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Abstract. We analyse correspondence of texts to a simple probabilistic
model. The model assumes that the words are selected independently
from an in�nite dictionary, and the probability distribution of words
corresponds to the Zipf�Mandelbrot law. We count the numbers of
di�erent words in the text sequentially and get the process of the numbers
of di�erent words. Then we estimate the Zipf�Mandelbrot law's parame-
ters using the same sequence and construct an estimate of the expectation
of the number of di�erent words in the text. After that we subtract the
corresponding values of the estimate from the sequence and normalize
along the coordinate axes, obtaining a random process on a segment from
0 to 1. We prove that this process (the empirical text bridge) converges
weakly in the uniform metric on C(0, 1) to a centered Gaussian process
with continuous a.s. paths. We develop and implement an algorithm for
calculating the probability distribution of the integral of the square of
this process. We present several examples of application of the algorithm
for analysis of the homogeneity of texts in English, French, Russian, and
Chinese.
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1. Introduction

Our analysis is based on the fact that a text in any natural language can be
divided into words. The source material for our analysis is a text with separated
words and excluded punctuation. In addition, all capital letters (if any) are replaced
by lowercase.

We test the hypothesis H that a text matches a simple probabilistic model. The
model satis�es the following three assumptions:

1) the dictionary contains countably many words that are enumerated i =
1, 2, . . .;

2) words are sampled from the dictionary in the i.i.d. fashion according to discrete
distribution F = {pi}i≥1 where pi is the probability of word i;

3) the distribution F has a power tail:

(1) pi = c(i+ q)−θ
−1

, i ≥ 1, 0 < θ < 1, q > −1,

where q and θ are the distribution parameters and c is the normalising constant.
These assumptions have a long history. Power decay of probabilities together

with unboundedness of the dictionary were proposed by Zipf (1936). Mandelbrot
(1965) noted that shift q is required for the model to better match real texts.
Modern large-scale studies (see Petersen et al., 2012) show that the process of the
emergence of new words never stops, but very long sequences of texts show a slightly
lower frequency of new words than it is predicted by the formula (1). So we apply
our test for examples of not very long texts only.

The second assumption of the independence of the choice of consecutive words
is obviously false for any meaningful text. We can easily reject it statistically. If
we calculate the relative frequency of the word 'and ' in an English text, and then
the relative frequency of the sequence 'and and ' (that is, two and in succession),
then, according to H, the second should be approximately equal to the square of
the �rst. In practice, the second is much smaller; often, it is simply zero.

But we are not ready to abandon the assumption of independence. This assumption
is the base of our analysis. Therefore, we choose a characteristic that changes little
when rearranging neighboring words. This characteristic is the number of di�erent
words of the text.

Let Rn be the number of di�erent words in the text of n words. Under the
assumption of independence, Bahadur proved the law of large numbers Rn/ERn →
1 in probability, and Karlin proved strong law of large numbers Rn/ERn → 1
a.s. and the central limit theorem: (Rn − ERn)/

√
VarRn converges weakly to the

standard normal law.
Thus, we consider a text as a random sequence, we construct the sequence

R1, . . . , Rn and study it using the methods of the theory of random processes:
we invent parameter estimates and construct the empirical text bridge, that is, a
random process built on the parameter estimates and the sequence of numbers of
di�erent words. We �nd the limit Gaussian process in the sense of weak convergence
in C(0, 1). Then we calculate the distribution function G of the integral of the
squared limit process using the Smirnov (1937) formula.

Eigenvalues of the covariance function that are necessary for applying the Smirnov
formula are calculated approximately as the eigenvalues of the matrix Q = (qij)

L
i,j=1
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composed of coe�cients

(2) qij =

∫ 1

0

∫ 1

0

K̂(s, t) sinπis sinπjt dsdt.

We calculate qij by a fast algorithm that reduces double integrals to de�nite
integrals.

Asymptotics of Rn and similar statistics (in particular, the number of unique
words, that is, words with exactly one occurrence in the text) have been studied by a
number of authors. The Gaussian approximation under assumptions (1) was studied
by Karlin, and beyond these assumptions by Dutko (1989), Gnedin, Hansen and
Pitman (2007), Hwang and Janson (2008), Barbour and Gnedin (2009). Barbour
(2009) proposed translated Poisson approximation for the number of unique words.
New papers by Ben-Hamou, Boucheron and Ohannessian (2017) and Decrouez,
Grabchak and Paris (2018) proved new general facts about these statistics.

The main result on which our study is based is the functional central limit
theorem for the sequence R1, . . . , Rn. It was proven by Chebunin and Kovalevskii
(2016) in preparation for this study. Note that the Gaussian process which is the
limit for this sequence can be found also in Durieu and Wang (2016) as a limit for
another prelimit process. Its generalization is in Durieu, Samorodnitsky and Wang
(2019).

