fire(Q) = {∅}.
The state Q is w-tangible (waitingly tangible), denoted by wtang(Q), if Fire(Q) ⊆
2TwN \ {∅}. The state Q is tangible, denoted by tang(Q), if stang(Q) or wtang(Q),
i.e. Fire(Q) ⊆ 2TsN ∪2TwN . Again, for a tangible state Q we may have ∅ ∈ Fire(Q)
and Fire(Q) = {∅}. Otherwise, the state Q is vanishing, denoted by vanish(Q),



1644 I.V. TARASYUK

and in this case Fire(Q) ⊆ 2TiN \ {∅}. A transition t ∈ Ena(M) is �reable in a
state Q, denoted by t ∈ Fire(Q), if {t} ∈ Fire(Q). If stang(Q) then a stochastic
transition t ∈ Fire(Q) �res with probability ΩN (t) when no di�erent stochastic
transition is �reable in Q, i.e. Fire(Q) = {∅, {t}}. By the de�nition of �reability, if
stang(Q) or vanish(Q) then ∀U ∈ Fire(Q) 2U \ {∅} ⊆ Fire(Q).

Let U ∈ Fire(Q) and U 6= ∅. The probability that the set of stochastic transitions
U is ready for �ring in Q or the weight of the set of deterministic transitions U
which is ready for �ring in Q is

PF (U,Q)=

{∏
t∈U ΩN (t)·∏{u∈Fire(Q)|u 6∈U}(1− ΩN (u)), stang(Q);∑
t∈U ΩN (t), wtang(Q)∨vanish(Q).

In the case U = ∅ and stang(Q) we de�ne

PF (∅, Q) =

{ ∏
u∈Fire(Q)(1− ΩN (u)), F ire(Q) 6= {∅};

1, F ire(Q) = {∅}.

Let U ∈ Fire(Q). Besides U , some other sets of transitions may be ready for
�ring in Q, hence, a kind of conditioning or normalization is needed to calculate
the �ring probability. The parallel �ring of the transitions from U changes the state

Q = (M,V ) to another state Q̃ = (M̃, Ṽ ), denoted by Q
U→P Q̃, where

(1) M̃ = M − •U + U•;

(2) ∀u ∈ TwN Ṽ (u) =


∞, u 6∈ Ena(M̃);

VN (u), u ∈ Ena(M̃) \ Ena(M − •U);
V (u), (u ∈ Ena(M − •U)) ∧ (U ⊆ TiN );
V (u)− 1, otherwise;

(3) P = PT (U,Q) is the probability that the set of transitions U �res in Q:

PT (U,Q) =
PF (U,Q)∑

V ∈Fire(Q) PF (V,Q)
.

Let us explain the de�nition above. The �rst case of the item 2 demonstrates a

waiting transition u that is not enabled at the marking M̃ , regardless of whether
it was enabled at the �intermediate� marking M − •U (obtained by removing from
M the input places of all transitions belonging to U , and that should be examined,
especially when N has structural loops), and therefore the transition timer becomes
inactive (turned o�) and it is set to the unde�ned value ∞. The second case of the
item 2 describes a waiting transition u that was not enabled at M − •U and has

�rst been enabled at M̃ , hence, its timer is restored to the initial value VN (u),
which is the delay of that transition. The third case of the item 2 explains a waiting

transition u that was enabled at M − •U and, hence, still is enabled at M̃ , resulted
in an �ring of a set of immediate transitions U instantly (in zero time), so the
transition timer does not decrement and its value stays equal to V (u). The fourth
case of the item 2 corresponds to the remaining option, i.e. a waiting transition u

that was enabled at M − •U and, hence, still is enabled at M̃ , resulted in an �ring
of a set of stochastic (waiting) transitions U at a time tick (in one time unit), so
the transition timer decrements by one and its value becomes V (u)− 1.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1645

We do not have to worry that for u ∈ TwN , such that u ∈ Ena(M − •U),

where U ⊆ TsN ∪ TwN , the value of Ṽ (u) = V (u) − 1 could become zero or ne-
gative, by the following reasons. Note that by the de�nition of �reability, we have
Ena(M) ⊆ TwN ∪ TsN . If V (u) = 1 then u must �re in the next time moment
within some maximal (by the inclusion relation) set of the enabled at M waiting
transitions with the RTF equal to one and enough tokens in the set's input places
at M . Then we get U ∈ Fire(Q) ⊆ 2TwN \ {∅}, hence, ∅ 6= U ⊆ TwN . Therefore,
∀t ∈ U V (t) = 1 and Ena(M−•U)∩{w ∈ TwN | V (w) = 1} = ∅, which contradicts
to u ∈ Ena(M − •U) ∩ {w ∈ TwN | V (w) = 1}. Thus, there exists no transition
u ∈ TwN , such that u ∈ Ena(M − •U) and V (u) = 1. In regard to the transitions

t ∈ U ⊆ TwN with V (t) = 1, we have Ṽ (t) =∞, if t 6∈ Ena(M̃), or Ṽ (t) = VN (t),

if t ∈ Ena(M̃) \ Ena(M − •U).

Note that when U = ∅ and stang(Q), we get M = M̃ and ∀u ∈ TwN
Ṽ (u) =

{
∞, u 6∈ Ena(M);
V (u)− 1, u ∈ Ena(M).

Notice that the timers of all waiting transitions that are disabled when a marking
change occurs become inactive (turned o�) and their values become unde�ned while
the timers of all those staying enabled continue running with their stored values.
Hence, we adopt the enabling memory policy [54, 1, 3, 4] when the markings are
changed and the enabling of deterministic transitions is possibly modi�ed (remember
that immediate transitions may be seen as those with the timers displaying a single
value 0, so we do not need to store their values). Then the timer values of waiting
transitions are taken as the enabling memory variables.

The advantage of our two-stage approach to de�nition of the probability that a
set of transitions �res is that the resulting probability formula PT (U,Q) is valid
both for (sets of) stochastic and deterministic transitions. It allows one to unify the
notation used later while constructing the denotational semantics.

For all states of an LDTSDPN N , the sum of outgoing probabilities is equal to
1, i.e. ∀Q = (M,V ) ∈ NPNfin × (N≥1 ∪ {∞})|TwN |

∑
U∈Fire(Q) PT (U,Q) = 1. This

obviously follows from the de�nition of PT (U,Q) and guarantees that it de�nes a
probability distribution.

We write Q
U→ Q̃ if ∃P Q

U→P Q̃ and Q→ Q̃ if ∃U Q
U→ Q̃.

The probability to move from Q to Q̃ by �ring any set of transitions is

PM(Q, Q̃) =
∑

{U |QU→Q̃}

PT (U,Q).

Since PM(Q, Q̃) is the probability for any (including the empty one) transition set

to change marking Q to Q̃, we use summation in the de�nition.

Note that ∀Q = (M,V ) ∈ NPNfin × (N≥1 ∪ {∞})|TwN |
∑
{Q̃|Q→Q̃} PM(Q, Q̃) =∑

{Q̃|Q→Q̃}
∑
{U |QU→Q̃} PT (U,Q) =

∑
U∈Fire(Q) PT (U,Q) = 1.

De�nition 17. Let N be an LDTSDPN. The reachability set of N , denoted by
RS(N), is the minimal set of markings such that

• QN ∈ RS(N);

• if Q ∈ RS(N) and Q→ Q̃ then Q̃ ∈ RS(N).

De�nition 18. Let N be an LDTSDPN. The reachability graph of N is a (labeled
probabilistic) transition system RG(N) = (SN , LN , TN , sN ), where



1646 I.V. TARASYUK

• the set of states is SN = RS(N);
• the set of labels is LN = 2TN × (0; 1];

• the set of transitions is TN = {(Q, (U,P), Q̃) | Q, Q̃ ∈ RS(N), Q
U→P Q̃};

• the initial state is sN = QN .

The set of all s-tangible markings from RS(N) is denoted by RSST (N), and the
set of all w-tangible markings from RS(N) is denoted by RSWT (N). The set of all
tangible markings from RS(N) is denoted by RST (N) = RSST (N) ∪ RSWT (N).
The set of all vanishing markings from RS(N) is denoted by RSV (N). Obviously,
RS(N) = RST (N) ]RSV (N) = RSST (N) ]RSWT (N) ]RSV (N).

4.2. Algebra of dtsd-boxes. We now de�ne discrete time stochastic and deter-
ministic Petri boxes and the operations for a net representation of the expressions.

De�nition 19. A discrete time stochastic and deterministic Petri box (dtsd-box)
is a tuple N = (PN , TN ,WN ,ΛN ), where

• PN and TN are �nite sets of places and transitions, respectively, such that
PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN × TN ) ∪ (TN × PN ) → N is a function providing the weights of
arcs between places and transitions;

• ΛN is the place and transition labeling function such that
� ΛN |PN : PN → {e, i, x} (it speci�es entry, internal and exit places);
� ΛN |TN : TN → {% | % ⊆ NSDLfin × SDL} (it associates transitions with

the relabeling relations on activities).

Moreover, ∀t ∈ TN •t 6= ∅ 6= t•. Next, for the set of entry places of N , de�ned as
◦N = {p ∈ PN | ΛN (p) = e}, and for the set of exit places of N , de�ned as N◦ =
{p ∈ PN | ΛN (p) = x}, the following holds: ◦N 6= ∅ 6= N◦ and •(◦N) = ∅ = (N◦)•.

A dtsd-box is plain if ∀t ∈ TN ∃(α, κ) ∈ SDL ΛN (t) = %(α,κ), where %(α,κ) =
{(∅, (α, κ))} is a constant relabeling that can be identi�ed with the activity (α, κ).
The set of waiting transitions of a plain dtsd-box N is de�ned as TwN = {t ∈ TN |
ΛN (t) = %(α,\θl ), θ ∈ N≥1, l ∈ R>0}.

A (timer-)clocked plain dtsd-box is a pair (N,V ), where N = (PN , TN ,WN ,ΛN )
is a plain dtsd-box and V : TwN → N≥1 ∪{∞} is a timer valuation function of the
waiting transitions of N , such that ∀t ∈ TwN with ΛN (t) = %(α,\θl ) (we say that

the transition t corresponds to the activity (α, κ)) it holds V (t) ∈ {1, . . . , θ}∪{∞}.
A marked and (timer-)clocked plain dtsd-box is a pair (N,Q), where N is a plain

dtsd-box and Q = (M,V ) is its state. Here M ∈ NPNfin is a marking of N and

V : TwN → N≥1 ∪ {∞} is a timer valuation function of the waiting transitions of
N , such that ∀t ∈ TwN with ΛN (t) = %(α,\θl ) it holds V (t) ∈ {1, . . . , θ} ∪ {∞} and
V (t) <∞, if t ∈ TwN ∩ Ena(M).

Let (N,Q) be a marked and clocked plain dtsd-box. By the de�nition above,
∀t ∈ TwN ∩Ena(M) V (t) <∞, i.e. all enabled atM waiting transitions have �nite
timer values. Note that for some t ∈ TwN \Ena(M) we may have V (t) <∞, which
is allowed in the �incomplete� box speci�cations for the reason of compositionality,
by assuming that t will be enabled at an �extended� marking of the �complete� box
speci�cation. The state Q = (M,V ) is consistent, if ∀t ∈ TwN \Ena(M) V (t) =∞,
i.e. all non-enabled atM waiting transitions have in�nite timer values. It is assumed
that the �complete� box speci�cation always has consistent states, i.e. that the



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1647

underlying markings of those states are �large� enough to make enabled all waiting
transitions with �nite timer values, thus leaving the in�nite timer values just for
the non-enabled waiting transitions. A plain dtsd-box N = (PN , TN ,WN ,ΛN ) can
be seen as a clocked plain dtsd-box (N,V∞), where ∀t ∈ TwN V∞(t) = ∞, i.e.
V∞ ≡ ∞. Next, a clocked plain dtsd-box (N,V ) can be treated as a marked and
clocked plain dtsd-box (N, (∅, V )). Thus, a plain dtsd-box N can be interpreted as
a marked and clocked plain dtsd-box (N, (∅, V∞)).

Let (N,V ) be a clocked plain dtsd-box. We denote (N,V ) = (N,Q
(N,V )

), where

Q
(N,V )

= (◦N,V
(N,V )

) and V
(N,V )

: TwN → N≥1 ∪ {∞} is such that ∀t ∈ TwN
with ΛN (t) = %(α,\θl ):

V
(N,V )

(t) =

{
min{V (t), θ}, t ∈ TwN ∩ Ena(◦N);
V (t), t ∈ TwN \ Ena(◦N).

By de�nition of the timer valuation function, ∀t ∈ TwN (V (t) ≤ θ) ∨ (V (t) =∞).
Hence, V (t) > θ only in case V (t) =∞. The de�nition above implies V

(N,V )
(t) <∞

for every t ∈ TwN∩Ena(◦N). Thus, (N,V ) is a marked and clocked plain dtsd-box.
We denote (N,V ) = (N,Q(N,V )), where Q(N,V ) = (N◦, V∞). Since Ena(N◦) =

∅, one can see that (N,V ) is a marked and clocked plain dtsd-box. We call ◦N and
N◦ the entry and exit markings of N , respectively.

A marked and clocked plain dtsd-box (PN , TN ,WN ,ΛN , Q) with the consistent
state Q can be interpreted as the LDTSDPN (PN , TN ,WN , DN ,ΩN ,LN , Q), where
the functions DN , ΩN and LN are de�ned as follows: ∀t ∈ TN with ΛN (t) = %(α,κ)

it holds ΩN (t) = κ if κ ∈ (0; 1); or DN (t) = θ, ΩN (t) = l if κ = \θl , θ ∈ N, l ∈ R>0;
and LN (t) = α. Behaviour of the marked and clocked dtsd-boxes with consistent
states follows from the �ring rule of LDTSDPNs. A plain dtsd-box N is n-bounded
(n ∈ N) if N is so, i.e. ∀Q = (M,V ) ∈ RS(N) ∀p ∈ PN M(p) ≤ n, and it is safe if
it is 1-bounded. A plain dtsd-box N is clean if ∀Q = (M,V ) ∈ RS(N) ◦N ⊆M ⇒
M = ◦N and N◦ ⊆ M ⇒ M = N◦, i.e. if there are tokens in all its entry (exit)
places then no other places have tokens.

The structure of the plain dtsd-box corresponding to a static expression without
timer value superscripts is constructed like in PBC [17, 16], i.e. we use simultaneous
re�nement and relabeling meta-operator (net re�nement) in addition to the operator
dtsd-boxes corresponding to the algebraic operations of dtsdPBC and featuring
transformational transition relabelings. Operator dtsd-boxes specify n-ary functions
from plain dtsd-boxes to plain dtsd-boxes (we have 1 ≤ n ≤ 3 in dtsdPBC). As we
shall see in Theorem 1, the resulting plain dtsd-boxes are safe and clean. To de�ne
the denotational semantics, we shall apply standard constructions used for PBC.
Let Θ denote operator box and u denote transition name from the PBC setting.

The relabeling relations % ⊆ NSDLfin × SDL are de�ned as follows:

• %id = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL} is the identity relabeling;
• %(α,κ) = {(∅, (α, κ))} is the constant relabeling, identi�ed with (α, κ)∈SDL;
• %[f ] = {({(α, κ)}, (f(α), κ)) | (α, κ) ∈ SDL};
• %rs a = {({(α, κ)}, (α, κ)) | (α, κ) ∈ SDL, a, â 6∈ α};
• %sy a is the least relabeling relation containing %id such that if (Υ, (α, κ)),

(Ξ, (β, λ)) ∈ %sy a and a ∈ α, â ∈ β then
� (Υ + Ξ, (α⊕a β, κ · λ)) ∈ %sy a if κ, λ ∈ (0; 1);
� (Υ + Ξ, (α⊕a β, \θl+m)) ∈ %sy a if κ = \θl , λ = \θm, θ ∈ N, l,m ∈ R>0.



