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ABSTRACT. We analyse correspondence of texts to a simple probabilistic
model. The model assumes that the words are selected independently
from an infinite dictionary, and the probability distribution of words
corresponds to the Zipf—Mandelbrot law. We count the numbers of
different words in the text sequentially and get the process of the numbers
of different words. Then we estimate the Zipt—Mandelbrot law’s parame-
ters using the same sequence and construct an estimate of the expectation
of the number of different words in the text. After that we subtract the
corresponding values of the estimate from the sequence and normalize
along the coordinate axes, obtaining a random process on a segment from
0 to 1. We prove that this process (the empirical text bridge) converges
weakly in the uniform metric on C(0,1) to a centered Gaussian process
with continuous a.s. paths. We develop and implement an algorithm for
calculating the probability distribution of the integral of the square of
this process. We present several examples of application of the algorithm
for analysis of the homogeneity of texts in English, French, Russian, and
Chinese.
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1. INTRODUCTION

Our analysis is based on the fact that a text in any natural language can be
divided into words. The source material for our analysis is a text with separated
words and excluded punctuation. In addition, all capital letters (if any) are replaced
by lowercase.

We test the hypothesis H that a text matches a simple probabilistic model. The
model satisfies the following three assumptions:

1) the dictionary contains countably many words that are enumerated i =
1,2,..5

2) words are sampled from the dictionary in the i.i.d. fashion according to discrete
distribution F' = {p;};>1 where p; is the probability of word ;

3) the distribution F' has a power tail:

(1) pi=clitq)™ ", i>1, 0<0<1, ¢>-1,

where g and 0 are the distribution parameters and c is the normalising constant.

These assumptions have a long history. Power decay of probabilities together
with unboundedness of the dictionary were proposed by Zipf (1936). Mandelbrot
(1965) noted that shift ¢ is required for the model to better match real texts.
Modern large-scale studies (see Petersen et al., 2012) show that the process of the
emergence of new words never stops, but very long sequences of texts show a slightly
lower frequency of new words than it is predicted by the formula (1). So we apply
our test for examples of not very long texts only.

The second assumption of the independence of the choice of consecutive words
is obviously false for any meaningful text. We can easily reject it statistically. If
we calculate the relative frequency of the word ’and ’ in an English text, and then
the relative frequency of the sequence ’and and ’ (that is, two and in succession),
then, according to H, the second should be approximately equal to the square of
the first. In practice, the second is much smaller; often, it is simply zero.

But we are not ready to abandon the assumption of independence. This assumption
is the base of our analysis. Therefore, we choose a characteristic that changes little
when rearranging neighboring words. This characteristic is the number of different
words of the text.

Let R, be the number of different words in the text of n words. Under the
assumption of independence, Bahadur proved the law of large numbers R,,/ER,, —
1 in probability, and Karlin proved strong law of large numbers R,/ER, — 1
a.s. and the central limit theorem: (R,, — ER,)/v/VarR, converges weakly to the
standard normal law.

Thus, we consider a text as a random sequence, we construct the sequence
Ri,..., R, and study it using the methods of the theory of random processes:
we invent parameter estimates and construct the empirical text bridge, that is, a
random process built on the parameter estimates and the sequence of numbers of
different words. We find the limit Gaussian process in the sense of weak convergence
in C(0,1). Then we calculate the distribution function G of the integral of the
squared limit process using the Smirnov (1937) formula.

Eigenvalues of the covariance function that are necessary for applying the Smirnov

formula are calculated approximately as the eigenvalues of the matrix Q = (qij)ﬁjzl
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composed of coefficients

1 1
(2) Qi :/ / K (s,t)sin mis sin 7jt dsdt.
0 0

We calculate ¢;; by a fast algorithm that reduces double integrals to definite
integrals.

Asymptotics of R,, and similar statistics (in particular, the number of unique
words, that is, words with exactly one occurrence in the text) have been studied by a
number of authors. The Gaussian approximation under assumptions (1) was studied
by Karlin, and beyond these assumptions by Dutko (1989), Gnedin, Hansen and
Pitman (2007), Hwang and Janson (2008), Barbour and Gnedin (2009). Barbour
(2009) proposed translated Poisson approximation for the number of unique words.
New papers by Ben-Hamou, Boucheron and Ohannessian (2017) and Decrouez,
Grabchak and Paris (2018) proved new general facts about these statistics.