Zipf parameter estimates were proposed by Nicholls (1987), Chebunin and Kova-
levskii (2019b), but we need a special estimate for which we can calculate joint
limit distribution of it and of the sequence R1, . . . , Rn. This estimate is proposed
in Chebunin and Kovalevskii (2019a). Zakrevskaya and Kovalevskii (2019) used the
estimate in analysis of Shakespeare's sonnets.

Bahadur proved that under H the mathematical expectation of the number
of di�erent words grows according to an asymptotically power law. This fact is
known to experts in natural language processing as Herdan's law (Herdan, 1960)
or Heaps' law (Heaps, 1978). Van Leijenhorst and van der Weide (2005), Eliazar
(2011) analyzed the relationship between the Zipf's law and Heaps' law based on
probabilistic models that were di�erent from H.

Gerlach and Altmann (2013) noted speci�cally that there is no mathematically
correct statistical test for correspondence of a text to the Zipf's law. We proposed
such a test in Chebunin and Kovalevskii (2019a). We are developing the algorithm
and applying it to texts in di�erent languages in the present paper.

We propose an estimate for the Mandelbrot parameter q, prove its consistence,
then we construct an approximation of the process of the number of di�erent words
using this estimate, and prove the weak convergence of the normalized di�erence
between the process and the approximation to a centered Gaussian process. We
calculate the covariance function of the limiting process and the distribution of
the integral of the square of this process. We use these results for an algorithm
for calculating the p-value of the hypothesis of text homogeneity and apply the
algorithm to the analysis of the homogeneity of texts in di�erent languages.

The rest of the paper is organised as follows. The necessary theoretical results
are in Section 2, the algorithm is in Section 3, examples of text analysis are in
Section 4, and a discussion is in Section 5.
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2. Theoretical results

The Hurvitz zeta function is

ζ(a, x) =

∞∑
i=0

(i+ x)−a.

Note that constant c in (1) is

c = c(θ, q) =
(
ζ(θ−1, q + 1)

)−1
.

Let n be a number of words in a text.
Let Rk be the number of di�erent words among �rst k words of the text.
Let R0 = 0. We have R1 = 1, R0 < R1 ≤ R2 ≤ . . . ≤ Rn.
Bahadur (1960) proved that

(3) ERj ∼ cθΓ(1− θ)jθ,

where Γ(x) =
∫∞

0
yx−1e−y dy is the Euler gamma function. Bahadur also proved

convergence in probability Rj/ERj
p→ 1.

Karlin (1967) proved that Rj/ERj
a.s.→ 1, which is equivalent to

(4) Rj ∼ C1j
θ a.s.,

thanks to (3). Here C1 = C1(θ, q) = cθΓ(1− θ).
Chebunin and Kovalevskii (2016) proved the Functional Central Limit Theorem,

that is, the weak convergence of the process {(R[nt]−ER[nt])/
√
ERn, 0 ≤ t ≤ 1} to

a centered Gaussian process Zθ with continuous a.s. sample paths and covariance
function

K(s, t) = (s+ t)θ −max(sθ, tθ).

Denote log+ x = max(log x, 0).
We propose the following estimator for parameter θ (Chebunin and Kovalevskii,

2019a)

θ̂ =

∫ 1

0

log+R[nt] dA(t)

with a function A(·) that is the sum of a step function and a piecewise continuosly
di�erentiable function on [0, 1] and

(5)

∫ 1

0

log t dA(t) = 1, A(t) = 0, t ∈ [0, δ], for some δ ∈ (0, 1), A(1) = 0.

The next theorem follows from Theorems 2.1, 2.2 by Chebunin and Kovalevskii
(2019a).

Theorem 2.1 If (5) holds then the estimator θ̂ is strongly consistent, and√
ERn(θ̂ − θ)−

∫ 1

0

t−θZn(t) dA(t)→p 0.

From Theorem 2.1, it follows that θ̂ converges to θ with rate (ERn)−1/2, and

normal random variable
∫ 1

0
t−θZθ(t) dA(t) has variance

∫ 1

0

∫ 1

0
(st)−θK(s, t) dA(s) dA(t).

Example 2.1 Take

A(t) =

 0, 0 ≤ t ≤ 1/2;
−(log 2)−1, 1/2 < t < 1;
0, t = 1.
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Then

(6) θ̂ = log2(Rn/R[n/2]), n ≥ 2.

Note that, in this example, for any function g on [0, 1],∫ 1

0

g(t) dA(t) =
g(1)− g(1/2)

log 2
.