1648 I.V. TARASYUK

(α, ρ)

✍✌✎☞

✍✌✎☞
❄

❄

N(α,ρ)ι

e

x

tι ̺[f ]

✍✌✎☞

✍✌✎☞
❄

❄

Θ[f ]

e

x

u[f ] ̺rs a

✍✌✎☞

✍✌✎☞
❄

❄

Θrs a

e

x

urs a
̺sy a

✍✌✎☞

✍✌✎☞
❄

❄

Θsy a

e

x

usy a ̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ;

e

u1
;

̺id

✍✌✎☞
❄

❄
x

u2
;

i

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ‖

e

u1
‖

x

̺id

✍✌✎☞

✍✌✎☞
❄

❄

e

u2
‖

x

̺idu1
[]

̺id u2
[]

Θ[]

✍✌✎☞

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

✞ ☎
✝ ✆

❄

✻

̺id

✍✌✎☞

✍✌✎☞
❄

❄

Θ[ ∗ ∗ ]

e

u1
[ ∗ ∗ ]

̺id

✍✌✎☞
❄

❄
x

u3
[ ∗ ∗ ]

i ̺id u2
[ ∗ ∗ ]

(α, ♮θl )

✍✌✎☞

✍✌✎☞
❄

❄

N(α,♮θ
l
)ι

e

x

tι

Fig. 15. The plain and operator dtsd-boxes

The plain dtsd-boxes N(α,ρ)ι , N(α,\θl )ι , where ρ ∈ (0; 1), θ ∈ N, l ∈ R>0, and

operator dtsd-boxes are presented in Figure 15. Note that the label i of internal
places is usually omitted.

In the case of the iteration, a decision that we must take is the selection of the
operator box that we shall use for it, since we have two proposals in plain PBC for
that purpose [16]. One of them provides us with a safe version with six transitions
in the operator box, but there is also a simpler version, which has only three
transitions. In general, in PBC, with the latter version we may generate 2-bounded
nets, which only occurs when a parallel behavior appears at the highest level of
the body of the iteration. Nevertheless, in our case, and due to the syntactical
restriction introduced for regular terms, this particular situation cannot occur, so
that the net obtained will be always safe.

Let (Ni, Vi) = (PNi , TNi ,WNi ,ΛNi , Vi) (1 ≤ i ≤ 3) be clocked plain dtsd-boxes.
The operator dtsd-boxes are extended so that they will specify the n-ary functions
from/to clocked plain dtsd-boxes, as follows.

• Θ◦((N1, V1), (N2, V2)) = (Θ◦(N1, N2), V ), ◦ ∈ {; , [], ‖}, where
V (t) =

{
V1(t), t ∈ TN1

;
V2(t), t ∈ TN2 .

• Θ[f ](N1, V1) = (Θ[f ](N1), V ), where V (t) = V1(t), t ∈ TN1 .
• Θrs a(N1, V1) = (Θrs a(N1), V ), where V (t) = V1(t), t ∈ TN1

, a, â 6∈ α,
ΛN1

(t) = %(α,κ).
• Θsy a(N1, V1) = (Θsy a(N1), V ), where

V (t) =

 V1(t), t ∈ TwN1
;

max{V1(v), V1(w)}, t results from synchronization of
v, w ∈ TwN1 .

• Θ[ ∗ ∗ ]((N1, V1), (N2, V1), (N3, V1)) = (Θ[ ∗ ∗ ](N1, N2, N3), V ), where

V (t) =

 V1(t), t ∈ TN1
;

V2(t), t ∈ TN2
;

V3(t), t ∈ TN3
.

To de�ne a semantic function that assigns a clocked plain dtsd-box to every static
expression of dtsdPBC, we introduce the enumeration function Enu : T → Num,



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1649

which associates the numberings with transitions of a clocked plain dtsd-box N =
(P, T,W,Λ, V ) in accordance with those of activities. In the case of synchronization,
the function associates with the resulting new transition a concatenation of the
parenthesized numberings of the transitions it comes from.

We now de�ne the enumeration function Enu for every operator of dtsdPBC.
Let Boxdtsd(E) = (NE , VE) = (PE , TE ,WE ,ΛE , VE) be the clocked plain dtsd-box
corresponding to a static expression E, and EnuE : TE → Num be the enumeration
function for (NE , VE). We use the analogous notation for static expressions F andK.

• Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅). Since a single transition tι corresponds to
the activity (α, ρ)ι ∈ SL, their numberings coincide: Enu(tι) = ι.
• Boxdtsd((α, \0l )ι) = (N(α,\0l )ι

, ∅). Since a single transition tι corresponds to

the activity (α, \0l )ι ∈ IL, their numberings coincide: Enu(tι) = ι.
• Boxdtsd((α, \θl )ι) = (N(α,\θl )ι , (tι,∞)). Since a single transition tι corres-

ponds to the activity (α, \θl )ι ∈ WL, their numberings coincide: Enu(tι)= ι.
• Boxdtsd((α, \θl )δι ) = (N(α,\θl )ι , (tι, δ)). Since a single transition tι corresponds

to the activity (α, \θl )ι ∈ WL, their numberings coincide: Enu(tι) = ι.
• Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖}. Since we do
not introduce new transitions, we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E)). Since we only replace the labels of some
multiactions by a bijection, we preserve the initial numbering:
Enu(t) = EnuE(t), t ∈ TE .

• Boxdtsd(E rs a)=Θrs a(Boxdtsd(E)). Since we remove all transitions labeled
with multiactions containing a or â, this does not change the numbering of
the remaining transitions: Enu(t)=EnuE(t), t∈TE , a, â 6∈α, ΛE(t)=%(α,κ).
• Boxdtsd(E sy a) = Θsy a(Boxdtsd(E)). Note that ∀v, w ∈ TE such that

ΛE(v) = %(α,κ), ΛE(w) = %(β,λ) and a ∈ α, â ∈ β, the new transition t
resulting from synchronization of v and w has the label Λ(t) = %(α⊕aβ,κ·λ)

if t is a stochastic transition (κ, λ ∈ (0; 1)); or Λ(t) = %(α⊕aβ,\θl+m) if t is a

deterministic one (κ = \θl , λ = \θm, θ ∈ N, l,m ∈ R>0); and the numbering
Enu(t) = (EnuE(v))(EnuE(w)). The enumeration function is de�ned as

Enu(t)=

{
EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization of v, w.

According to the de�nition of %sy a, the synchronization is only possible
when all the transitions in the set are stochastic (immediate or waiting,
respectively). If we synchronize the same set of transitions in di�erent
orders, we obtain several resulting transitions with the same label and
probability or weight, but with the di�erent numberings having the same
content. Then, we only consider a single transition from the resulting ones
in the clocked plain dtsd-box to avoid introducing redundant transitions.

If the transitions t and u are generated by synchronizing v and w in
di�erent orders, we have Λ(t) = %(α⊕aβ,κ·λ) = Λ(u) for stochastic transitions
(κ, λ ∈ (0; 1)) or Λ(t) = %(α⊕aβ,\θl+m) = Λ(u) for deterministic ones (κ =

\θl , λ = \θm, θ ∈ N, l,m ∈ R>0), but Enu(t) = (EnuE(v))(EnuE(w)) 6=
(EnuE(w))(EnuE(v)) = Enu(u), whereas Cont(Enu(t))=Cont(Enu(v))∪



1650 I.V. TARASYUK

Cont(Enu(w)) = Cont(Enu(u)). Then only one transition t (or u, symmet-
rically) will appear in Boxdtsd(E sy a).
• Boxdtsd([E ∗F ∗K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)). Since
we do not introduce new transitions, we preserve the initial numbering:

Enu(t) =

 EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

We now can formally de�ne the denotational semantics as a homomorphism.

De�nition 20. Let (α, ρ)∈SL, (α, \0l )∈IL, (α, \θl )∈WL, δ∈{1, . . . , θ}, a∈Act
and E,F,K ∈ RegStatExpr. The denotational semantics of dtsdPBC is a mapping
Boxdtsd from RegStatExpr into the domain of clocked plain dtsd-boxes, de�ned as:

(1) Boxdtsd((α, ρ)ι) = (N(α,ρ)ι , ∅);
(2) Boxdtsd((α, \

0
l )ι) = (N(α,\0l )ι

, ∅);
(3) Boxdtsd((α, \

θ
l )ι) = (N(α,\θl )ι , (tι,∞));

(4) Boxdtsd((α, \
θ
l )
δ
ι ) = (N(α,\θl )ι , (tι, δ));

(5) Boxdtsd(E ◦ F ) = Θ◦(Boxdtsd(E), Boxdtsd(F )), ◦ ∈ {; , [], ‖};
(6) Boxdtsd(E[f ]) = Θ[f ](Boxdtsd(E));
(7) Boxdtsd(E ◦ a) = Θ◦a(Boxdtsd(E)), ◦ ∈ {rs, sy};
(8) Boxdtsd([E ∗ F ∗K]) = Θ[ ∗ ∗ ](Boxdtsd(E), Boxdtsd(F ), Boxdtsd(K)).

The marked and clocked dtsd-boxes of dynamic expressions can be de�ned as
well. For E ∈ RegStatExpr, let Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) =
Boxdtsd(E). Note that this de�nition is compositional in the sense that, for any
arbitrary dynamic expression, we may decompose it in some inner dynamic and
static expressions, for which we may apply the de�nition, thus obtaining the corres-
ponding clocked plain dtsd-boxes, which can be joined according to the term struc-
ture (by de�nition of Boxdtsd), the resulting clocked plain box being marked in the
places that were marked in the argument nets.

When composing marked and clocked dtsd-boxes of arbitrary dynamic expressi-
ons, we should guarantee that the operations correctly propagate the timer values
from the clocked to non-clocked operands. Then we have to respect the time spent in
the entry markings and delays of the waiting transitions, which become enabled at
them when composing. The main idea is that the timer values in the composite mar-
ked and clocked dtsd-boxes should be as close as possible to those in the substituent
marked and clocked dtsd-boxes, whose waiting transition timers should sometimes
be decreased to maintain the time progress uniformity in the resulting composition.

Let E,F ∈ RegStatExpr, G,H ∈ RegDynExpr and a∈Act. ThenBoxdtsd(E)=
(PE , TE ,WE ,ΛE , VE) = (NE , VE) is the clocked plain dtsd-box of E, and similarly
for F . The marked and clocked plain dtsd-box of G is Boxdtsd(G) = (NG, (MG, VG))
(de�ned by induction on the structure of G, as will be descried below), and similarly

for H. Next, Boxdtsd(E) = (NE , VE) = (NE , (
◦NE , VE)) is the marked and clocked

plain dtsd-box of E, and analogously for F . Thus, ∀t ∈ TwE with ΛE(t) = %(α,\θl ):

VE(t) =

{
min{VE(t), θ}, t ∈ TwE ∩ Ena(◦NE);
VE(t), t ∈ TwE \ Ena(◦NE).

Moreover, Boxdtsd(E) = (NE , VE) = (NE , (N
◦
E , V

∞)) is the marked and clocked
plain dtsd-box of E, and analogously for F .



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1651

Let N,N ′ be two plain dtsd-boxes and p ∈ ◦N ∪ N◦, p′ ∈ ◦N ′ ∪ N ′◦ be their
respective entry or exit places. Then (p, p′) denotes the merging of p and p′ in the
composed plain dtsd-box such that (p, p′) inherits all their connectivities from the
net structures of N and N ′.

Let (N, (M,V )) be a marked and clocked plain dtsd-box, where T = Ts]Ti]Tw
consists of stochastic, immediate and waiting transitions. The marking age of the
state (M,V ) is �(M,V ) = max{η − V (u) | u ∈ Tw ∩ Ena(M), Λ(u) = %(β,\ηm)}.

We now inductively de�ne the dtsd-boxes of arbitrary dynamic expressions.

• Boxdtsd(E) = Boxdtsd(E) and Boxdtsd(E) = Boxdtsd(E).

• Boxdtsd(G;E) = (Boxdtsd(bGc;E), (M,V )), where

M =

{
MG, MG 6= N◦G;
N◦G × ◦NE , MG = N◦G;

and ∀t ∈ TwN with ΛN (t) = %(α,\θl ):

V (t) =

 VG(t), t ∈ TwG;
min{VE(t), θ}, t ∈ TwE ∩ Ena(M);
VE(t), t ∈ TwE \ Ena(M).

Thus, each waiting transition of NE enabled at the entry marking of it has
set its timer to min{VE(t), θ}.
• Boxdtsd(E;G) = (Boxdtsd(E; bGc), (M,V )), where

M =

{
MG, MG 6= ◦NG;
N◦E × ◦NG, MG = ◦NG;

and ∀t ∈ TwN :

V (t) =

{
VE(t), t ∈ TwE ;
VG(t), t ∈ TwG.

• Boxdtsd(G[]E) = (Boxdtsd(bGc[]E), (M,V )), where

M =

 MG, (MG 6= ◦NG) ∧ (MG 6= N◦G);
◦NG × ◦NE , MG = ◦NG;
N◦G ×N◦E , MG = N◦G;

and ∀t ∈ TwN with

ΛN (t) = %(α,\θl ):

V (t)=



θ−min

{
�(MG, VG),
�(◦NE , VE)

}
, ((t ∈ TwG ∩ Ena(M))∧(MG = ◦NG))∨

(t ∈ TwE ∩ Ena(M));
VG(t), ((t ∈ TwG ∩ Ena(M))∧(MG 6= ◦NG))∨

(t ∈ TwG \ Ena(M));
VE(t), t ∈ TwE \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the
states (MG, VG), such that MG = ◦NG, and (◦NE , VE) then each waiting
transition, enabled at the marking M , has set its timer to θ− ζ, where θ is
the delay of that transition. The idea is to ensure that the time progresses
uniformly, for which the timer decrements of all waiting transitions, enabled
atM , should be synchronized (equalized). Hence, the subnet with the more
time spent in its local marking should �wait� for the other subnet by modify-
ing appropriately (via increasing by the di�erence between residence times
at MG and ◦NE) the timer values of its waiting transitions, enabled at M .

Note that�(MG, VG) 6= �(◦NE , VE) cannot hold for any dynamic expres-
sion, obtained by applying action rules, starting from an overlined static
expression without timer value superscripts. The reason is that all the action
rules maintain the time progress uniformity, hence, ζ = �(MG, VG) =



1652 I.V. TARASYUK

�(◦NE , VE) in that case. Further, the inequality η − VG(u) < �(MG, VG)
may only happen when the (β, \ηm) ∈ WL(G), corresponding to u ∈ TwG ∩
Ena(MG), is later a�ected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never
be executed. The same holds for �(◦NE , VE). Thus, if we start from an
overlined static expression without time stamps and the waiting multiaction
corresponding to t is not subsequently a�ected by restriction then V (t) =
θ − �(MG, VG) = VG(t) for (t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG) and
V (t) = θ − �(◦NE , VE) = min{VE(t), θ} for t ∈ TwE ∩ Ena(M), i.e. V (t)
is de�ned like that for the case Boxdtsd(G;E).