The main result on which our study is based is the functional central limit
theorem for the sequence Ry,..., R,. It was proven by Chebunin and Kovalevskii
(2016) in preparation for this study. Note that the Gaussian process which is the
limit for this sequence can be found also in Durieu and Wang (2016) as a limit for
another prelimit process. Its generalization is in Durieu, Samorodnitsky and Wang
(2019).

Zipf parameter estimates were proposed by Nicholls (1987), Chebunin and Kova-
levskii (2019b), but we need a special estimate for which we can calculate joint
limit distribution of it and of the sequence Ry,..., R,. This estimate is proposed
in Chebunin and Kovalevskii (2019a). Zakrevskaya and Kovalevskii (2019) used the
estimate in analysis of Shakespeare’s sonnets.

Bahadur proved that under H the mathematical expectation of the number
of different words grows according to an asymptotically power law. This fact is
known to experts in natural language processing as Herdan’s law (Herdan, 1960)
or Heaps’ law (Heaps, 1978). Van Leijenhorst and van der Weide (2005), Eliazar
(2011) analyzed the relationship between the Zipf’s law and Heaps’ law based on
probabilistic models that were different from H.

Gerlach and Altmann (2013) noted specifically that there is no mathematically
correct statistical test for correspondence of a text to the Zipf’s law. We proposed
such a test in Chebunin and Kovalevskii (2019a). We are developing the algorithm
and applying it to texts in different languages in the present paper.

We propose an estimate for the Mandelbrot parameter g, prove its consistence,
then we construct an approximation of the process of the number of different words
using this estimate, and prove the weak convergence of the normalized difference
between the process and the approximation to a centered Gaussian process. We
calculate the covariance function of the limiting process and the distribution of
the integral of the square of this process. We use these results for an algorithm
for calculating the p-value of the hypothesis of text homogeneity and apply the
algorithm to the analysis of the homogeneity of texts in different languages.

The rest of the paper is organised as follows. The necessary theoretical results
are in Section 2, the algorithm is in Section 3, examples of text analysis are in
Section 4, and a discussion is in Section 5.
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2. THEORETICAL RESULTS

The Hurvitz zeta function is

Note that constant ¢ in (1) is
_ -1
c=c(8,q) = (C(G Lag+ 1)) .
Let n be a number of words in a text.
Let Ry be the number of different words among first & words of the text.
Let Ry = 0. We have R, =1, Ry<R <Ry <...<R,.
Bahadur (1960) proved that

(3) ER; ~ FT(1 - 0)4°,

where T'(z) = OOO y*~teY dy is the Euler gamma function. Bahadur also proved
convergence in probability R;/ER; 2 1.

Karlin (1967) proved that R;/ER; “3 1, which is equivalent to
(4) R; ~ C1j% as.,

thanks to (3). Here C; = C1(0,q) = ’T(1 — 0).

Chebunin and Kovalevskii (2016) proved the Functional Central Limit Theorem,
that is, the weak convergence of the process {(Rpny —ER[ny)/VER,, 0 <t <1} to
a centered Gaussian process Zy with continuous a.s. sample paths and covariance
function

K(s,t) = (s + )% — max(s?,t?).

Denote log™ z = max(log z, 0).

We propose the following estimator for parameter § (Chebunin and Kovalevskii,
2019a)

1
6 = / log™ R dA(t)
0

with a function A(-) that is the sum of a step function and a piecewise continuosly
differentiable function on [0, 1] and

(5) /01 logtdA(t) =1, A(t) =0, t €0, 6], for some & € (0, 1), A(1) = 0.

The next theorem follows from Theorems 2.1, 2.2 by Chebunin and Kovalevskii
(2019a).
Theorem 2.1 If (5) holds then the estimator 6 is strongly consistent, and

1
VER, (- 60) - / £0 7, (£) dA(t) =, 0.
0
From Theorem 2.1, it follows that 6 converges to 6 with rate (ER,)~1/2, and
normal random variable fol t=%Z(t) dA(t) has variance fol fol (st) 0K (s,t) dA(s) dA(t).
Example 2.1 Take

0, 0<t<1/2;
Alt) =< —(log2)7t, 1/2<t<1;

0, t=1.
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Then
(6) 0 =10gy(Rn/Rppny2), n>2.
Note that, in this example, for any function g on [0, 1],

1 J—
[ strancy - 20=9012)

Let us introduce the process Z,
Zu(kfn) = (Ri = (6/m) Ry ) / /R,

0<k<n Letfor0<t<1/nand0<k<n-1

Zn (fl + t) = Zn(k/n) +nt (Zn((k +1)/n) — Zn(k/n)) .