Let us introduce the process Ẑn:

Ẑn(k/n) =
(
Rk − (k/n)θ̂Rn

)
/
√
Rn,

0 ≤ k ≤ n. Let for 0 ≤ t ≤ 1/n and 0 ≤ k ≤ n− 1

Ẑn

(
k

n
+ t

)
= Ẑn(k/n) + nt

(
Ẑn((k + 1)/n)− Ẑn(k/n)

)
.

Theorem 2.2 (Theorem 4.1 by Chebunin and Kovalevskii, 2019a) If (5) holds

then Ẑn converges weakly to Ẑθ as n→∞, where

Ẑθ(t) = Z0
θ (t)− tθ log t

∫ 1

0

u−θZθ(u) dA(u),

Z0
θ (t) = Zθ(t)− tθZθ(1), 0 ≤ t ≤ 1.
The correlation function of Z0

θ is given by

K0(s, t) = EZ0
θ (s)Z0

θ (t) = K(s, t)− sθK(1, t)− tθK(s, 1) + sθtθK(1, 1).

Corollary 2.1 Let Ŵ 2
n =

1∫
0

(
Ẑn(t)

)2

dt and (5) holds. Then Ŵ 2
n converges

weakly to Ŵ 2
θ =

1∫
0

(
Ẑθ(t)

)2

dt.

Ŵ 2
n has the following representation

Ŵ 2
n =

1

3n

n−1∑
k=1

Ẑn

(
k

n

)(
2Ẑn

(
k

n

)
+ Ẑn

(
k + 1

n

))
.

The p-value of the goodness-of �t test is 1−F̂θ(Ŵ 2
n,obs). Here F̂θ is the cumulative

distribution function of Ŵ 2
θ , and Ŵ

2
n,obs is the observed value of Ŵ 2

n .
One can estimate Fθ by simulations or �nd it explicitely using the Smirnov's

formula (Smirnov, 1937): if Ŵ 2
θ =

∑∞
k=1

η2k
λk
, η1, η2, . . . are independent and have

standard normal distribution, 0 < λ1 < λ2 < . . ., then

(7) Fθ(x) = 1 +
1

π

∞∑
k=1

(−1)k
∫ λ2k

λ2k−1

e−λx/2√
−D(λ)

· dλ
λ
, x > 0,

D(λ) =

∞∏
k=1

(
1− λ

λk

)
.

The integrals in the RHS of (7) must tend to 0 monotonically as k → ∞, and

λ−1
k are the eigenvalues of kernel K̂(s, t) = EẐθ(s)Ẑθ(t), see Smirnov (1937).
We are exploring the two-parameter model in this paper. Therefore, we now

develop a new approximation of the process of the number of di�erent words using
the estimate of the Mandelbrot parameter q.



1964 A. CHAKRABARTY ET AL.

Let us introduce the empirical bridge of a text Z̃n by substituting

(8) rk = rk(θ̂, q̂) =

∞∑
i=1

(
1− (1− p̂i)k

)
instead of (k/n)θ̂Rn in Ẑn, that is,

(9) Z̃n(k/n) = (Rk − rk) /
√
Rn,

0 ≤ k ≤ n.
Here

(10) p̂i = c(θ̂, q̂)(i+ q̂)−1/θ̂, i ≥ 1,

(11) q̂ = min{q̃ > −1 : rn(θ̂, q̃) = Rn}.

Theorem 2.3 If H is true then q̂ → q in probability as n→∞, and Ẑn−Z̃n → 0
in probability uniformly on q in any segment in (−1,∞).

Proof
From Lemma 1 in Gnedin et al. (2007) we have

|ERn −ERΠ(n)| <
2

n
ERn,2 ≤

2

n
× n

2
= 1.

Karlin (1967) proposed representation

ERΠ(t) =

∫ ∞
0

α(ty)
1

y2
e−1/ydy,

where

α(x) = max{j|pj ≥
1

x
}.

In our case
α(x) = [(cx)θ − q].

We represent

Γ(k − γ) =

∫ ∞
0

yγ−k−1e−1/ydy.

So
(cn)θΓ(1− θ)− q − 1 ≤ ERΠ(n) ≤ (cn)θΓ(1− θ)− q,

ERn = (cn)θΓ(1− θ)− q + Tn, |Tn| < 2,

then
|rn − (ĉn)θ̂Γ(1− θ̂) + q̂| < 2 a.s.

Notice, that for any x > 0

ζ(θ−1, x) =

∞∑
i=0

(i+x)−θ
−1

>

∞∑
i=0

∫ i+1

i

(y+x)−θ
−1

dy =

∫ ∞
0

(y+x)−θ
−1

dy = c1x
1−θ−1

,

where c1 = c1(θ) = (θ−1 − 1)−1, and

ζ(θ−1, x) =

∞∑
i=0

(i+ x)−θ
−1

< x−θ
−1

+

∞∑
i=1

∫ i

i−1

(y + x)−θ
−1

dy = x−θ
−1

+ c1x
1−θ−1

.