The de�nition of Boxdtsd(E[]G) is similar.
• Boxdtsd(G‖H) = (Boxdtsd(bGc‖bHc), (M,V )), where M = MG∪MH , and
∀t ∈ TwN with ΛN (t) = %(α,\θl ):

V (t)=

θ−min{�(MG, VG),�(MH , VH)}, t ∈ (TwG ∪ TwH) ∩ Ena(M);
VG(t), t ∈ TwG \ Ena(M);
VH(t), t ∈ TwH \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the
states (MG, VG) and (MH , VH) then each waiting transition, enabled at the
markingM , has set its timer to θ−ζ, where θ is the delay of that transition.
The idea is to ensure that the time progresses uniformly, for which the timer
decrements of all waiting transitions, enabled atM , should be synchronized
(equalized). Hence, the subnet with the more time spent in its local marking
should �wait� for the other subnet by modifying appropriately (via increa-
sing by the di�erence between residence times at MG and MH) the timer
values of its waiting transitions, enabled at M .

Note that�(MG, VG) 6= �(MH , VH) cannot hold for any dynamic expres-
sion, obtained by applying action rules, starting from an overlined static
expression without timer value superscripts. The reason is that all the action
rules maintain the time progress uniformity, hence, ζ = �(MG, VG) =
�(MH , VH) in that case. Further, the inequality η − VG(u) < �(MG, VG)
may only happen when the (β, \ηm) ∈ WL(G), corresponding to u ∈ TwG ∩
Ena(MG), is later a�ected by restriction, so that the timer of that waiting
multiaction stops with the value 1 while the waiting multiaction can never
be executed. The same holds for �(MH , VH). Thus, if we start from an
overlined static expression without time stamps and the waiting multiaction
corresponding to t is not subsequently a�ected by restriction then V (t) =
θ−�(MG, VG) = VG(t) for t ∈ TwG∩Ena(M) and V (t) = θ−�(MH , VH) =
VH(t) for t ∈ TwH ∩ Ena(M), i.e. V (t) is de�ned like that for the case
Boxdtsd(E;G), if to replace E with H in the syntax of that de�nition.
• Boxdtsd(G[f ])=(Boxdtsd(bGc[f ]), (M,V )), whereM=MG, and ∀t ∈ TwN :

V (t) = VG(t), t ∈ TwG.
• Boxdtsd(G rs a)=(Boxdtsd(bGc rs a), (M,V )), whereM=MG, and ∀t∈TwN :

V (t) = VG(t), t ∈ TwG, a, â 6∈ α.
• Boxdtsd(G sy a)=(Boxdtsd(bGcsy a), (M,V )), whereM=MG, and ∀t∈TwN :



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1653

V (t)=

{
VG(t), t ∈ TwG;
max{VG(v), VG(w)}, t results from synchronization of v, w ∈ TwG.

Thus, the timer for the synchronous product of the waiting transitions v
and w from NG is set to maximum of their timer values. This means that we
wait for the latest (being delayed for some reason) of the two synchronized
transitions, since their synchronous product cannot �re until they both can
�re. If at least one of the timers of v and w has the unde�ned value ∞ (i.e.
the corresponding transition is not enabled at MG) then the result of their
synchronization also has the timer value ∞, since both the synchronized
transitions must be enabled at MG to enable their synchronous product.
• Boxdtsd([G ∗ E ∗ F ]) = (Boxdtsd(bGc ∗ E ∗ F ), (M,V )), where

M =

{
MG, MG 6= N◦G;
N◦G × (◦NE ×N◦E)× ◦NF ), MG = N◦G;

and ∀t ∈ TwN with

ΛN (t) = %(α,\θl ):

V (t)=


VG(t), t ∈ TwG;
θ−min{�(ME , VE),�(MF , VF )}, t ∈ (TwE ∪ TwF ) ∩ Ena(M);
VE(t), t ∈ TwE \ Ena(M);
VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the
states (ME , VE) and (MF , VF ) then each waiting transition, enabled at the
markingM , has set its timer to θ−ζ, where θ is the delay of that transition.
The idea is to ensure that the time progresses uniformly, for which the timer
decrements of all waiting transitions, enabled atM , should be synchronized
(equalized). Hence, the subnet with the more time spent in its local marking
should �wait� for the other subnet by modifying appropriately (via increa-
sing by the di�erence between residence times at ME and MF ) the timer
values of its waiting transitions, enabled at M .

• Boxdtsd([E ∗G ∗ F ]) = (Boxdtsd(E ∗ bGc ∗ F ), (M,V )), where

M =

{
MG, (MG 6= ◦NG) ∧ (MG 6= N◦G);
N◦E × ((◦NG ×N◦G)× ◦NF ), (MG = ◦NG) ∨ (MG = N◦G);

and

∀t ∈ TwN with ΛN (t) = %(α,\θl ):

V (t)=



θ−min

{
�(MG, VG),
�(◦NF , VF )

}
, ((t ∈ TwG ∩ Ena(M)) ∧ ((MG = ◦NG)∨

(MG = N◦G))) ∨ (t ∈ TwF ∩ Ena(M));
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG)∧

(MG 6= N◦G)) ∨ (t ∈ TwG \ Ena(M));
VF (t), t ∈ TwF \ Ena(M).

Thus, if ζ is the minimum of the times spent at the markings of the states
(MG, VG), such that (MG = ◦NG) ∨ (MG = N◦G), and (◦NF , VF ) then
each waiting transition, enabled at the marking M , has set its timer to
θ − ζ, where θ is the delay of that transition. The idea is to ensure that
the time progresses uniformly, for which the timer decrements of all waiting
transitions, enabled at M , should be synchronized (equalized). Hence, the
subnet with the more time spent in its local marking should �wait� for the



1654 I.V. TARASYUK

other subnet by modifying appropriately (via increasing by the di�erence
between residence times at MG and ◦NF ) the timer values of its waiting
transitions, enabled at M .
• Boxdtsd([E ∗ F ∗G]) = (Boxdtsd(E ∗ F ∗ bGc), (M,V )), where

M =

{
MG, MG 6= ◦NG;
N◦E × ((◦NF ×N◦F )× ◦NG), MG = ◦NG;

and ∀t ∈ TwN with

ΛN (t) = %(α,\θl ):

V (t)=



θ−min

{
�(◦NF , VF ),
�(MG, VG)

}
, (t ∈ TwF ∩ Ena(M))∨

((t ∈ TwG ∩ Ena(M)) ∧ (MG = ◦NG));
VF (t), t ∈ TwF \ Ena(M);
VG(t), ((t ∈ TwG ∩ Ena(M)) ∧ (MG 6= ◦NG))∨

(t ∈ TwG \ Ena(M)).

Thus, if ζ is the minimum of the times spent at the markings of the
states (◦NF , VF ) and (MG, VG), such that MG = ◦NG, then each waiting
transition, enabled at the marking M , has set its timer to θ− ζ, where θ is
the delay of that transition. The idea is to ensure that the time progresses
uniformly, for which the timer decrements of all waiting transitions, enabled
atM , should be synchronized (equalized). Hence, the subnet with the more
time spent in its local marking should �wait� for the other subnet by modify-
ing appropriately (via increasing by the di�erence between residence times
at ◦NF and MG) the timer values of its waiting transitions, enabled at M .

Remember that for any H ∈ SatOpRegDynExpr, all waiting multiactions from
EnaWait([H]≈) have (�nite) timer value superscripts. Then for Boxdtsd(H) =
(N, (M,V )) we have ∀t ∈ TwN ∩ Ena(M) V (t) < ∞. Hence, if ΛN (t) = %(α,\θl )

then min{V (t), θ} = V (t). Suppose that H is also obtained by applying action
rules, starting from an overlined static expression without timer value superscripts
and the waiting multiactions corresponding to each t ∈ TwN are not a�ected by
restriction (note that the waiting multiactions a�ected by restriction in H have
no corresponding transitions in Boxdtsd(H)). In such a case, by the remarks on
the �(M,V ) function simpli�cation in the constructions above, the timer valuation
function V is obtained simply by combining those of the subformulas of G. For

example, if H = [G ∗ E ∗ F ] then V (t) =

 VG(t), t ∈ TwG;
VE(t), t ∈ TwE ;
VF (t), t ∈ TwF .

Theorem 1. For any static expression E, Boxdtsd(E) is safe and clean.

Proof. The structure of the net is obtained as in PBC [17, 16], combining both re�-
nement and relabeling. Hence, the obtained dtsd-boxes will be safe and clean. �

Proposition 3. For any static expression E without timer value superscripts, all
states of RG(Boxdtsd(E)) (i.e. those from RS(Boxdtsd(E))) are consistent.

Proof. Let Boxdtsd(E) = (NE , VE). Since E is without timer value superscripts,
VE = V∞ and Boxdtsd(E) = (NE , V

∞). By construction of marked and clocked

dtsd-boxes, Boxdtsd(E) = Boxdtsd(E) = (NE , V∞) = (NE , (
◦NE , VE)), where



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1655

N

({a},♮21) ({b},♮32)

✍✌✎☞✉

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

RG(N)

☛✡ ✟✠✞✝ ☎✆10,
12☛✡ ✟✠01,

∞∞

❄✞✝ ✲
t1,1

∅,1

❄∅,1

☛✡ ✟✠10,
23p1

p2

t1 t2

Fig. 16. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = ({a}, \21)[]({b}, \32) and its reachability graph

VE(t)=

{
min{V∞(t), θ}=min{∞, θ}=θ, t∈TwE∩Ena(◦NE);
V∞(t)=∞, t∈TwE\Ena(◦NE).

Thus, initial state

(◦NE , VE) of RG(Boxdtsd(E)) is consistent and (NE , (
◦NE , VE)) is an LDTSDPN.

By de�nition of the �ring rule for LDTSDPNs, the waiting transitions that are
not enabled in the next state get (or keep) in�nite timer values (item 2, case 1:
the in�nity value) while those enabled in the next state get (or keep) �nite timer
values (item 2, cases 2�4: the new, old or decreased by one value). Thus, the �ring
rule always transforms consistent states into consistent ones. Since the initial state
of RG(Boxdtsd(E)) is consistent and the subsequent states are added according to
the �ring rule, all states of RG(Boxdtsd(E)) are consistent. �

4.3. Examples of dtsd-boxes. We now present a series of examples that demons-
trate how to construct the dtsd-boxes of the dynamic expressions that include
various compositions of stochastic, waiting and immediate multiactions.

Example 24. Let E be from Example 11. In Figure 16, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t1), V (t2)), placed under the corresponding marking M . Note that TS(E)
and RG(N) are isomorphic.

Example 25. Let E be from Example 12. In Figure 17, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the one-
element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 26. . Let E be from Example 13. In Figure 18, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. Since
N has no waiting transitions (a single waiting multiaction in E is a�ected by
restriction), we may consider the substituent markings M as the whole states Q =
(M,V ) ∈ RS(N). Note that TS(E) and RG(N) are not isomorphic, but bisimilar
(i.e. related by step stochastic bisimulation equivalence, to be de�ned later).

Example 27. Let E be from Example 14. In Figure 19, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the one-
element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.



1656 I.V. TARASYUK

N

({a},♮31) ({b}, 13 )

✍✌✎☞✉

✍✌✎☞
e

x

��✠ ❅❅❘

❙
❙✇

✓
✓✴

RG(N)

☛✡ ✟✠
✚

✚❂
10,
2

☛✡ ✟✠10,
3

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠
10,
1

01,
∞

❄

✞✝ ✲

∅, 2
3

∅, 2
3

∅,1

❩
❩⑦

❈
❈
❈
❈❈❲ ❄t1,1

t2, 1
3

t2, 1
3

p1

p2

t1 t2

Fig. 17. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = ({a}, \31)[]({b}, 1

3 ) and its reachability graph

N

({b}, 13 )

✍✌✎☞✉

✍✌✎☞
e

x

❄

❄

RG(N)☛✡ ✟✠10☛✡ ✟✠01
❄✞✝ ✲

✞✝ ✲

∅,1

∅, 2
3 t2, 1

3

p1

p2

t2

Fig. 18. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = (({a}, \31)[]({b}, 1

3 )) rs a and its reachability graph

N

({a}, 12 )

({b},♮31)

({c}, 13 )

✍✌✎☞✉

✍✌✎☞

✍✌✎☞

e

x

❄

❄

❄

❄

✞ ☎
✝ ✆

❄

✻

RG(N)

☛✡ ✟✠
✚

✚❂
010,
2

☛✡ ✟✠010,
3

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠010,
1

001,
∞

❄ ❅
❅❘

∅, 2
3

∅, 2
3

t3, 1
3

t2,1 ∅,1

✓

✒

✲

✑

☛✡ ✟✠100,
∞

❄
t1, 1

2

✂ ✁✻

❇
❇
❇
❇❇◆

✞✝ ✲

∅, 1
2

t3, 1
3

p1

p2

p3

t1

t2

t3

Fig. 19. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = [({a}, 1

2 ) ∗ ({b}, \31) ∗ ({c}, 1
3 )] and its reachability graph

Example 28. Let E be from Example 15. In Figure 20, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t2), V (t3)), placed under the corresponding marking M . Note that TS(E)
and RG(N) are isomorphic.

Example 29. Let E be from Example 16. In Figure 21, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1657

N

({a},♮01)

✍✌✎☞✉

✍✌✎☞
❄

❄

e

x

({b},♮22)

✍✌✎☞✉

✍✌✎☞
❄

❄

e

x

({c},♮33)

✍✌✎☞✉

✍✌✎☞
❄

❄

e

x

RG(N)

☛✡ ✟✠011100,
23

☛✡ ✟✠000111,
∞∞

☛✡ ✟✠✞✝ ☎✆001110,
∞1

❄

❄✞✝ ✲
t3,1

∅,1

011100,
12

❄
t2,1

☛✡ ✟✠✞✝ ☎✆∅,1

t1,1

111000,
23

❄

p1 p2 p3

p4 p5 p6

t1 t2 t3

Fig. 20. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = ({a}, \01)‖({b}, \22)‖({c}, \33) and its reachability graph

N

({a},♮31)

✍✌✎☞✉

✍✌✎☞
❄

❄

e

x

({b}, 13 )

✍✌✎☞✉

✍✌✎☞
❄

❄

e

x

RG(N)

☛✡ ✟✠☛✡ ✟✠
✚

✚❂ ❅❅❘
1100,

2
1001,

2

☛✡ ✟✠1100,
3

☛✡ ✟✠☛✡ ✟✠0110,
∞

0011,
∞

☛✡ ✟✠✞✝ ☎✆ ☛✡ ✟✠✞✝ ☎✆1100,
1

1001,
1

❄

❄

❄

❄
✲

❅
❅❘

✞✝ ✲ ☎✆✛

∅, 2
3

t2, 1
3

∅, 2
3

t2, 1
3 ∅,1

t1,1 t1,1

t2, 1
3

∅, 2
3

∅,1

p1 p2

p3 p4

t1 t2

Fig. 21. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = ({a}, \31)‖({b}, 1

3 ) and its reachability graph

state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the one-
element vector (scalar) V = V (t1), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

Example 30. Let E be from Example 17. In Figure 22, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the one-
element vector (scalar) V = V (t(1)(2)), placed under the corresponding marking M .

Note that TS(E) and RG(N) are isomorphic.

Example 31. Let E be from Example 18. In Figure 23, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t1), V (t2), V (t(2)(3)), V (t3)), placed under the corresponding marking M .

Note that TS(E) and RG(N) are isomorphic.