Theorem 2.2 (Theorem 4.1 by Chebunin and Kovalevskii, 2019a) If (5) holds
then Z,, converges weakly to Zy as n — oo, where

Zo(t) = Z9(t) — ¢ 1ogt/01 w9 Zp(u) dA(u),

Z9(t) = Zy(t) = t°Zp(1), 0 < t < 1.
The correlation function of Z is given by

K(s,t) = EZ(s)Z9(t) = K(s,t) — s"K(1,t) — t’ K (s,1) + s"t K (1,1).
— 1, 2 —~
Corollary 2.1 Let W2 = [ (Zn(t)) dt and (5) holds. Then W2 converges
0

—~ 1, 2
weakly to W3 = [ (Zo(1)) " dt.
0
W2 has the following representation

n—1
W2=D Zn(=) (220 (= )+ 20— ) )-

o~

The p-value of the goodness-of fit test is 1 —Fy (W2

n,obs
distribution function of Wy, and W7 . is the observed value of Wp.

One can estimate Fy by simulations or find it explicitely using the Smirnov’s

). Here Fy is the cumulative

formula (Smirnov, 1937): if Wg = Z—E, 71,72, ... are independent and have
standard normal distribution, 0 < A\; < Ay < ..., then

1S Azk o= Aw/2 d\
(7) Fy(z) =1+ (—1)* >0,

; k=1 Aag—1 V/ _D(A) . T’ ;
b =] (1-2).

k=1
The integrals in the RHS of (7) must tend to 0 monotonically as k — oo, and
A, ! are the eigenvalues of kernel K (s,t) = EZy(s)Zy(t), see Smirnov (1937).
We are exploring the two-parameter model in this paper. Therefore, we now
develop a new approximation of the process of the number of different words using
the estimate of the Mandelbrot parameter g.
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Let us introduce the empirical bridge of a text Zn by substituting

(8) e =1k(0,9) =Y (1-(1-p)")
=1

instead of (k/n)an in Z,, that is,
9) En(k/”) = (Rk — 1) /v Rn,
0<k<n.

Here
(10) Pi=cO,i+ ", i>1,
(11) F=min{g>—1: r,(6,9) = R,}.

Theorem 2.3 If H is true then ¢ — ¢ in probability as n — oo, and Z\n—zl -0
in probability uniformly on q in any segment in (—1,c0).

Proof
From Lemma 1 in Gnedin et al. (2007) we have
2 2
|ERn — ERH(n)| < 7ER7L,2 < — X =1.
n n

|3

Karlin (1967) proposed representation

e 1
ERpq) = / alty)—e dy,
0 Y
where )
a(r) = max{jlp; = _}.
In our case
a(@) = [(ex)’ - q).
We represent
T(k— ) :/ y E e vy,
0
So
(cn)’T(1 = 0) —q¢— 1 <ERp,) < (en)’T(1—0) —q,
ER, = (cn)’T(1 = 0) —q+ T, |Tn| <2,
then R R
|rn — (En)ef(l —0)+4q| <2as.
Notice, that for any = > 0

> - pitl 0

Ot a) = Z(i—%x)*(’_l > Z/ (y+x)*a_1dy :/ (y+x)79_1dy _ 0117179—17
i=0 i=0 71 0

where ¢; = ¢1(0) = (071 — 1)1, and

CO )= (i+a) <a T+ Z/ ta) dy=ae"" + a0
i=0 5 Ji-1

It’s not hard to see that
& = (C(é)*l,q + 1))*9 ~ clqlfe as g — oo.
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From the strong law of large numbers for R, and o — 0 a.s., we can choose a
constant K = K (6,q) = 2¢°T'(1 — 6) such that

P(R, <Kn§)—>lasn—>oo.

Therefore, we can choose ¢* such, that

(c(@,4)'0(1 ~B) ~ (c(6,4°))’T(1~6) > K

Hence
P(qg, <q*) = 1asn— oo.
Oun the other hand, from (3) we have

Ry ~ (e(0.))’T(1~0),

rn ~ (c(0,3n)'T(1—9),

a.s.

and r, = R,, 0 — 0 a.s., so

(c(9,9)n)?
(c(8, 9)n)?

