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SOFT 3-STARS IN SPARSE PLANE GRAPHS

O.V.BORODIN, A.O. IVANOVA

Abstract. We consider plane graphs with large enough girth g, mini-
mum degree δ at least 2 and no (k + 1)-paths consisting of vertices
of degree 2, where k ≥ 1. In 2016, Hud�ak, Macekov�a, Madaras, and
�Siroczki studied the case k = 1, which means that no two 2-vertices
are adjacent, and proved, in particular, that there is a 3-vertex whose
all three neighbors have degree 2 (called a soft 3-star), provided that
g ≥ 10, which bound on g is sharp. For the �rst open case k = 2 it was
known that a soft 3-star exists if g ≥ 14 but may not exist if g ≤ 12. In
this paper, we settle the case k = 2 by presenting a construction with
g = 13 and no soft 3-star. For all k ≥ 3, we prove that soft 3-stars exist
if g ≥ 4k + 6 but, as follows from our construction, possibly not exist
if g ≤ 3k + 7. We conjecture that in fact soft 3-stars exist whenever
g ≥ 3k + 8.

Keywords: plane graph, structure properties, girth, tight description,
weight, height, 3-star, soft 3-star.

1. Introduction

In what follows, G is a �nite plane graph. The degree of a vertex v or a face
f in G, that is the number of edges incident with v or f , is denoted by d(v) or
d(f), respectively. A k-vertex is a vertex v with d(v) = k. By k+ or k− we denote
any integer not smaller or not greater than k, respectively. Hence, a k+-vertex v
satis�es d(v) ≥ k, etc.
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Let δ(G) be the minimum vertex degree and g(G) be the girth (the length of a
shortest cycle) in G. A k-star Sk(v) in G consists of a central vertex v and k its
neighbor vertices.

The height h(Sk(v)) and weight w(Sk(v)) of Sk(v) is the maximum degree and
degree-sum of its vertices, respectively. The height hk(G) and weight wk(G) of G
is the maximum height and weight of its k-stars. We will often drop the argument
when it is clear from context.

An edge uv, that is an S1(u) or S1(v), is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j.
More generally, a path v1v2v3 (which is an S2(v2)), is a path of type (i1, i2, i3), or
an (i1, i2, i3)-path if d(vj) ≤ ij whenever 1 ≤ j ≤ 3. The types of higher stars are
de�ned similarly.

Already in 1904, Wernicke [31] proved that every G with δ = 5 satis�es w2 ≤ 11,
and Franklin [20] strengthened this in 1922 to the existence of a (6, 5, 6)-path,
which description is tight. In [9], we proved that there is another tight description,
�a (5, 6, 6)-path� and that no other tight descriptions exist.

In [7], we gave a tight description of 3−-stars in arbitrary plane graphs with
δ ≥ 3 and g ≥ 3 by proving that there is either a (3, 10)-edge, or a (5, 4, 9)-path,
or a (6, 4, 8)-path, or a (7, 4, 7)-path, or a (5; 4, 5, 5)-star, or a (5; 5, b, c)-star with
5 ≤ b ≤ 6 and 5 ≤ c ≤ 7, or else a (5; 6, 6, 6)-star. This extends or strengthens
several previously known results by Balogh, Jendrol', Harant, Kochol, Madaras,
Van den Heuvel, Yu and others [21, 26, 30] and disproves a conjecture in Harant,
Jendrol' [21].

In 1940, Lebesgue [28] gave an approximate description of 5-stars centered at 5-
vertices for the case δ = 5 and g ≥ 3. Recently, we obtained several tight results on
the height, weight and structure of such 5-stars assuming the absence of 6+-vertices
from certain degree-sets, see [8, 11,14,15,17�19].

Also, Lebesgue [28] proved that every G with δ ≥ 3 and g = 5 satis�es h2 = 3
and w2 = 9. In 2004, Madaras [29] re�ned this by showing that there is a 3-star with
h3 = 4 and w3 = 13, which is tight. Recently, we gave [13] another tight description
of 3-stars for g = 5 in terms of degree of their vertices and showed that there are
only these two tight descriptions of 3-stars.

There exist many results on the height, weight and structure of 2−-stars when
δ = 2, see, for example, [1�4, 10, 16, 22�25] and also surveys by Jendrol', Voss [27]
and Borodin, Ivanova [12].

In 2016, Hud�ak, Macekov�a, Madaras and �Siroczki [22] considered the class of
plane graphs with δ = 2 in which no two vertices of degree 2 are adjacent. They
proved that h3 = w3 = ∞ if g ≤ 6, h3 = 5 if g = 7, h3 = 3 if g ≥ 8, w3 = 10 if
8 ≤ g ≤ 9 and w3 = 9 if g ≥ 10. For g = 7, Hud�ak et al. [22] proved 11 ≤ w3 ≤ 20,
and we recently proved [6] that in fact w3 = 12.

In the present paper, we deal with the class of plane graphs with large enough
girth g, minimum degree δ at least 2 and no (k + 1)-paths consisting of vertices of
degree 2, where k ≥ 1.