Example 32. Let E be from Example 19. In Figure 24, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each



1658 I.V. TARASYUK

✍✌✎☞✍✌✎☞✉ ✉N

(∅,♮23)

✍✌✎☞ ✍✌✎☞
x x

e e

✡
✡✢

✁
✁☛

❏
❏❫

❆
❆❯

RG(N)

☛✡ ✟✠✞✝ ☎✆1100,
1☛✡ ✟✠0011
∞

❄✞✝ ✲
t(1)(2) ,1

∅,1

❄∅,1

☛✡ ✟✠1100,
2

p1 p2

p3 p4

t(1)(2)

Fig. 22. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = (({a}, \21)‖({â}, \22)) sy a rs a and its reachability graph

✍✌✎☞✍✌✎☞ ✉
❄ ❄

N

({b},♮32) ({b̂},♮33)(∅,♮35)

✍✌✎☞ ✍✌✎☞❄ ❄

◗
◗◗s

✑
✑✑✰

✚
✚

✚❂
❩
❩
❩⑦x x

e

✍✌✎☞✉
❄

({a},♮11)

❄

e

RG(N)

☛✡ ✟✠01100,
∞332

☛✡ ✟✠01001,
∞∞∞∞

☛✡ ✟✠✞✝ ☎✆01001,
∞1∞∞

❄

❄✞✝ ✲
t2,1

∅,1

01100,
∞221

❄
t3,1

☛✡ ✟✠✞✝ ☎✆∅,1

t1,1

☛✡ ✟✠✞✝ ☎✆10100,
1∞∞3

❄

p1

p2 p3

p4 p5

t1

t2 t(2)(3) t3

Fig. 23. The marked and clocked dtsd-box N = Boxdtsd(E) for

E = ((({a}, \11); ({b}, \32))‖({b̂}, \33)) sy b and its reachability graph

({a},♮11)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮05) ({c},♮14)

RG(N)☛✡ ✟✠✞✝ ☎✆10100,
11☛✡ ✟✠01001,

∞∞

❄✞✝ ✲
{t1,t4},1

∅,1

p1

p2 p3

p4 p5

t1

t(2)(3) t4

Fig. 24. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = ((({a}, \11); ({b, x̂}, \02))‖(({x}, \03)[]({c}, \14))) sy x rs x and its
reachability graph

state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t1), V (t4)), placed under the corresponding marking M . Note that TS(E)
and RG(N) are isomorphic.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1659

({a},♮21)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮25) ({c},♮24)

RG(N)

☛✡ ✟✠✞✝ ☎✆10100,
1∞1

❄✞✝ ✲
{t1,t4},1

∅,1

☛✡ ✟✠10100,
2∞2

❄∅,1

☛✡ ✟✠01001,
∞∞∞

p1

p2 p3

p4 p5

t1

t(2)(3) t4

Fig. 25. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = (((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x rs x and its
reachability graph

({a},♮21)

✍✌✎☞

✍✌✎☞
❄

❄

N

e

✍✌✎☞
❄

❄
x

✍✌✎☞

✍✌✎☞
e

x

❄

❄

✏✏✏✏✮

❍❍❍❍❥

✉

✉
({b},♮25) ({c},♮24)({b,x},♮22) ({x},♮23)

PPPPq

✟✟✟✟✙

✏✏✏✏✮

❍❍❍❍❥

RG(N)

☛✡ ✟✠✞✝ ☎✆10100,
1∞∞11

☛✡ ✟✠00011,
∞∞∞∞∞

✞✝ ✲

{t1,t4},
5
9

{t1,t3},
4
9

∅,1

☛✡ ✟✠10100,
2∞∞22

❄∅,1

☛✡ ✟✠01001,

∞2∞∞∞

❄∅,1☛✡ ✟✠✞✝ ☎✆01001,
∞1∞∞∞

❄
t2,1

✞
✝

☎
✆✲ ✛

p1

p2 p3

p4 p5

t1

t4t3t2 t(2)(3)

Fig. 26. The marked and clocked dtsd-box N = Boxdtsd(E)
for E = (((({a}, \21); ({b, x̂}, \22))‖(({x}, \23)[]({c}, \24))) sy x and its
reachability graph

Example 33. Let E be from Example 20. In Figure 25, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For
each state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the
vector V = (V (t1), V (t(2)(3)), V (t4)), placed under the corresponding marking M .

Note that TS(E) and RG(N) are not isomorphic, but bisimilar (i.e. related by step
stochastic bisimulation equivalence, to be de�ned later).

Example 34. Let E be from Example 21. In Figure 26, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each
state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t1), V (t2), V (t(2)(3)), V (t3), V (t4)), placed under the corresponding marking

M . Note that TS(E) and RG(N) are isomorphic.

Example 35. Let E be from Example 22. In Figure 27, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For each



1660 I.V. TARASYUK

({a}, 12 )

✍✌✎☞✉
❄

e

N

({d}, 13 )

✍✌✎☞
({b},♮11)

✍✌✎☞x

❄

({c},♮12)
��✠

❩❩⑦
✍✌✎☞✛ ✥

✦
❄

✠

✍

✲

❄

★
✧

RG(N)

☛✡ ✟✠✞✝ ☎✆☛✡ ✟✠❄
0100,
11

0010,
∞∞

☛✡ ✟✠
❄

1000,
∞∞

t1, 1
2

t3, 2
3

✞✝ ✲
∅, 1

2✞✝ ✲
t2, 1

3✞✝ ✲
∅, 2

3

✘

✙✚

✛

t4, 1
3

t1

t2 t3

t4

p1

p2

p3

p4

Fig. 27. The marked and clocked dtsd-box N = Boxdtsd(E)
for E = [({a}, 1

2 ) ∗ (({b}, \11)[](({c}, \12); ({d}, 1
3 ))) ∗ Stop] and its

reachability graph

state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the vector
V = (V (t2), V (t3)), placed under the corresponding marking M . Note that TS(E)
and RG(N) are isomorphic.

Example 36. Let E be from Example 23.In Figure 28, the marked and clocked
dtsd-box N = Boxdtsd(E) and its reachability graph RG(N) are presented. For
each state Q = (M,V ) ∈ RS(N), the timer valuation function is described by the
one-element vector (scalar) V = V (t2), placed under the corresponding marking M .
Note that TS(E) and RG(N) are isomorphic.

In Examples 24�36, the marked and clocked dtsd-boxes N = Boxdtsd(E) are
presented for E from Examples 11�23. Note that, due to the time constraints and
since waiting multiactions may be preempted by stochastic ones, some dynamic
expressions can have complex transition systems (reachability graphs) and simple
marked and clocked dtsd-boxes (Examples 24�30), or vice versa (Examples 31�36).

The next example shows that without the syntactic restriction on regularity of
expressions the corresponding marked and clocked dtsd-boxes may be not safe.

Example 37. Let E = [(({a}, 1
2 ) ∗ (({b}, 1

2 )‖({c}, 1
2 )) ∗ ({d}, 1

2 )]. In Figure 29, the

marked and clocked dtsd-box N = Boxdtsd(E) and its reachability graph RG(N)
are presented. Since N has no waiting transitions, we may consider the substituent
markingsM as the whole states Q=(M,V ) ∈ RS(N). At the marking (0, 1, 1, 2, 0, 0)
there are 2 tokens in the place p4. Symmetrically, at the marking (0, 1, 1, 0, 2, 0) there
are 2 tokens in the place p5. Thus, allowing concurrency in the second argument of
iteration in the expression E can lead to non-safeness of the corresponding marked
and clocked dtsd-box N , though, it is 2-bounded in the worst case [16]. The origin
of the problem is that N has as a self-loop with two subnets which can function
independently. Therefore, we have decided to consider regular expressions only, since
the alternative, which is a safe version of the iteration operator with six arguments



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1661

RG(N)

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

010000,
1

000100,
∞

000010,
∞

100000,
∞

001000,
∞

t1,ρ

t2,1

t3, l
l+m

t4, m
l+m

t5,θ t6,φ

☛✡ ✟✠
❄

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−φ

({a},ρ)

✍✌✎☞✉
❄

e

N

({d},θ) ({f},φ)

✍✌✎☞ ✍✌✎☞
❄ ❄

({c},♮0l )

✍✌✎☞x

✍✌✎☞❄

({e},♮0m)

��✠
❩❩⑦

❄ ❄

({b},♮1k)

✍✌✎☞
❄

❄

✠ ✍

✬

✫

✥

✦

✲ ✛

t1

t2

t3 t4

t5 t6

p1

p2

p3

p4 p5

p6

Fig. 28. The marked and clocked dtsd-box N = Boxdtsd(E) for
E=[({a}, ρ)∗(({b}, \1k); ((({c}, \0l ); ({d}, θ))[](({e}, \0m); ({f}, φ))))∗
Stop] and its reachability graph

in the corresponding dtsd-box, like that from [16], is rather cumbersome and has
too intricate PN interpretation. Our motivation was to keep the algebraic and PN
speci�cations as simple as possible.

5. Stochastic equivalences

Consider the expressions E = ({a}, 1
2 ) and E′ = ({a}, 1

3 )1[]({a}, 1
3 )2, for which

E 6=ts E′, since TS(E) has only one transition from the initial to the �nal state
(with probability 1

2 ) while TS(E′) has two such ones (with probabilities 1
4 ). On

the other hand, all the mentioned transitions are labeled by activities with the
same multiaction part {a}. Moreover, the overall probabilities of the mentioned
transitions of TS(E) and TS(E′) coincide: 1

2 = 1
4 + 1

4 . Further, TS(E) (as well

as TS(E′)) has one empty loop transition from the initial state to itself with
probability 1

2 and one empty loop transition from the �nal state to itself with
probability 1. The empty loop transitions are labeled by the empty multiset of
activities. Let us demonstrate how the transition probabilities in TS(E′) are calcula-
ted. For the state s′1 = [E′]≈ we have PF ({({a}, 1

3 )1}, s′1) = PF ({({a}, 1
3 )2}, s′1) =

1
3 (1 − 1

3 ) = 2
9 and PF (∅, s′1) = (1 − 1

3 )2 = 4
9 . Then

∑
Ξ∈Exec(s′1) PF (Ξ, s′1) =

2 · 2
9 + 4

9 = 8
9 . Thus, PT ({({a}, 1

3 )1}, s′1) = PT ({({a}, 1
3 )2}, s′1) = 2

9 · 8
9 = 1

4 and

PT (∅, s′1) = 4
9 · 89 = 1

2 . For the �nal state s
′
2 = [E′]≈ we have Exec(s′2) = {∅}, hence,∑

Ξ∈Exec(s′2) PF (Ξ, s′2) = PF (∅, s′2) = 1 and PT (∅, s′2) = 1
1 = 1. Unlike =ts, most



1662 I.V. TARASYUK

({a}, 12 )

✍✌✎☞✉
❄

e

N

({b}, 12 ) ({c}, 12 )

✍✌✎☞ ✍✌✎☞
❄ ❄
✍✌✎☞ ✍✌✎☞

❏
❏❫

✁
✁☛

✍✌✎☞x

❄ ❄

({d},12 )

❄

❏❏❫ ✓✓✴

✟✟✟✟✯
❍❍❍❍❨

☞

✌

✎

✍✲ ✛

✻ ✻

★

✧

✥

✦✲ ✛

p1

p2 p3

p4 p5

p6

t1

t2 t3

t4

RG(N)☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠☛✡ ✟✠
☛✡ ✟✠

❄

❄

✚
✚❂ ❅❅❘

✏
✑

✓
✒

✲ ✛

✑ ✒

100000

011110

011200 011020

011001

t1, 1
2

t2, 1
2

t3, 1
2

t3, 1
5

t2, 1
5

t4, 1
5

✞✝ ✲

✂ ✁✂ ✁✻ ✻

✄✂✲ �✁✛

✞✝ ✲

∅, 1
5 {t2,t3}, 1

5

∅, 1
2

∅, 1
2

∅, 1
2

∅,1

Fig. 29. The marked and clocked dtsd-box N = Boxdtsd(E) for
E = [(({a}, 1

2 ) ∗ (({b}, 1
2 )‖({c}, 1

2 )) ∗ ({d}, 1
2 )] and its reachability

graph

of the probabilistic and stochastic equivalences proposed in the literature do not
di�erentiate between the processes such as those speci�ed by E and E′. In Figure
31(a), the marked dtsd-boxes corresponding to the dynamic expressions E and E′

are presented, i.e. N = Boxdtsd(E) and N ′ = Boxdtsd(E′).
Since the semantic equivalence =ts is too discriminating in many cases, we

need weaker equivalence notions. These equivalences should possess the following
necessary properties. First, any two equivalent processes must have the same se-
quences of multisets of multiactions, which are the multiaction parts of the activities
executed in steps starting from the initial states of the processes. Second, for every
such sequence, its execution probabilities within both processes must coincide.
Third, the desired equivalence should preserve the branching structure of compu-
tations, i.e. the points of choice of an external observer between several extensions
of a particular computation should be taken into account. In this section, we de�ne
one such notion: step stochastic bisimulation equivalence.

5.1. Step stochastic bisimulation equivalence. Bisimulation equivalences res-
pect the particular points of choice in the behavior of a system. To de�ne stochastic
bisimulation equivalences, we have to consider a bisimulation as an equivalence
relation that partitions the states of the union of the transition systems TS(G)
and TS(G′) of two dynamic expressions G and G′ to be compared. For G and G′

to be bisimulation equivalent, the initial states [G]≈ and [G′]≈ of their transition
systems should be related by a bisimulation having the following transfer property:
if two states are related then in each of them the same multisets of multiactions
can occur, leading with the identical overall probability from each of the two states
to the same equivalence class for every such multiset.

We follow the approaches of [40, 42, 34, 36, 14, 8], but we implement step seman-
tics instead of interleaving one considered in these papers. Recall also that we use



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1663

the generative probabilistic transition systems, like in [40], in contrast to the reactive
model, treated in [42], and we take transition probabilities instead of transition rates
from [34, 36, 14, 8]. Thus, step stochastic bisimulation equivalence that we de�ne
further is (in the probabilistic sense) comparable only with interleaving probabilistic
bisimulation equivalence from [40], and our equivalence is obviously stronger.

In the de�nition below, we consider L(Υ) ∈ NLfin for Υ ∈ NSILfin , i.e. (possibly

empty) multisets of multiactions. The multiactions can be empty as well. In this
case, L(Υ) contains the elements ∅, but it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈ DR(G) and

A ∈ NLfin, we write s
A→P H, where P = PMA(s,H) is the overall probability to

move from s into the set of states H via steps with the multiaction part A de�ned as

PMA(s,H) =
∑

{Υ|∃s̃∈H s
Υ→s̃, L(Υ)=A}

PT (Υ, s).

We write s
A→ H if ∃P s

A→P H. Further, we write s→P H if ∃A s
A→ H, where

P = PM(s,H) is the overall probability to move from s into the set of states H via
any steps de�ned as

PM(s,H) =
∑

{Υ|∃s̃∈H s
Υ→s̃}

PT (Υ, s).

For s̃ ∈ DR(G), we write s
A→P s̃ if s A→P {s̃} and s A→ s̃ if ∃P s

A→P s̃.
To introduce a stochastic bisimulation between dynamic expressions G and G′,

we should consider the �composite� set of states DR(G) ∪DR(G′), since we have
to identify the probabilities to come from any two equivalent states into the same
�composite� equivalence class (with respect to the stochastic bisimulation). Note
that, for G 6= G′, transitions starting from the states of DR(G) (or DR(G′)) always
lead to those from the same set, since DR(G) ∩DR(G′) = ∅, and this allows us to
�mix� the sets of states in the de�nition of stochastic bisimulation.