From Theorem 2.1, n’~% — 1 in probability, so c(a, q) — ¢(0, q) in probability, and
¢(#,q) is a continious and strictly monotone function of ¢ for any 8 € (0, 1). Thus
q — q in probability.

Now we estimate

a.s. 1.

o L) Ry i
1<k<n VR, ’
We have

|k /)0 Ry — | = (/) — 7
< |(k/n)?((@n)’T(1 — 8) — ) — (@)°T(1 — ) + ) + 4
=1q(1 = (k/n)")| +4 < G+4.
As R, — oo a.s. and ¢ — ¢ in probability, we have
|(k/n)° R — 74
1r§nk:a%{n VR, —

in probability.
The proof is complete.
3. ALGORITHM
Note that

00 k
:Z 1_202(_

i=1 j=0

CU-1 Y @i+

1 =1

[
E

<.
Il

k —J
ZC 1)+1¢ /9 1479 (4(1/5,1+c7))

j=1
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So we have the finite formula to calculate ry,...,7,. This formula is not good
for large k due to high complexity of calculations of binomial coefficients. So we use
an appoximation by substituting an intergal instead of series residual

(o}

M
=320 (- + [ - es-ka )y
=1 M+0.5+q
M keN~
(12) =) (1-(@1-p)* / 2 Pe*dz — N(1 — exp(—keN—%)),
i=1 0

a=1/6, N=M+05+7.

We calculate the integral using incomplete Gamma function. We find ¢ by
dichotomy method for r,, = R,.

Elementary calculations give

K(s,t) = EZy(s)Zo(t)

_ 90 _ 90
_ KO(S,t) 7t910gtK(871) 2 K(S,1/2) 78010gSK(t’1) 2 K(t71/2)

log 2 log 2
K(1,1)—2K(1,1/2
+39t9(logs+logt) 1,1 (1,1/2)
log 2
K(1,1) =20t K (1,1/2) + 229K (1/2,1/2
etalogslogt (7 ) (17 éQ)+ (/7 /)
og

Now we represent the kernel K by the matrix Q = (qij)f’jzl by calculation of

11
(13) qi]‘:/ / K (s,t)sinmissinmjt dsdt.
0

We know K (s,t) = (s +t)? — max(s?, %),
K(s,t) = K(s,t) — sS"K(1,t) — t'K(s,1) + s?t° K (1,1)
_ 90 _ 90
K(s,1) —2°K(s,1/2) _ 4 logsK(t, 1) —2°K(t,1/2)
log 2 log 2
K(1,1) - 2K (1,1/2)
log 2
K(1,1) — 201 K(1,1/2) + 220 K(1/2,1/2)
log? 2 ’

—t?logt

+5%t% (log s + log t)

+5%t% log slog t

Let us denote

1,1
Jij = / / (s+ t)6 sin wis sin 7t dsdt,
o Jo

a(@,k,:z:):/ t¥ sin wkt dt, b(@,k,:z:):/ t cos wkt dt,
0 0

1 2
A = / t'sinwitdt = a(0,i,1), B; = t' sinwit dt = a(0,i,2) — a(6,i,1),
0 1

1
C;, = / t'* cosmitdt = b(6 + 1,4,1),
0
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2
D; = / t9(2 — t) cos it dt = 2b(6,4,2) — 2b(0,4,1) — b(6 4 1,4,2) +b(6 +1,i,1),
1
1 1
Ei‘:/ t% sin it cos it dt, Fi:/ K(t,1)sinmit dt,
0 0

1 1
Gi:/ t% log t sin it dt, Hi:/ K(t,1/2)sinmit dt.
0 0

Then we have

1 1
Z (A —E.)— —(A. — E...
7_(]( g 1]) 7TZ( J ]1)
—AlF] - AJFZ + K(]., 1)A1AJ
F,—2'H; _, F;—2°H,

qij = Jij —

Y log 2 " log?2
K(1,1) - 2K(1,1/2)
+(A,G5 + A;Gy) Tog2
K(1,1) — 211K (1,1/2) + 229 K(1/2,1/2
1o, KLY & é;+ (1/2,1/2)
og