Hud�ak et al. [22] studied the case k = 1 and proved, in particular, that there
is a 3-vertex whose all neighbors have degree 2 (such a vertex is also called a soft
3-star), provided that g ≥ 10, which bound on g is sharp.

For the �rst open case k = 2 concerning a soft 3-star, it was known that it exists
if g ≥ 14 but may not exist if g ≤ 12.



SOFT 3-STARS IN SPARSE PLANE GRAPHS 1865

The main purpose of our paper is to settle the case k = 2 by proving that a soft
3-star may not exist even if g ≤ 13 (put k = 2 in Theorem 2 below). The other
purpose is to establish lower and upper bounds on g that ensure the existence of a
soft 3-star whenever k ≥ 2.

It is not hard to prove the following fact.

Theorem 1. Every plane graph with δ = 2, g ≥ 4k + 6 and no (k + 1)-paths
consisting of vertices of degree 2, where k ≥ 2, has a soft 3-vertex, where k ≥ 2.

Our main result is as follows.

Theorem 2. For all k ≥ 2, there is a plane graph with δ = 2, g ≤ 3k + 7, no
(k + 1)-paths consisting of vertices of degree 2, and no soft 3-stars.

The two above theorems resolve the case k = 2 as follows.

Corollary 1. Every plane graph with δ = 2, g ≥ 14 and no 3-paths consisting of
vertices of degree 2 has a soft 3-vertex, where the bound 14 is best possible.

We believe that the restriction on g in Theorem 2 is sharp whenever k ≥ 3.

Conjecture 1. Every plane graph with δ = 2, g ≥ 3k + 8 and no (k + 1)-paths
consisting of vertices of degree 2, where k ≥ 3, has a soft 3-vertex for all k ≥ 2.

2. Proof of Theorem 1

Let G be a counterexample to Theorem 1 by having δ(G) ≥ 2, g(G) = g ≥ 4k+6
with k ≥ 2, and no soft 3-vertices. Without loss of generality, we can assume that
G is connected.

Let V , E, and F be the sets of vertices, edges and faces of G, respectively. Euler's
formula |V | − |E|+ |F | = 2 for G may be rewritten as

(1)
∑
v∈V

(
g − 2

2
× d(v)− g) +

∑
f∈F

(d(f)− g) = −2g.

Each vertex v contributes the charge µ(v) = g−2
2 × d(v)− g to (1), and each face

f contributes the non-negative charge µ(f) = d(f)− g. This implies

(2)
∑
v∈V

µ(v) < 0.

Note that if d(v) = 2 then µ(v) = g−2
2 × 2− g = −2, and if d(v) ≥ 3 then

µ(v) =
g − 2

2
× d(v)− g = g(

d(v)

2
− 1)− d(v) ≥ (4k + 6)(

d(v)

2
− 1)− d(v) =

= (2k + 2)d(v)− 4k − 6.

In particular, for d(v) = 3 we have

µ(v) ≥ (2k + 2)3− 4k − 6 = 2k,

while d(v) ≥ 4 implies

µ(v) ≥ (2k + 2)d(v)− 4k − 6 > 2kd(v)− 4k ≥ kd(v).
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We now de�ne a local redistribution of µ(v)'s, preserving their sum, such that the
new charge µ′(v) is non-negative for all v ∈ V . Namely, µ′(v) obeys the following
rule:

R. Each 2-vertex receives 1 along its maximal path P consisting of 2-vertices
from each of the two end-vertices of P .

Using the above-mentioned estimations on µ(v), we immediately obtain µ′(v) ≥ 0
for all v ∈ V . Namely, if d(v) = 2 then µ′(v) = µ(v) + 2 × 1 = 0. For d(v) = 3
we have µ′(v) ≥ µ(v) − 2 × k = 0 since G has no soft 3-vertices. Finally, d(v) ≥ 4
implies µ′(v) ≥ µ(v)− d(v)× k = 0.

Now a contradiction with (2) completes the proof:

0 ≤
∑
v∈V

µ′(v) =
∑
v∈V

µ(v) < 0.

3. Proof of Theorem 2

In Fig. 1, we see a bit more than a quarter of a plane graph Fk that produces a
plane graph Hk with required properties by putting k vertices of degree 2 on each
edge of Fk not labeled by a star. The labeled edges of Fk become normal edges
of Hk.

Fig. 1. Dashed lines bound a quarter of a framework Fk of a
desired plane graph Hk with g(Hk) = 3k + 7 and no soft 3-stars.

More speci�cally, a quarter of Fk is bounded by one horizontal and two vertical
dashed lines. Now a half of Fk is obtained by gluing two quarters along the two
vertical dashed lines. To obtain the whole Fk, we glue lower and upper halves along
the horizontal �equator� in Fig. 1.
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It is not hard to see that Fk consists of 5-faces incident with four non-labelled
edges, 7-faces with three non-labelled edges in the boundary, and also two 10-faces
(an internal and external) each incident with four non-labelled edges.

Note that the resulting graph Hk has δ(Hk) = 2, no soft 3-vertices, no (k + 1)-
paths consisting of 2-vertices, while each face in Hk has degree either 10 + 4k, or
5+4k, or else 7+3k. Thus g(Hk) ≥ 3k+7 whenever k ≥ 2, as required in Theorem 2.
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