De�nition 21. Let G and G′ be dynamic expressions. An equivalence relation
R ⊆ (DR(G) ∪ DR(G′))2 is a step stochastic bisimulation between G and G′,
denoted by R : G↔ssG

′, if:

(1) ([G]≈, [G′]≈) ∈ R.
(2) (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and

∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NLfin s1
A→P H ⇔ s2

A→P H.
Two dynamic expressions G and G′ are step stochastic bisimulation equivalent,
denoted by G↔ssG

′, if ∃R : G↔ssG
′.

Note that the condition SJ(s1) = 0 ⇔ SJ(s2) = 0 in item 2 of the de�nition
above is needed to make di�erence between w-tangible states (all having at least
one time unit sojourn times) and vanishing states (all having zero sojourn times).
The reason is that both from w-tangible and vanishing states, no empty moves can
be made, unlike s-tangible states, from which empty moves are always possible.
When comparing dynamic expressions for step stochastic bisimulation equivalence,
we can use empty moves only to make di�erence between s-tangible and other
(w-tangible or vanishing) states. Without the mentioned condition, w-tangible and
vanishing states could be related by the bisimulation. We intend to avoid such the



1664 I.V. TARASYUK

TSL(F )

☛✡ ✟✠✞✝ ☎✆
☛✡ ✟✠☛✡ ✟✠

❄

✚
✚❂ ❅❅❘

✏

✑

✓

✒

✲ ✛

✑ ✒

s2

s4 s5

☛✡ ✟✠
❄

s1
{a},ρ

{b},1

{c}, l
l+m

{c}, m
l+m

{d},θ {d},θ

s3

✞✝ ✲

✂ ✁✂ ✁✻ ✻

∅,1−ρ

∅,1−θ ∅,1−θ

Fig. 30. The multiaction transition system of F for F = [({a}, ρ)∗
(({b}, \1k); ((({c}, l); ({d}, θ))[](({c},m); ({d}, θ)))) ∗ Stop]

relationships, since vanishing states are a special case that should be speci�cally
treated in the proofs of our forthcoming results.

We now de�ne the multiaction transition systems, whose transitions are labeled
with the multisets of multiactions, extracted from the corresponding activities.

De�nition 22. Let G be a dynamic expression. The (labeled probabilistic) multi-
action transition system of G is a quadruple TSL(G) = (SL, LL, TL, sL), where

• SL = DR(G);
• LL = NLfin × (0; 1];

• TL = {(s, (A,PMA(s, {s̃})), s̃) | s, s̃ ∈ DR(G), s
A→ s̃};

• sL = [G]≈.

The transition (s, (A,P), s̃) ∈ TL will be written as s
A→P s̃.

The multiaction transition systems of static expressions can be de�ned as well.
For E ∈ RegStatExpr let TSL(E) = TSL(E).

Let G and G′ be dynamic expressions and R : G↔ssG
′. Then the relation R

can be interpreted as a step stochastic bisimulation between the transition systems
TSL(G) and TSL(G′), denoted by R : TSL(G)↔ssTSL(G′), which is de�ned by
analogy (excepting step semantics) with interleaving probabilistic bisimulation on
generative probabilistic transition systems from [40].

Example 38. Let us consider an abstraction F of the static expression E from
Example 36, such that c = e, d = f, θ = φ, i.e. F = [({a}, ρ) ∗ (({b}, \1k); ((({c}, l);
({d}, θ))[](({c},m); ({d}, θ))))∗Stop]. Then DR(F ) = {s1, s2, s3, s4, s5} is obtained
from DR(E) via substitution of the symbols e, f, φ by c, d, θ, respectively, in the
speci�cations of the corresponding states from the latter set. We have DRT (F ) =
{s1, s2, s4, s5} and DRV (F ) = {s3}. In Figure 30, the multiaction transition system
TSL(F ) is presented. To simplify the presentation, the singleton multisets of multi-
actions are written without outer braces.

The following proposition states that every step stochastic bisimulation binds
s-tangible states only with s-tangible ones, and the same is valid for w-tangible
states, as well as for vanishing states.

Proposition 4. Let G and G′ be dynamic expressions and R : G↔ssG
′. Then

R ⊆ (DRST (G)∪DRST (G′))2](DRWT (G)∪DRWT (G′))2](DRV (G)∪DRV (G′))2.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1665

Proof. By de�nition of transition systems of expressions, for every s-tangible state,
there is an empty move from it, and no empty move transitions are possible from
w-tangible or vanishing states. Further, R preserves empty moves. To verify this
fact, �rst take A = ∅ in its de�nition to get ∀(s1, s2) ∈ R ∀H ∈ (DR(G) ∪
DR(G′))/R s1

∅→P H ⇔ s2
∅→P H. Thus, R makes di�erence between s-tangible

and all other (i.e. w-tangible or vanishing) states.
To verify that R also makes di�erence between w-tangible and vanishing states,

we �rst notice that R preserves zero sojourn times, since ∀(s1, s2) ∈ R SJ(s1) =
0 ⇔ SJ(s2) = 0. Then remember that the sojourn time in each vanishing state is
equal to 0 while that in each w-tangible state is greater or equal to 1. �

Proposition 4 implies R ⊆ (DRT (G) ∪ DRT (G′))2 ] (DRV (G) ∪ DRV (G′))2,
since DRT (G) = DRST (G)]DRWT (G) and DRT (G′) = DRST (G′)]DRWT (G′).

Let Rss(G,G′) =
⋃{R | R : G↔ssG

′} be the union of all step stochastic
bisimulations between G and G′. The following proposition proves that Rss(G,G′)
is also an equivalence and Rss(G,G′) : G↔ssG

′.

Proposition 5. Let G and G′ be dynamic expressions and G↔ssG
′. Then

Rss(G,G′) is the largest step stochastic bisimulation between G and G′.

Proof. See Appendix A.1. �

In [2], an algorithm for strong probabilistic bisimulation on labeled probabilistic
transition systems (a reformulation of probabilistic automata) was proposed with
time complexity O(n2m), where n is the number of states and m is the number
of transitions. In [5], a decision algorithm for strong probabilistic bisimulation
on generative labeled probabilistic transition systems was constructed with time
complexity O(m log n) and space complexity O(m+ n). In [29], a polynomial algo-
rithm for strong probabilistic bisimulation on probabilistic automata was presented.
The mentioned algorithms for interleaving probabilistic bisimulation equivalence
can be adapted for ↔ss using the method from [39], applied to get the decidability
results for step bisimulation equivalence. The method takes into account that tran-
sition systems in interleaving and step semantics di�er only by the additional
transitions corresponding to parallel execution of activities in the latter (our case).

We now can establish a connection between operational and denotational seman-
tics of dtsdPBC. Unlike the situation in dtsiPBC, we do not have an isomorphism
between the two semantics in dtsdPBC. In particular, for an overlined static expres-
sion, multiple states of its transition system may be related to a single state of
the reachability graph of its dtsd-box. The reason is that the decreasing timer
values of each enabled �restricted� waiting multiaction from the the derived dynamic
expressions generate di�erent states in the transition system while there exists no
corresponding waiting transition (and the associated timer) in the dtsd-box, hence,
its respective state may stay the same with the time ticks. Thus, that reachability
graph state relates to all such �generic� transition system states that di�er only by

their timer values. In Example 13, three states s1, s2, s3 of TS(E), such that s1
∅→ 2

3

s2
∅→ 2

3
s3
∅→ 2

3
s3, are all related to the initial state Q1 of RG(Boxdtsd(E)). Thus,

in dtsdPBC, like in tPBC [41], the deadlocked states are treated di�erently by the
process-based operational semantics and Petri net-based denotational semantics.

The following theorem shows that both the semantics are bisimulation equivalent.



1666 I.V. TARASYUK

({a}, 12 )

✍✌✎☞❄

✍✌✎☞✉ e

x

N(a)

❄ ↔ss

6=ts

({a}, 13 ) ({a}, 13 )

✍✌✎☞

✍✌✎☞❙
❙✇

�
�✠

��✠
❩❩⑦

x

✉ e

N ′

({a}, 12 )

✍✌✎☞❄

✍✌✎☞✉ e

N(b)

❄

=ts

6≈

({a}, 12 )

({â}, 12 )

✍✌✎☞❄

❄

✍✌✎☞✉

✍✌✎☞
x

e

N ′

❄

❄

(∅, 14 )

❙
❙
❙
❙
❙✇

✡
✡

✡
✡

✡✡✢

✞ ☎
✝ ✆

❄

✻
({â}, 12 )

✍✌✎☞
❄

✍✌✎☞
x
❄

Fig. 31. Dtsd-boxes of the dynamic expressions from Theorem 3

Theorem 2. For any static expression E, TS(E)↔ssRG(Boxdtsd(E)).

Proof. See Appendix A.2. �

5.2. Interrelations of the stochastic equivalences. We now compare the discri-
mination power of the stochastic equivalences.

Theorem 3. For dynamic expressions G and G′ the next strict implications hold:

G ≈ G′ ⇒ G =ts G
′ ⇒ G↔ssG

′.

Proof. Let us check the validity of the implications.

• The implication =ts→↔ss is proved as follows. Let β : G =ts G
′. Then it

is easy to see that R : G↔ssG
′, where R = {(s, β(s)) | s ∈ DR(G)}.

• The implication ≈→=ts is valid, since the transition system of a dynamic
formula is de�ned based on its structural equivalence class.

Let us see that that the implications are strict, by the following counterexamples.

(a) Let E = ({a}, 1
2 ) and E′ = ({a}, 1

3 )1[]({a}, 1
3 )2. Then E↔ssE

′, but E 6=ts

E′, since TS(E) has only one transition from the initial to the �nal state
while TS(E′) has two such ones.

(b) Let E = ({a}, 1
2 ); ({â}, 1

2 ) and E′ = (({a}, 1
2 ); ({â}, 1

2 )) sy a. Then E =ts

E′, but E 6≈ E′, since E and E′ cannot be reached from each other by
applying inaction rules.

�

Example 39. In Figure 31, the marked dtsd-boxes corresponding to the dynamic
expressions from equivalence examples of Theorem 3 are presented, i.e.
N = Boxdtsd(E) and N ′ = Boxdtsd(E′) for each picture (a)�(b).

6. Conclusion

In this paper, we have proposed a discrete time stochastic extension dtsdPBC
of PBC, enriched with deterministic multiactions. The calculus has a parallel step
operational semantics, based on labeled probabilistic transition systems and a Petri
net denotational semantics in terms of a special subclass of novel LDTSDPNs with



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1667

interface, called dtsd-boxes. LDTSDPNs extend labeled DTSPNs with deterministic
transitions and permit parallel (simultaneous) �ring of the transitions with the
same type (stochastic, immediate or waiting) at time ticks. We have de�ned step
stochastic bisimulation equivalence of the algebraic expressions, used to compare
the process behaviour, as well as to establish the consistency of the operational
and denotational semantics. We have compared the discriminating power of that
equivalence and other behavioural notions of the calculus, and have presented
the lattice of their interrelations. A number of examples has demonstrated as
construction of the transition systems and dtsd-boxes with s-tangible, w-tangible
and vanishing states for the dynamic expressions with di�erent types of multiactions
(stochastic, immediate and waiting) and various operations, as the speci�cation
capabilities of the calculus and particular features of its semantics.

The advantage of our framework is twofold. First, one can specify in it concurrent
composition and synchronization of (multi)actions, whereas this is not possible in
classical Markov chains. Second, algebraic formulas represent processes in a more
compact way than PNs and allow one to apply syntactic transformations and
comparisons. Process algebras are compositional by de�nition and their operations
naturally correspond to operators of programming languages. Hence, it is much
easier to construct a complex model in the algebraic setting than in PNs. The
complexity of PNs generated for practical models in the literature demonstrates
that it is not straightforward to construct such PNs directly from the system
speci�cations. dtsdPBC is well suited for the discrete time applications, whose
discrete states change with a global time tick, such as business processes, neural and
transportation networks, computer and communication systems, timed web services
[73], as well as for those, in which the distributed architecture or the concurrency
level should be preserved while modeling and analysis, such as genetic regulatory
and cellular signalling networks (featuring maximal parallelism) in biology [19]
(remember that, in step semantics, we have additional transitions due to concurrent
executions). dtsdPBC is also capable to model parallel systems with �xed durations
of the typical activities (loading, processing, transfer, repair, low-level events) and
stochastic durations of the randomly occurring activities (arrival, departure, failure),
including industrial, manufacturing, queueing, computing and network systems.

In particular, we have adopted for dtsdPBC all examples of the expressions, ct-
boxes and inferences by the transition rules from tPBC [41]. Whereas the examples
from that paper explore only some selected state-transition sequences (paths),
we always construct the complete transition systems of the expressions. We have
observed that in our framework we have no di�culties like those in tPBC, which
have forced to allow illegal transition sequences. In tPBC, the increasing timers are
associated with the overlines and underlines of multiactions and suggest the ages
of the corresponding markings in the respective boxes. In dtsdPBC, the decreasing
(up to the value 1) timers are associated with the enabled waiting multiactions and
specify their remaining times to execute (RTEs), like the timers of the enabled de-
terministic transitions in DTDSPNs from [80, 81, 79]. Besides such a PNs intuition,
making di�erence between markings (overlines and underlines) and timers of (wai-
ting) multiactions o�ers more syntactical �exibility to express their progress in
time. The decreasing timers allow us to avoid problems with in�nitely growing timer
values in the deadlocked and �nal (absorbing) states. Each decreasing timer should



1668 I.V. TARASYUK

start with a certain value that cannot be suggested by the current marking, but such
an initial value is the delay of the waiting multiaction the timer is associated with.

It is known that combining time restrictions, parallelism and compositionality
usually leads to many technical di�culties, so that the formal models possessing
all the mentioned properties have almost not been proposed in the literature, in
spite of the investigations in the related areas (for example, discrete time, generally
distributed delays, non-interleaving functional semantics in the SPA framework).
To solve the mentioned problem, some new (not existing in dtsiPBC) notions and
constructions have been introduced in dtsdPBC, such as deterministic multiactions,
decreasing timers of waiting multiactions, enabledness of activities, saturation with
the timer values, timers discarding and decreasing operations, extended Can and
Now functions, s-tangible and w-tangible dynamic expressions and states, inaction
and action rules respecting waiting multiactions, empty moves, reachability of
dynamic expressions, transition systems with 3 types of states and 4 types of
transitions (unlike 2 types of states and 3 types of transitions in dtsiPBC). Thus,
the main advantages of dtsdPBC are the �exible multiaction labels, deterministic
and stochastic multiactions, powerful operations, as well as its step operational and
Petri net denotational semantics, allowing for parallel executions (�rings).

In the following research, a technique of performance evaluation in the framework
of the calculus will be presented that will explore the corresponding stochastic
process, which is a semi-Markov chain (SMC). It will be proved that the underlying
discrete time Markov chain (DTMC) or its reduction (RDTMC) by eliminating
vanishing states may alternatively and suitably be studied for that purpose. We
plan to use step stochastic bisimulation equivalence to reduce behaviour of the
algebraic processes by quotienting their transition systems and Markov chains.
Such a reduction should simplify the functional (qualitative) and performance
(quantitative) analysis. We would like to construct some application examples
demonstrating expressiveness of the calculus and application of the behavioural
analysis and performance evaluation, both simpli�ed using quotienting by step
stochastic bisimulation. Future work could also consist in constructing a congru-
ence relation for dtsdPBC, i.e. the equivalence that withstands application of all
operations of the algebra. The �rst possible candidate is a stronger version of step
stochastic bisimulation equivalence, de�ned via transition systems equipped with
two extra transitions skip and redo, like those from sPBC [44]. Moreover, recursion
operation could be added to dtsdPBC to increase further speci�cation power of
the algebra. It would be very interesting to implement the class of DTSDPNs,
to be able to specify them and then model their behaviour by constructing the
reahability graphs. Note that even DTSPNs of M.K. Molloy [57, 58] have never
been implemented. Mostly, interleaving and continuous-time variants of stochastic
or timed PNs have been implemented so far.