We calculate J;; substituting t =u —s, s <u < s+ 1. So
1 u 2 1
Jij = / u? du/ sinmissinmj(u — s)ds + / u? du/ sinmissinwj(u — s) ds.
0 0 1 u—1
If i # j then we have

1 1 u
Jij = 5/0 u’ du/o (cosm(is — ju+ js) — cosm(is + ju — js)) ds

1 /2 1
+§/ uf du/ (cosm(is — ju+ js) — cosm(is + ju — js)) ds
1 u—1

1 /1 o <sin7riu+sin7rju sinﬂ'iusinﬂ'ju> du
0

T2 (i + j) a (i — j)
1 2 o sin(m(i + j) — wju) + sin(w (i + j) — wiu)
+2/1 ( (i + j)
sin(w(i — j) + mju) +sin(w (i — j) — miv) "
w0 5) )
A= jA — (C)IB, — By
- @7 '

If i« = j then we have

1 1 u
Jii = = / u’ du/ (cosm(2is — iu) — cos miu) ds
2.Jo 0
1 2 1
+§ / u? du/ (cos(2is — iu) — cosmiu) ds
1 u—1
1

1 . .
sin iu .
== W — ¥ cosmiu | du
2 0 e

N % /2 0 Sin(2ri — miu) — sin(2miu — 2mi — wiu) 1 /2 W2 — ) cos miu du
1 1

21
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omi 2
We know
a(0,k,x) = nka" 2 1 Fy (0/2+1,3/2,0/2 + 2, —k*n2? /4) /(6 + 2),
b0, k,x) = 2% Fy (0/2 + 1/2,1/2,0/2 + 3/2, —k*n?x%/4) /(0 + 1),
1 1
E;ij = §Ai+j + §Az‘7j,
F, = ( 1) ‘B, +(71)771,
T

t 2k+1 s (_1)k<7ri)2k+1
Gi= | t"logt (i dt = —
/ o8 Z 2k+1 kzzo(2k+l)!(2k+0+2)2

= —mioF3 (0/2+ 17 0/2+1,3/2,0/2+2,0/2 +2,—i*1%/4) /(6 + 2)2,
3/2 1
H; = t¥ sin(mit — wi/2) dt + (cos(mi/2) — 1)27% /(mi) — / t¥ sin it dt
1/2 1/2

= i cos(mi/2) ((:3/2)9+21F2 (0/2+1,3/2,0/2 +2,—9i°7"/16)

—279"2, 15 (0/2+ 1,3/2,0/2 + 2, —i*7 /16) >/(9 +2)
— sin(mi/2) ((:),/2)(’“11?2 (0/2+1/2,1/2,0/2 + 3/2,—9i°n* /16)

—270-1L F, (9/2 +1/2,1/2,6/2+3/2, —i27r2/16) )/(9 +1)

+(cos(mi/2)—1)27% /(mi)— Aj+mi2 072 Fy (0/2 + 1,3/2,0/2 + 2, —i*7% /16) /(6+2).
1F5 and oF3 are generalized hypergeometric functions, hyp1f2 and hyp2f3 in
Python.
We calculate eigenvalues \;, 1 < ¢ < L, of the matrix @. Then we use the Smirnov
formula to calculate the p-value.

1
Let W2 = [ (Zg(t))2 dt. It is equal to
0

(14) W2 = % :zjzg (:) (222 <z) + 70 <k:1)> .

1
Then W72 converges weakly to Wg = [ (Zg(zf))2 dt.
0

So the test rejects the basic hypothesis if W2 > C. The p-value of the test is
1-— Fg(Wn obs)- Here Fy is the cumulative distribution function of W7 and Wﬁ obs
is a concrete value of W2 for observations under consideration.

So, we developed the following text homogeneity analysis algorithm.

Algorithm
1. Remove all punctuation marks.
2. Calculate the process of numbers of different words.
3. Calculate the estimate 6 of the parameter 6 by (6).
4. Calculate the estimate g of the parameter ¢ by (11) with (12) for k = n
and (10).
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5. Calculate the normalised difference of the process of numbers of different
words and its estimate (the empirical bridge Z,,) by (9) with (12).

6. Calculate the integral W2 , = W2 of the square of the empirical bridge
by (14).

7. Represent the kernel K by the matrix Q = (qz'j)iL,j:1 by (13). The integrals
are calculated by methods of Section 3.

8. Find eigenvalues A; of the matrix.

9. Calculate the p-value 1 — Fg(Wiobs) by (7).

L and M are the parameters of the algorithm, L is the matrix dimension, M is
the constant in (12).

,obs

4. EXAMPLES OF TEXT ANALYSIS

We use the algorithm with L = 100, M = 1000.

We find ¢ by dichotomy method for r, = R, with 20 iterations on segment
[—0.9, 40].

Here are given an example of French poetry, Les Regrets by Joachim du Bellay
(1558), sonnet 1 (Pic. 1) and Shakespeare’s sonnet 1 (Pic. 2).

These are examples of homogeneous texts.

1je 1 1 0 00 n
2 ne 2 1961141  0.0044 50 R_n
3 |veux 3 2.88887 0.012583 70 el
4 |point 4 3.787758 0.024032 0 ~ ¢_hat
5 |fouiller 5 4661642 0.038312 _
6 6 5513751 0.055057 %0 i value
i e 7 6.346808 0.073959 0 e >
sein . R

g |de 8 7.163111 0.094759 =0 =
5 la 9 7.964605 0.117235 | ° =

10
10 [nature 10 8752938 0.141202
11 |je 10 9.529515 0.053272 0

MmO SR MmO S Mmoo Mo o e

12 |ne 10 10.29553 -0.03346 HENRMTTnbo~~®0n 03500 N
13 |veux 10 11.05201 -0.11912 -
14 |point 10 11.79983 -0.20379 .
15 |cercher 11 12.53974 -0.17434 0,2
16 |esprit 12 13.27241 -0.14407 01 A A’M
17 |de 12 13.99839 -0.22627 o \ A
18 |univers 13 14.71818 -0.19455 M "“;! ——— o %l A -
19 je 13 15.43221 -0.27539 01 onm s s = TooE o
20 |ne 13 16.14085 -0.35563 02 \l\ A \ R J

- VY
21 [veux 13 1684447 04353 | '\ M W'
22 |point 13 17.54333 -0.51443 g \ / l‘f' LI
23 [sonder 14 18.23772 -0.47983 04
24 |les 15 18.92785 -0.44474 s V
25 |abysmes 16 19.61396 -0.4092

Puc. 1. Les Regrets by Joachim du Bellay (1558), sonnet 1

This approach can work with texts on any language.

See the first stanza of the first chapter of Eugene Onegin by Pushkin (Pic. 3) for
example of Russian homogeneous text.

We use hieroglyphs instead of words when analyzing Chinese texts. We substitute
hieroglyphs with their HTML codes. We analyse Danging Painting by Du Fu (Pic.
4). This text is homogeneous, too.

An example of a nonhomogeneous text is Shakespeare’s sonnet 1 with 3 repeated
lines (Pic. 5).

123
78

theta_hat 0.859137
-0.13832
omegat2 0.036427
0.567342
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example is Du Bellay’s sonnet 1 + Shakespeare’s sonnet 1 (Pic. 6).
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Puc. 3. The first stanza of the first chapter of Fugene Onegin by Pushkin

Another example of nonhomogeneity is a text from different languages. The

To find nonhomogeneity for a text in one language we need more longer texts.
Here the first three stanzas of Childe Harold’s Pilgrimage by Byron and the first
three Shakespeare’s sonnets (Pic. 7).
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Puc. 5. Shakespeare’s sonnet 1 with 3 repeated lines

5. DiIscussioN

There are some open questions in the application of this approach. The first
open question is the Poisson approximation. If the number of identical words is
small, then the Gaussian approximation is inaccurate. Barbour (2009) proposed an
approximation by a translated Poisson distribution. We need a functional version
of his theorem.
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Another open question is the implementation of the Simon model. Let R,, 1 be
the number of words that occur exactly once. Under the assumptions made, there
should be convergence R, 1/R, — 6 a.s. (Karlin, 1967). But real texts behave
(iifferently. Typically, the number of words that occur once is significantly less than
OR,,.

Simon (1955) proposed the next stochastic model: the (n 4+ 1)-th word in the
text is new with probability p; it coincides with each of the previous words with
probability (1—p)/n. The drawback of Simon’s model is that the number of different
words grows linearly. We need some kind of hybrid of an infinite urn model and
Simon’s model.
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