Appendix A. Proofs

A.1. Proof of Proposition 5. Like for strong equivalence in Proposition 8.2.1
from [36], we shall prove the following fact about step stochastic bisimulation. Let
us have ∀j ∈ J Rj : G↔ssG

′ for some index set J . Then the transitive closure of
the union of all relations R = (∪j∈JRj)+ is also an equivalence and R : G↔ssG

′.
Since ∀j ∈ J Rj is an equivalence, R is also an equivalence, by de�nition of R.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1669

Let j ∈ J , then, by de�nition of R, (s1, s2) ∈ Rj implies (s1, s2) ∈ R. Hence,
∀Hjk ∈ (DR(G) ∪DR(G′))/Rj ∃H ∈ (DR(G) ∪DR(G′))/R Hjk ⊆ H. Moreover,
∃J ′ H = ∪k∈J ′Hjk.

We denoteR(n) = (∪j∈JRj)n. Let (s1, s2) ∈ R, then, by de�nition ofR, ∃n > 0
(s1, s2) ∈ R(n). We shall prove that R : G↔ssG

′ by induction on n.
It is clear that ∀j ∈ J Rj : G↔ssG

′ implies ∀j ∈ J ([G]≈, [G′]≈) ∈ Rj and we
have ([G]≈, [G′]≈) ∈ R by de�nition of R.

It remains to prove that (s1, s2) ∈ R implies SJ(s1) = 0 ⇔ SJ(s2) = 0 and
∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NLfin PMA(s1,H) = PMA(s2,H).

• n = 1
In this case, (s1, s2) ∈ R implies ∃j ∈ J (s1, s2) ∈ Rj . Since Rj : G↔ssG

′,
we get SJ(s1)=0 ⇔ SJ(s2)=0 and ∀H∈(DR(G)∪DR(G′))/R ∀A∈NLfin

PMA(s1,H) =
∑
k∈J ′

PMA(s1,Hjk) =
∑
k∈J ′

PMA(s2,Hjk) = PMA(s2,H).

• n→ n+ 1
Suppose that ∀m ≤ n (s1, s2) ∈ R(m) implies SJ(s1) = 0 ⇔ SJ(s2) = 0
and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NLfin PMA(s1,H) = PMA(s2,H).

Then (s1, s2) ∈ R(n + 1) implies ∃j ∈ J (s1, s2) ∈ Rj ◦ R(n), i.e.
∃s3 ∈ (DR(G) ∪DR(G′)) such that (s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get SJ(s1) = 0 ⇔ SJ(s3) = 0 and
PMA(s1,H) = PMA(s3,H). By the induction hypothesis, we get SJ(s3) =
0 ⇔ SJ(s2) = 0 and PMA(s3,H) = PMA(s2,H). Thus, SJ(s1) = 0 ⇔
SJ(s3) = 0⇔ SJ(s2) = 0 and ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ NLfin

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By de�nition, Rss(G,G′) is at least as large as the largest step stochastic bisimu-
lation between G and G′. It follows from above that Rss(G,G′) is an equivalence
and Rss(G,G′) : G↔ssG

′, hence, it is the largest step stochastic bisimulation. �

A.2. Proof of Theorem 2. At some points, the present proof for dtsdPBC goes
along the lines from the respective proofs for PBC [17, 16], tPBC [41] and sPBC [44].

Let N = Boxdtsd(E). We de�ne a relation R = ({([G]≈, QG), (QG, [G]≈) |
[G]≈ ∈ DR(E), (N,QG) = Boxdtsd(G)})+, where + is the transitive closure
operation. It is easy to see that R is equivalence, since by construction it is symmet-
ric, transitive and re�exive (apply transitivity to each pair ([G]≈, QG), (QG, [G]≈)).
We shall demonstrate that R : TS(E)↔ssRG(Boxdtsd(E)).

Clearly, [E]≈ ∈ DR(E) and Boxdtsd(E) = Boxdtsd(E) = N = (N,QN ) =

(N,QE). Hence, ([E]≈, QE) ∈ R.
It remains to check the bisimulation transfer property. Let ([G]≈, QG) ∈ R. By

Proposition 1, we can suppose that G ∈ SaOpRegDynExpr, i.e. all enabled waiting
multiactions from G (even those not overlined or underlined) have the consistent
timer value superscripts, which is important when composing the subexpressions.

Then for a process state [G]≈ ∈ DR(E), the related net state QG = (MG, VG) ∈
RS(N) is consistent and has the following properties. First, MG is the marking
of the marked and clocked dtsd-box (N, (MG, VG)) = Boxdtsd(G) (which is an
LDTSDPN, since G ∈ SaOpRegDynExpr). Second, by construction of the timer
valuation functions VG and IG, for each waiting transition t ∈ TwN with ΛN (t) =



1670 I.V. TARASYUK

%(α,\θl ), if (α, \θl ) ∈ WL(G) then we have VG(t) = IG((α, \θl )). Otherwise, if (α, \θl ) 6∈
WL(G) then either t is obtained from a relabeling f of some transition v ∈
TN , and we have VG(t) = VH(v) for a subexpression H[f ] of G; or t is resulted
from synchronization on an action a of some transitions v, w ∈ TN and we have
VG(t) = max{VH(v), VH(w)} for a subexpression H sy a of G. In the both cases,
VG(t) is completely de�ned by the timer valuation function VH , applied to some
transitions of the marked and clocked dtsd-box Boxdtsd(H). Then by induction of
the expression structure, we can �nally prove that VG(t) is completely de�ned by IG,
applied to some waiting multiactions fromWL(G). Any waiting multiaction a�ected
by restriction in G has no corresponding transition in Boxdtsd(G). Therefore, IG
(hence, [G]≈) may contain more information (namely, the timer values of the re-
stricted waiting multiactions) than needed to de�ne VG. Thus, several process states
(which di�er just in the timer value superscripts of the restricted waiting multiac-
tions) may be related to one net state, as the example above this theorem shows.

Let us prove by induction on the structure of dynamic expressions and corres-
ponding dtsd-boxes that Exec([G]≈) and Fire(QG) are isomorphic. This means
that for every Υ ∈ Exec([G]≈) there exists U ∈ Fire(QG) such that U consists of
the transitions corresponding to the activities from Υ and vice versa: (α, κ)ι ∈ Υ ⇔
tι ∈ U , where ΛN (tι) = %(α,κ). Thus, the corresponding activities and transitions
have the same probabilities (in case of stochastic multiactions and transitions),
or delays and weights (in case of deterministic multiactions and transitions), as
well as the same multiaction labels and numberings. We can write U = U(Υ) and
Υ = Υ(U), to indicate such a correspondence.

Actually, each Υ and the corresponding U are completely de�ned by the sets of
their numberings Num(Υ) = {ι | (α, κ)ι ∈ Υ} = {ι | tι ∈ U} = Num(U), since
each activity and transition have a unique numbering. Moreover, Exec([G]≈) and
Fire(QG) are completely de�ned by their numberings sets Num(Exec([G]≈)) =
{Num(Υ) | Υ ∈ Exec([G]≈)} = {Num(U) | U ∈ Fire(QG)} = Num(Fire(QG)).

• If final(G) then G ≈ E, stang([G]≈) and Exec([G]≈) = Exec([E]≈) =
{∅}. On the other hand, Boxdtsd(G) = Boxdtsd(E) = N = (N,QN ) =
(N,QE) and Fire(QG) = Fire(QE) = {∅} = Exec([G]≈).

• If G = (α, \θl )
δ
ι and θ ∈ N≥2, l ∈ R>0, δ ∈ {2, . . . , θ}, then stang([G]≈) and

Exec([G]≈) = {∅}. On the other hand,Boxdtsd(G) = (N(α,\θl )δι
, (•tι, (tι, δ))),

where ΛN (tι) = %(α,\θl ), and Fire(QG) = Fire((•tι, (tι, δ))) = {∅} =

Exec([G]≈).

• IfG=(α, ρ)ι and ρ∈(0; 1) then stang([G]≈) and Exec([G]≈)={∅, {(α, ρ)ι}}.
On the other hand, Boxdtsd(G) = (N(α,ρ)ι , (

•tι, (tι, ∅))), where ΛN (tι) =
%(α,ρ), and Fire(QG) = Fire((•tι, (tι, ∅))) = {∅, {tι}}, which is isomorphic
to Exec([G]≈).

• IfG = (α, \0l )ι and l∈R>0 then vanish([G]≈) and Exec([G]≈)={{(α, \0l )ι}}.
On the other hand, Boxdtsd(G) = (N(α,\0l )ι

, (•tι, (tι, ∅))), where ΛN (tι) =

%(α,\0l )
, and Fire(QG) = Fire((•tι, (tι, ∅))) = {{tι}}, which is isomorphic

to Exec([G]≈).

• If G = (α, \θl )
1
ι and θ ∈ N≥1, l ∈ R>0, then wtang([G]≈) and Exec([G]≈) =

{{(α, \θl )ι}}. On the other hand,Boxdtsd(G) = (N(α,\θl )1
ι
, (•tι, (tι, 1))), where

ΛN (tι) = %(α,\θl ), and Fire(QG) = Fire((•tι, (tι, 1))) = {{tι}}, which is

isomorphic to Exec([G]≈).



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1671

• If G = H;E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then

Exec([H;E]≈) =

{
Exec([H]≈), ¬final(H);
Exec([E]≈) final(H).

On the other hand, Boxdtsd(G)=Boxdtsd(H;E)=(Boxdtsd(bHc;E), QH;E),

and for Boxdtsd(H)=(Boxdtsd(bHc), QH), Boxdtsd(E)=NE=(NE , QNE ),

Fire(QH;E) =

{
Fire(QH), MH 6= N◦H ;
Fire(QNE ), MH = N◦H ;

which is isomorphic to Exec([H;E]≈).
• If G = E;H, where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

Exec([E;H]≈) = Exec([H]≈).

On the other hand, Boxdtsd(G)=Boxdtsd(E;H)=(Boxdtsd(E; bHc), QE;H),
and for Boxdtsd(H) = (Boxdtsd(bHc), QH),

Fire(QE;H) = Fire(QH);

which is isomorphic to Exec([E;H]≈).
• If G = H[]E, where H ∈ SaOpRegDynExpr, E ∈ RegStatExpr, then

Exec([H[]E]≈)=



Exec([H]≈), ¬init(H)∨
(init(H) ∧ wtang([H]≈) ∧ stang([E]≈))∨
(init(H) ∧ vanish([H]≈) ∧ tang([E]≈));

Exec([E]≈), (init(H) ∧ stang([H]≈) ∧ wtang([E]≈))∨
(init(H) ∧ tang([H]≈) ∧ vanish([E]≈));

Exec([H]≈) ∪ Exec([E]≈), (init(H) ∧ stang([H]≈) ∧ stang([E]≈))∨
(init(H) ∧ wtang([H]≈) ∧ wtang([E]≈))∨
(init(H) ∧ vanish([H]≈) ∧ vanish([E]≈)).

On the other hand,Boxdtsd(G)=Boxdtsd(H[]E)=(Boxdtsd(bHc[]E), QH[]E),

and for Boxdtsd(H)=(Boxdtsd(bHc), QH), Boxdtsd(E)=NE=(NE , QNE ),

Fire(QH[]E)=



Fire(QH), MH 6= ◦NH∨
(MH = ◦NH ∧ wtang(QH) ∧ stang(QNE ))∨
(MH = ◦NH ∧ vanish(QH) ∧ tang(QNE ));

Fire(QNE
), (MH = ◦NH ∧ stang(QH) ∧ wtang(QNE ))∨

(MH = ◦NH ∧ tang(QH) ∧ vanish(QNE
));

Fire(QH) ∪ Fire(QNE ), (MH = ◦NH ∧ stang(QH) ∧ stang(QNE ))∨
(MH = ◦NH ∧ wtang(QH) ∧ wtang(QNE ))∨
(MH = ◦NH ∧ vanish(QH) ∧ vanish(QNE

));

which is isomorphic to Exec([H[]E]≈).
If G = E[]H, where E ∈ RegStatExpr, H ∈ SaOpRegDynExpr, then

the constructions are similar.
• If G = H‖Z, where H,Z ∈ SaOpRegDynExpr, then

Exec([H‖Z]≈)=



Exec([H]≈), (wtang([H]≈) ∧ stang([Z]≈))∨
(vanish([H]≈) ∧ tang([Z]≈));

Exec([Z]≈), (stang([H]≈) ∧ wtang([Z]≈))∨
(tang([H]≈) ∧ vanish([Z]≈));

Exec([H]≈)� Exec([Z]≈), wtang([H]≈) ∧ wtang([Z]≈);

Exec([H]≈) ∪ Exec([Z]≈)∪
(Exec([H]≈)� Exec([Z]≈)), (stang([H]≈) ∧ stang([Z]≈))∨

(vanish([H]≈) ∧ vanish([Z]≈)),



1672 I.V. TARASYUK

where Exec([H]≈)�Exec([Z]≈)={Υ+Φ |Υ∈Exec([H]≈), Φ∈Exec([Z]≈)}.
On the other hand, Boxdtsd(G)=Boxdtsd(H‖Z)=(Boxdtsd(bHc‖Z), QH‖Z),
and forBoxdtsd(H)=(Boxdtsd(bHc), QH), Boxdtsd(Z)=(Boxdtsd(bZc), QZ),

Fire(QH‖Z)=



Fire(QH), (wtang(QH) ∧ stang(QZ))∨
(vanish(QH) ∧ tang(QZ));

Fire(QZ), (stang(QH) ∧ wtang(QZ))∨
(tang(QH) ∧ vanish(QZ));

Fire(QH)� Fire(QZ), wtang(QH) ∧ wtang(QZ);

Fire(QH) ∪ Fire(QZ)∪
(Fire(QH)� Fire(QZ)), (stang(QH) ∧ stang(QZ))∨

(vanish(QH) ∧ vanish(QZ)),

where Fire(QH)� Fire(QZ) = {U ∪ T | U ∈ Fire(QH), T ∈ Fire(QZ)};
which is isomorphic to Exec([H‖Z]≈).
• If G = H[f ], where H ∈ SaOpRegDynExpr, then

Exec([H[f ]]≈) = {f(Υ) | Υ ∈ Exec([H]≈)}.

On the other hand,Boxdtsd(G)=Boxdtsd(H[f ])=(Boxdtsd(bHc[f ]), QH[f ]),
and for Boxdtsd(H)=(Boxdtsd(bHc), QH),

Fire(QH[f ]) = {f(U) | U ∈ Fire(QH)},

where f(U) = {tι ∈ U | ΛH(tι) = %(α,κ), ΛH[f ](tι) = %(f(α),κ)}; which is
isomorphic to Exec([H[f ]]≈).
• If G = H rs a, where H ∈ SaOpRegDynExpr, then

Exec([H rs a]≈) = {Υ−Υa | Υ ∈ Exec([H]≈)},

where Υa = {(α, κ)ι ∈ Υ | (a ∈ α) ∨ (â ∈ α)}.
On the other hand, Boxdtsd(G) = Boxdtsd(H rs a) = (Boxdtsd(bHc rs a),
QH rs a), and for Boxdtsd(H) = (Boxdtsd(bHc), QH),

Fire(QH rs a) = {U \ Ua | U ∈ Fire(QH)},

where Ua = {tι ∈ U | ΛH(tι) = %(α,κ), (a ∈ α) ∨ (â ∈ α)}; which is
isomorphic to Exec([H rs a]≈).
• If G = H sy a, where H ∈ SaOpRegDynExpr, then

Exec([H sy a]≈)=


Exec([H]≈) ∪ {Υ + {(α⊕a β, ρ · χ)(ι1)(ι2)} |
Υ + {(α, ρ)ι1}+ {(β, χ)ι2}∈Exec([H]≈), a ∈ α, â ∈ β}, stang([H]≈);

Exec([H]≈) ∪ {Υ + {(α⊕a β, \θl+m)(ι1)(ι2)} |
Υ + {(α, \θl )ι1}+ {(β, \θm)ι2}∈Exec([H]≈), a ∈ α, â ∈ β}, wtang([H]≈);

Exec([H]≈) ∪ {Υ + {(α⊕a β, \0l+m)(ι1)(ι2)} |
Υ + {(α, \0l )ι1}+ {(β, \0m)ι2}∈Exec([H]≈), a ∈ α, â ∈ β}, vanish([H]≈).

On the other hand, Boxdtsd(G) = Boxdtsd(H sy a) = (Boxdtsd(bHc sy a),
QH sy a), and for Boxdtsd(H) = (Boxdtsd(bHc), QH),



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1673

Fire(QH sy a)=



Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2))=%(α⊕aβ,ρ·χ),
U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1 ) = %(α,ρ),
ΛH(wι2 ) = %(β,χ), a ∈ α, â ∈ β}, stang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2))=%
(α⊕aβ,\θl+m)

,

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1 ) = %
(α,\θ

l
)
,

ΛH(wι2 ) = %
(β,\θm)

, a ∈ α, â ∈ β}, wtang(QH);

Fire(QH) ∪ {U ∪ {t(ι1)(ι2)} | ΛH sy a(t(ι1)(ι2))=%
(α⊕aβ,\0l+m)

,

U ∪ {vι1 , wι2} ∈ Fire(QH), ΛH(vι1 ) = %
(α,\0

l
)
,

ΛH(wι2 ) = %(β,\0m), a ∈ α, â ∈ β}, vanish(QH);

which is isomorphic to Exec([H sy a]≈).
• IfG=[H∗E∗F ], whereH∈SaOpRegDynExpr, E, F ∈RegStatExpr, then

Exec([[H∗E∗F ]]≈)=



Exec([H]≈), ¬final(H);

Exec([E]≈), (final(H) ∧ wtang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ tang([F ]≈));

Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧ wtang([F ]≈))∨
(final(H) ∧ tang([E]≈) ∧ vanish([F ]≈));

Exec([E]≈)∪Exec([F ]≈), (final(H) ∧ stang([E]≈) ∧ stang([F ]≈))∨
(final(H) ∧ wtang([E]≈) ∧ wtang([F ]≈))∨
(final(H) ∧ vanish([E]≈) ∧ vanish([F ]≈)).

On the other hand, Boxdtsd(G)=Boxdtsd([H ∗E ∗F ])=(Boxdtsd(bHc∗E ∗
F ), Q[H∗E∗F ]), and for Boxdtsd(H) = (Boxdtsd(bHc), QH), Boxdtsd(E) =

NE=(NE , QNE ), Boxdtsd(F )=NF =(NF , QNF ),

Fire(Q[H∗E∗F ])=



Fire(QH), MH 6= N◦H ;

Fire(QNE
), (MH = N◦H ∧ wtang(QNE ) ∧ stang(QNF ))∨

(MH = N◦H ∧ vanish(QNE
) ∧ tang(QNF ));

Fire(QNF
), (MH = N◦H ∧ stang(QNE ) ∧ wtang(QNF ))∨

(MH = N◦H ∧ tang(QNE ) ∧ vanish(QNF
));

Fire(QNE
) ∪ Fire(QNF ), (MH = N◦H ∧ stang(QNE ) ∧ stang(QNF ))∨

(MH = N◦H ∧ wtang(QNE ) ∧ wtang(QNF ))∨
(MH = N◦H ∧ vanish(QNE

) ∧ vanish(QNF
));

which is isomorphic to Exec([[H ∗ E ∗ F ]]≈).
• IfG=[E∗H∗F ], where E,F ∈RegStatExpr, H∈SaOpRegDynExpr, then

Exec([[E∗H∗F ]]≈)=



Exec([H]≈), (¬init(H) ∧ ¬final(H))∨
((init(H)∨final(H))∧wtang([H]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧vanish([H]≈)∧tang([F ]≈));

Exec([F ]≈), ((init(H)∨final(H))∧stang([H]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧tang([H]≈)∧vanish([F ]≈));

Exec([H]≈)∪Exec([F ]≈), ((init(H)∨final(H))∧stang([H]≈)∧stang([F ]≈))∨
((init(H)∨final(H))∧wtang([H]≈)∧wtang([F ]≈))∨
((init(H)∨final(H))∧vanish([H]≈)∧vanish([F ]≈)).

On the other hand, Boxdtsd(G)=Boxdtsd([E ∗H ∗F ])=(Boxdtsd(E ∗bHc∗
F ), Q[E∗H∗F ]), and for Boxdtsd(H) = (Boxdtsd(bHc), QH), Boxdtsd(F ) =

NF =(NF , QNF ),



1674 I.V. TARASYUK

Fire(Q[E∗H∗F ])=



Fire(QH ), (MH 6= ◦NH ∧MH 6= N◦H )∨
((MH =◦NH ∨MH =N◦H )∧wtang(QH )∧stang(Q

NF
))∨

((MH =◦NH ∨MH =N◦H ) ∧ vanish(QH ) ∧ tang(Q
NF

));

Fire(Q
NF

), ((MH =◦NH ∨MH =N◦H )∧stang(QH )∧wtang(Q
NF

))∨
((MH =◦NH ∨MH =N◦H ) ∧ tang(QH ) ∧ vanish(Q

NF
));

Fire(QH )∪Fire(Q
NF

), ((MH =◦NH∨MH =N◦H ) ∧ stang(QH ) ∧ stang(Q
NF

))∨
((MH =◦NH∨MH =N◦H )∧wtang(QH )∧wtang(Q

NF
))∨

((MH =◦NH∨MH =N◦H )∧vanish(QH )∧vanish(Q
NF

));

which is isomorphic to Exec([[E ∗H ∗ F ]]≈).
• IfG=[E∗F ∗H], where E,F ∈RegStatExpr, H∈SaOpRegDynExpr, then

Exec([[E∗F∗H]]≈)=



Exec([F ]≈), (wtang([F ]≈) ∧ init(H) ∧ stang([H]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ tang([H]≈));

Exec([H]≈), ¬init(H)∨
(stang([F ]≈) ∧ init(H) ∧ wtang([H]≈))∨
(tang([F ]≈) ∧ init(H) ∧ vanish([H]≈));

Exec([F ]≈) ∪ Exec([H]≈), (stang([F ]≈) ∧ init(H) ∧ stang([H]≈))∨
(wtang([F ]≈) ∧ init(H) ∧ wtang([H]≈))∨
(vanish([F ]≈) ∧ init(H) ∧ vanish([H]≈)).

On the other hand, Boxdtsd(G)=Boxdtsd([E ∗ F ∗H])=(Boxdtsd(E ∗ F ∗
bHc), Q[E∗F∗H]), and for Boxdtsd(F ) = NF = (NF , QNF ), Boxdtsd(H) =

(Boxdtsd(bHc), QH),

Fire(Q[E∗F∗H])=



Fire(QNF
), (wtang(QNF

) ∧MH = ◦NH ∧ stang(QH))∨
(vanish(QNF

) ∧MH = ◦NH ∧ tang(QH));

Fire(QH), MH 6= ◦NH∨
(stang(QNF

) ∧MH = ◦NH ∧ wtang(QH))∨
(tang(QNF

) ∧MH = ◦NH ∧ vanish(QH));

Fire(QNF
) ∪ Fire(QH), (stang(QNF

) ∧MH = ◦NH ∧ stang(QH))∨
(wtang(QNF

) ∧MH = ◦NH ∧ wtang(QH))∨
(vanish(QNF

) ∧MH = ◦NH ∧ vanish(QH));

which is isomorphic to Exec([[E ∗ F ∗H]]≈).

Thus, we have proved that Exec([G]≈) and Fire(QG) are isomorphic. Note
that the probability functions PF (Υ, [G]≈) and PT (Υ, [G]≈) depend only on the
structure of Exec([G]≈), as well as on the probabilities of stochastic multiactions
and weights of deterministic multiactions from its elements. Analogously, PF (U,QG)
and PT (U,QG) depend only on the structure of Fire(QG), as well as the probabi-
lities of stochastic transitions and weights of deterministic transitions from its
elements. Further, PF (Υ, [G]≈) and PT (Υ, [G]≈) are respectively de�ned in the
same way (using the same formulas and cases) as PF (U,QG) and PT (U,QG),
for each pair of the corresponding (multi)set of activities Υ and transition set U .
Obviously, the isomorphism of Exec([G]≈) and Fire(QG) guarantees coincidence
of their structure as well as the mentioned probabilities and weights. Hence, if U
corresponds to Υ then PF (Υ, [G]≈) = PF (U,QG) and PT (Υ, [G]≈) = PT (U,QG).

We also have L(Υ) = L(U), where L(U) =
∑
{t∈U |ΛG(t)=%(α,κ)} α is the multiac-

tion part of a set of transitions U ⊆ TN . Thus, each transition [G]≈
Υ→P s̃ in TS(E)

has a corresponding one QG
U→P Q̃ in RG(N) with L(Υ) = L(U) and vice versa.

Observe that the structure of the plain and operator dtsd-boxes in dtsdPBC is
similar to that of the plain and operator boxes in PBC. Hence, like in PBC [17, 16],

we can prove that s̃ = [G̃]≈ and Q̃ = QG̃ = (MG̃, VG̃) with (N,QG̃) = Boxdtsd(G̃)



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1675

for the dynamic expression G̃ such that G
Υ→ G̃. The only �ne point here is to

check that IG̃ and VG̃ are respectively obtained from IG and VG just by exploring

Ena([G̃]≈) and Ena(MG̃) (which are similar up to restricted activities, with a care
of relabeling and synchronization, as based on the corresponding overlinings and
markings), as well as by checking whether vanish([G]≈) and vanish(QG) (which
are correlated, as de�ned via the isomorphic Exec([G]≈) and Fire(QG)). Therefore,

by construction of R, we get ([G̃]≈, QG̃) ∈ R.
The step stochastic bisimulation transfer property states that if ([G]≈, QG) ∈ R

then (SJ([G]≈) = 0 ⇔ SJ(QG) = 0) and ∀H ∈ (DR(G)∪RS(NG))/R ∀A ∈ NLfin
it holds [G]≈

A→P H ⇔ QG
A→P H.

The fact SJ([G]≈)=0 ⇔ SJ(QG)=0 follows from isomorphism of Exec([G]≈) and
Fire(QG), since SJ([G]≈)=0 ⇔ vanish([G]≈) and SJ(QG)=0 ⇔ vanish(QG).

Let H ∈ (DR(G) ∪RS(NG))/R. We have PMA([G]≈,H) =∑
{Υ|∃[G̃]≈∈H [G]≈

Υ→[G̃]≈, L(Υ)=A} PT (Υ, [G]≈) =
∑n
i=1 PT (Υi, [G]≈). Then we take

the corresponding sets of transitions U1, . . . , Un ⊆ TN , such that A = L(Υi) =
L(Ui) and PT (Υi, [G]≈) = PT (Ui, QG) (1 ≤ i ≤ n), hence, PMA([G]≈,H) =∑n
i=1PT (Υi, [G]≈)=

∑n
i=1 PT (Ui, QG)≤∑{U |∃QG̃∈H QG

U→QG̃, L(U)=A}PT (U,QG)=

PMA(QG,H). By symmetry of the correspondence between the (multi)sets of acti-
vities and sets of transitions, we get PMA([G]≈,H)≥PMA(QG,H), hence,

PMA([G]≈,H) = PMA(QG,H). We conclude that [G]≈
A→P H ⇔ QG

A→P H. �

References

[1] W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, Analysis of discrete-time stochastic Petri
nets, Statistica Neerlandica, 54:2 (2000), 237�255. http://tmitwww.tm.tue.nl/sta�/hreijers/
H.A. Reijers Bestanden/Statistica.pdf. MR1794979

[2] C. Baier, Polynomial time algorithms for testing probabilistic bisimulation and simulation,
Lecture Notes in Computer Science, 1102 (1996), 50�61.

[3] G. Balbo, Introduction to stochastic Petri nets, Lecture Notes in Computer Science, 2090
(2001), 84�155. Zbl 0990.68092

[4] G. Balbo, Introduction to generalized stochastic Petri nets, Lecture Notes in Computer
Science, 4486 (2007), 83�131. Zbl 1323.68400

[5] C. Baier, B. Engelen, M. Majster-Cederbaum, Deciding bisimilarity and similarity for
probabilistic processes, Journal of Computer and System Sciences 60:1 (2000), 187�231. Zbl
1073.68690

[6] J.A. Bergstra, J.W. Klop, Algebra of communicating processes with abstraction, Theoretical
Computer Science, 37 (1985), 77�121. MR0796314

[7] M. Bernardo, Theory and application of extended Markovian process algebra, Ph.D. thesis,
276 p., University of Bologna, Italy, 1999. http://www.sti.uniurb.it/bernardo/documents/
phdthesis.pdf

[8] M. Bernardo, A survey of Markovian behavioral equivalences, Lecture Notes in Computer
Science, 4486 (2007), 180�219. Zbl 1323.68402

[9] M. Bernardo, On the tradeo� between compositionality and exactness in weak bisimilarity
for integrated-time Markovian process calculi, Theoretical Computer Science, 563 (2015),
99�143. MR3286633

[10] M. Bernardo, S. Botta, Modal logic characterization of Markovian testing and trace equiva-
lences, Electronic Notes in Theoretical Computer Science, 169 (2006), 7�18. Zbl 1276.68119

[11] M. Bernardo, S. Botta, A survey of modal logics characterizing behavioural equivalences for
non-deterministic and stochastic systems, Mathematical Structures in Computer Science, 18
(2008), 29�55. MR2459612

[12] M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more? Lecture Notes
in Computer Science, 2165 (2001), 136�151. MR1904353



1676 I.V. TARASYUK

[13] M. Bernardo, L. Donatiello, R. Gorrieri, A formal approach to the integration of performance
aspects in the modeling and analysis of concurrent systems, Information and Computation,
144:2 (1998), 83�154. MR1632840

[14] M. Bernardo, R. Gorrieri, A tutorial on EMPA: a theory of concurrent processes with
nondeterminism, priorities, probabilities and time, Theoretical Computer Science, 202
(1998), 1�54. MR1626813

[15] E. Best, R. Devillers, J.G. Hall, The box calculus: a new causal algebra with multi-label
communication, Lecture Notes in Computer Science, 609 (1992), 21�69. MR1253529

[16] E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on Theoretical
Computer Science, Springer, 2001. MR1932732

[17] E. Best, M. Koutny, A re�ned view of the box algebra, Lecture Notes in Computer Science,
935 (1995), 1�20. MR1461021

[18] T. Bolognesi, F. Lucidi, S. Trigila, From timed Petri nets to timed LOTOS, Proc. IFIP WG
6.1 10th Int. Symposium on Protocol Speci�cation, Testing and Veri�cation 1990, Ottawa,
Canada, 1�14, North-Holland, Amsterdam, The Netherlands, 1990.

[19] N. Bonzanni, K.A. Feenstra, W. Fokkink, E. Krepska, What can formal methods bring to
systems biology? Lecture Notes in Computer Science, 5850 (2009), 16�22.

[20] M. Bravetti, Speci�cation and analysis of stochastic real-time systems, Ph.D. thesis, 432 p.,
University of Bologna, Italy, 2002. http://www.cs.unibo.it/~bravetti/papers/phdthesis.ps.gz

[21] M. Bravetti, M. Bernardo, R. Gorrieri, Towards performance evaluation with general
distributions in process algebras, Lecture Notes in Computer Science, 1466 (1998), 405�422.
MR1683349

[22] E. Brinksma, H. Hermanns, Process algebra and Markov chains, Lecture Notes in Computer
Science, 2090 (2001), 183�231. Zbl 0990.68021

[23] E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, A stochastic causality-based process
algebra, The Computer Journal, 38:7 (1995), 552�565.

[24] G. Bucci, L. Sassoli, E. Vicario, Correctness veri�cation and performance analysis of real-
time systems using stochastic preemptive time Petri nets. IEEE Transactions on Software
Engineering, 31:11 (2005), 913�927.

[25] P. Buchholz, Markovian process algebra: composition and equivalence, Proc. 2nd Int.
Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U. Herzog, M.
Rettelbach, eds.), Regensberg / Erlangen, Germany, July 1994, Arbeitsberichte des IMMD,
27:4 (1994), 11�30.

[26] P. Buchholz, A notion of equivalence for stochastic Petri nets, Lecture Notes in Computer
Science, 935 (1995), 161�180. MR1461026

[27] P. Buchholz, Iterative decomposition and aggregation of labeled GSPNs, Lecture Notes in
Computer Science, 1420 (1998), 226�245.

[28] P. Buchholz, I.V. Tarasyuk, Net and algebraic approaches to probabilistic modeling, Joint
Novosibirsk Computing Center and Institute of Informatics Systems Bulletin, Series Compu-
ter Science, 15 (2001), 31�64. Zbl 1004.68112

[29] S. Cattani, R. Segala, Decision algorithms for probabilistic bisimulation, Lecture Notes in
Computer Science, 2421 (2002), 371�385. MR2053817

[30] I. Christo�, Testing equivalence and fully abstract models of probabilistic processes, Lecture
Notes in Computer Science, 458 (1990), 126�140. MR1082160

[31] G. Ciardo, Discrete-time Markovian stochastic Petri nets, Computations with Markov
Chains: Proc. 2nd Int. Workshop on the Numerical Solution of Markov Chains (NSMC)
1995 (W.J. Stewart, ed.), Raleigh, NC, USA, January 1995, 339�358, Kluwer, Boston, MA,
USA, 1995. http://www.cs.ucr.edu/~ciardo/pubs/1995NSMC-Discrete.pdf Zbl 0862.60079

[32] R.J. van Glabbeek, S.A. Smolka, B. Ste�en, Reactive, generative, and strati�ed models of
probabilistic processes, Information and Computation, 121:1 (1995), 59�80. MR1347332

[33] H.M. Hanish, Analysis of place/transition nets with timed-arcs and its application to batch
process control, Lecture Notes in Computer Science, 691 (1993), 282�299.

[34] H. Hermanns, M. Rettelbach, Syntax, semantics, equivalences and axioms for MTIPP, Proc.
2nd Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (U.
Herzog, M. Rettelbach, eds.), Regensberg / Erlangen, Germany, July 1994, Arbeitsberichte
des IMMD, 27:4 (1994), 71�88. http://ftp.informatik.uni-erlangen.de/local/inf7/papers/
Hermanns/syntax_semantics_equivalences_axioms_for_MTIPP.ps.gz



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1677

[35] J. Hillston, The nature of synchronisation, Proc. 2nd Int. Workshop on Process Algebra
and Performance Modelling (PAPM) 1994 (U. Herzog, M. Rettelbach, eds.), Regensberg /
Erlangen, Germany, July 1994, Arbeitsberichte des IMMD, 27:4 (1994), 51�70.
http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf

[36] J. Hillston, A compositional approach to performance modelling, Cambridge University Press,
Cambridge, UK, 1996. http://www.dcs.ed.ac.uk/pepa/book.pdf MR1427945

[37] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK, 1985.
http://www.usingcsp.com/cspbook.pdf MR0805324

[38] A. Horv�ath, A. Pulia�to, M. Scarpa, M. Telek, Analysis and evaluation of non-Markovian sto-
chastic Petri nets, Lecture Notes in Computer Science, 1786 (2000), 171�187. Zbl 0967.68114

[39] L. Jategaonkar, A.R. Meyer, Deciding true concurrency equivalences on safe, �nite nets,
Theoretical Computer Science, 154:1 (1996), 107�143. MR1374382

[40] C.-C. Jou, S.A. Smolka, Equivalences, congruences and complete axiomatizations for
probabilistic processes, Lecture Notes in Computer Science, 458 (1990), 367�383. MR1082173

[41] M. Koutny, A compositional model of time Petri nets, Lecture Notes in Computer Science,
1825 (2000), 303�322.

[42] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and Computa-
tion, 94:1 (1991), 1�28. MR1123153

[43] H. Maci�a, V. Valero, D.C. Cazorla, F. Cuartero, Introducing the iteration in sPBC, Lecture
Notes in Computer Science, 3235 (2004), 292�308. Zbl 1110.68420

[44] H. Maci�a, V. Valero, F. Cuartero, D. de Frutos, A congruence relation for sPBC, Formal
Methods in System Design, 32:2 (2008), 85�128. Zbl 1138.68040

[45] H. Maci�a, V. Valero, F. Cuartero, M.C. Ruiz, sPBC: a Markovian extension of Petri box
calculus with immediate multiactions, Fundamenta Informaticae, 87:3�4 (2008), 367�406.
Zbl 1154.68092

[46] H. Maci�a, V. Valero, F. Cuartero, M.C. Ruiz, I.V. Tarasyuk, Modelling a video conference
system with sPBC, Applied Mathematics and Information Sciences 10:2 (2016), 475�493.

[47] H. Maci�a, V. Valero, D. de Frutos, sPBC: a Markovian extension of �nite Petri box calculus,
Proc. 9th IEEE Int. Workshop on Petri Nets and Performance Models (PNPM) 2001, Aachen,
Germany, 207�216, IEEE Computer Society Press, 2001. http://www.info-ab.uclm.es/retics/
publications/2001/pnpm01.ps

[48] J. Markovski, P.R. D'Argenio, J.C.M. Baeten, E.P. de Vink, Reconciling real and stochastic
time: the need for probabilistic re�nement, Formal Aspects of Computing, 24:4�6 (2012),
497�518. MR2947264

[49] J. Markovski, E.P. de Vink, Extending timed process algebra with discrete stochastic time,
Lecture Notes of Computer Science, 5140 (2008), 268�283. Zbl 1170.68542

[50] J. Markovski, E.P. de Vink, Performance evaluation of distributed systems based on a discrete
real- and stochastic-time process algebra, Fundamenta Informaticae, 95:1 (2009), 157�186.
MR2590801

[51] O. Marroqu��n, D. de Frutos, TPBC: timed Petri box calculus, Technical Report, Departamen-
to de Sistemas Infofm�aticos y Programaci�on, Universidad Complutense de Madrid, Madrid,
Spain, 2000 (in Spanish).

[52] O. Marroqu��n, D. de Frutos, Extending the Petri box calculus with time, Lecture Notes in
Computer Science, 2075 (2001), 303�322. Zbl 0986.68082

[53] M.A. Marsan, Stochastic Petri nets: an elementary introduction, Lecture Notes in Computer
Science, 424 (1990), 1�29.

[54] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalised
stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley and Sons, 1995.
http://www.di.unito.it/~greatspn/GSPN-Wiley/ Zbl 0843.68080

[55] Ph.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications of a
theoretical study, IEEE Transactions on Communications, 24:9 (1976), 1036�1043. Zbl
0362.68096

[56] R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle River, NJ,
USA, 1989. Zbl 0683.68008

[57] M.K. Molloy, On the integration of the throughput and delay measures in distributed
processing models, Ph.D. thesis, Report, CSD-810-921, 108 p., University of California,
Los Angeles, USA, 1981.



1678 I.V. TARASYUK

[58] M.K. Molloy,Discrete time stochastic Petri nets, IEEE Transactions on Software Engineering,
11:4 (1985), 417�423. MR0788999

[59] A. Niaouris, An algebra of Petri nets with arc-based time restrictions, Lecture Notes in
Computer Science, 3407 (2005), 447�462. Zbl 1109.68076

[60] A. Niaouris, M. Koutny, An algebra of timed-arc Petri nets, Technical Report, CS-TR-895,
60 p., School of Computer Science, University of Newcastle upon Tyne, UK, 2005.
http://www.cs.ncl.ac.uk/publications/trs/papers/895.pdf

[61] C. Priami, Language-based performance prediction for distributed and mobile systems,
Information and Computation, 175:2 (2002), 119�145. MR1911524

[62] C. Ramchandani, Performance evaluation of asynchronous concurrent systems by timed
Petri nets, Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, 1973.

[63] S.M. Ross, Stochastic processes, John Wiley and Sons, New York, USA, 1996. MR1373653
[64] I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem Department f�ur

Informatik, 3/05, 25 p., Carl von Ossietzky Universit�at Oldenburg, Germany, 2005.
http://itar.iis.nsk.su/�les/itar/pages/dtspbcib_cov.pdf

[65] I.V. Tarasyuk, Iteration in discrete time stochastic Petri box calculus, Bulletin of the Novo-
sibirsk Computing Center, Series Computer Science, IIS Special Issue, 24 (2006), 129�148.
Zbl 1249.68132

[66] I.V. Tarasyuk, Stochastic Petri box calculus with discrete time, Fundamenta Informaticae,
76:1�2 (2007), 189�218. MR2293057

[67] I.V. Tarasyuk, Equivalence relations for modular performance evaluation in dtsPBC,
Mathematical Structures in Computer Science, 24:1 (2014), e240103. MR3183269

[68] I.V. Tarasyuk, H. Maci�a, V. Valero,Discrete time stochastic Petri box calculus with immediate
multiactions, Technical Report, DIAB-10-03-1, 25 p., Department of Computer Systems,
High School of Computer Science Engineering, University of Castilla - La Mancha, Albacete,
Spain, 2010. http://www.dsi.uclm.es/descargas/technicalreports/DIAB-10-03-1/dtsipbc.pdf

[69] I.V. Tarasyuk, H. Maci�a, V. Valero,Discrete time stochastic Petri box calculus with immediate
multiactions dtsiPBC, Proc. 6th Int. Workshop on Practical Applications of Stochastic
Modelling (PASM) 2012 and 11th Int. Workshop on Parallel and Distributed Methods in
Veri�cation (PDMC) 2012 (J. Bradley, K. Heljanko, W. Knottenbelt, N. Thomas, eds.),
London, UK, 2012, Electronic Notes in Theoretical Computer Science, 296 (2013), 229�252.

[70] I.V. Tarasyuk, H. Maci�a, V. Valero, Performance analysis of concurrent systems in algebra
dtsiPBC, Programming and Computer Software, 40:5 (2014), 229�249.

[71] I.V. Tarasyuk, H. Maci�a, V. Valero, Stochastic process reduction for performance evaluation
in dtsiPBC, Siberian Electronic Mathematical Reports, 12 (2015), 513�551. MR3493774

[72] I.V. Tarasyuk, H. Maci�a, V. Valero, Stochastic equivalence for performance analysis of
concurrent systems in dtsiPBC, Siberian Electronic Mathematical Reports, 15 (2018), 1743�
1812. Zbl 1414.60062

[73] V. Valero, M.E. Cambronero, Using uni�ed modelling language to model the publish/subscribe
paradigm in the context of timed Web services with distributed resources, Mathematical and
Computer Modelling of Dynamical Systems, 23:6 (2017), 570�594.

[74] R. Zijal, Discrete time deterministic and stochastic Petri nets, Proc. Int. Workshop on
Quality of Communication-Based Systems 1994, Technical University of Berlin, Germany,
123�136, Kluwer Academic Publishers, 1995. Zbl 0817.68111

[75] R. Zijal, Analysis of discrete time deterministic and stochastic Petri nets, Ph.D. thesis,
Technical University of Berlin, Germany, 1997.

[76] R. Zijal, G. Ciardo, Discrete deterministic and stochastic Petri nets, ICASE Report, 96-72,
23 p., Institute for Computer Applications in Science and Engineering (ICASE), NASA,
Langley Research Centre, Hampton, VA, USA, 1996. http://www.cs.odu.edu/~mln/ltrs-
pdfs/icase-1996-72.pdf, http://www.dtic.mil/dtic/tr/fulltext/u2/a322409.pdf

[77] R. Zijal, G. Ciardo, G. Hommel, Discrete deterministic and stochastic Petri nets, Proc.
9th ITG/GI Professional Meeting on Measuring, Modeling and Evaluation of Computer and
Communication Systems (MMB) 1997 (K. Irmscher, Ch. Mittasch, K. Richter, eds.), Freiberg,
Germany, 1997, Vol. 1, 103�117, VDE-Verlag, Berlin, Germany, 1997. http://www.cs.ucr.edu/
~ciardo/pubs/1997MMB-DDSPN.pdf

[78] R. Zijal, R. German, A new approach to discrete time stochastic Petri nets, Proc. 11th Int.
Conf. on Analysis and Optimization of Systems, Discrete Event Systems (DES) 1994 (G.



DISCRETE TIME STOCHASTIC AND DETERMINISTIC PETRI BOX CALCULUS 1679

Cohen, J.-P. Quadrat, eds.), Sophia-Antipolis, France, 1994, Lecture Notes in Control and
Information Sciences, 199 (1994), 198�204.

[79] A. Zimmermann, Modeling and evaluation of stochastic Petri nets with TimeNET 4.1, Proc.
6th Int. ICST Conf. on Performance Evaluation Methodologies and Tools (VALUETOOLS)
2012 (B. Gaujal, A. Jean-Marie, E. Jorswieck, A. Seuret, eds.), Carg�ese, France, October 2012,
1�10, IEEE Computer Society Press, 2012. https://www.tu-ilmenau.de/�leadmin/public/
sse/Veroe�entlichungen/2012/VALUETOOLS2012.pdf

[80] A. Zimmermann, J. Freiheit, R. German, G. Hommel, Petri net modelling and performability
evaluation with TimeNET 3.0, Lecture Notes in Computer Science, 1786 (2000), 188�202.
Zbl 0970.68665

[81] A. Zimmermann, J. Freiheit, G. Hommel, Discrete time stochastic Petri nets for modeling
and evaluation of real-time systems, Proc. 9th Int. Workshop on Parallel and Distributed
Real Time Systems (WPDRTS) 2001, San Francisco, USA, 282�286, 2001. http://pdv.cs.tu-
berlin.de/~azi/texte/WPDRTS01.pdf

Igor Valerievich Tarasyuk

A.P. Ershov Institute of Informatics Systems,

Siberian Branch of the Russian Academy of Sciences,

6, Acad. Lavrentiev ave.,

Novosibirsk, 630090, Russia

Email address: itar@iis.nsk.su