It's not hard to see that

cθ = (ζ(θ−1, q + 1))−θ ∼ c1q1−θ as q →∞.
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From the strong law of large numbers for Rn and θ̂ → θ a.s., we can choose a
constant K = K(θ, q) = 2cθΓ(1− θ) such that

P(Rn < Knθ̂)→ 1 as n→∞.
Therefore, we can choose q∗ such, that

(c(θ̂, q∗))θ̂Γ(1− θ̂) ∼
a.s.

(c(θ, q∗))θΓ(1− θ) > K.

Hence

P(q̂n < q∗)→ 1 as n→∞.
On the other hand, from (3) we have

Rn ∼
a.s.

(c(θ, q)n)θΓ(1− θ),

rn ∼
a.s.

(c(θ̂, q̂)n)θ̂Γ(1− θ̂),

and rn = Rn, θ̂ → θ a.s., so

(c(θ̂, q̂)n)θ̂

(c(θ, q)n)θ
a.s.−−→ 1.

From Theorem 2.1, nθ̂−θ → 1 in probability, so c(θ̂, q̂)→ c(θ, q) in probability, and
c(θ, q) is a continious and strictly monotone function of q for any θ ∈ (0, 1). Thus
q̂ → q in probability.

Now we estimate

max
1≤k≤n

|(k/n)θ̂Rn − rk|√
Rn

.

We have

|(k/n)θ̂Rn − rk| = |(k/n)θ̂rn − rk|

< |(k/n)θ̂((ĉn)θ̂Γ(1− θ̂)− q̂)− (ĉk)θ̂Γ(1− θ̂) + q̂|+ 4

= |q̂(1− (k/n)θ̂)|+ 4 ≤ q̂ + 4.

As Rn →∞ a.s. and q̂ → q in probability, we have

max
1≤k≤n

|(k/n)θ̂Rn − rk|√
Rn

→ 0

in probability.
The proof is complete.

3. Algorithm

Note that

rk =

∞∑
i=1

1−
k∑
j=0

Cjk(−1)j(p̂i)
j


=

k∑
j=1

Cjk(−1)j+1
∞∑
i=1

ĉj(i+ q̂)−j/θ̂

=

k∑
j=1

Cjk(−1)j+1ζ(j/θ̂, 1 + q̂)
(
ζ(1/θ̂, 1 + q̂)

)−j
.
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So we have the �nite formula to calculate r1, . . . , rn. This formula is not good
for large k due to high complexity of calculations of binomial coe�cients. So we use
an appoximation by substituting an intergal instead of series residual

rk ≈
M∑
i=1

(1− (1− p̂i)k) +

∞∫
M+0.5+q̂

(1− exp(−kĉy−α̂))dy

(12) =

M∑
i=1

(1− (1− p̂i)k) + (kĉ)θ̂
kĉN−α̂∫

0

z−θ̂e−zdz −N(1− exp(−kĉN−α̂)),

α̂ = 1/θ̂, N = M + 0.5 + q̂.
We calculate the integral using incomplete Gamma function. We �nd q̂ by

dichotomy method for rn = Rn.
Elementary calculations give

K̂(s, t) = EẐθ(s)Ẑθ(t)

= K0(s, t)− tθ log t
K(s, 1)− 2θK(s, 1/2)

log 2
− sθ log s

K(t, 1)− 2θK(t, 1/2)

log 2

+sθtθ(log s+ log t)
K(1, 1)− 2θK(1, 1/2)

log 2

+sθtθ log s log t
K(1, 1)− 2θ+1K(1, 1/2) + 22θK(1/2, 1/2)

log2 2
.

Now we represent the kernel K̂ by the matrix Q = (qij)
L
i,j=1 by calculation of

(13) qij =

∫ 1

0

∫ 1

0

K̂(s, t) sinπis sinπjt dsdt.

We know K(s, t) = (s+ t)θ −max(sθ, tθ),

K̂(s, t) = K(s, t)− sθK(1, t)− tθK(s, 1) + sθtθK(1, 1)

−tθ log t
K(s, 1)− 2θK(s, 1/2)

log 2
− sθ log s

K(t, 1)− 2θK(t, 1/2)

log 2

+sθtθ(log s+ log t)
K(1, 1)− 2θK(1, 1/2)

log 2

+sθtθ log s log t
K(1, 1)− 2θ+1K(1, 1/2) + 22θK(1/2, 1/2)

log2 2
.

Let us denote

Jij =

∫ 1

0

∫ 1

0

(s+ t)θ sinπis sinπjt dsdt,

a(θ, k, x) =

∫ x

0

tθ sinπkt dt, b(θ, k, x) =

∫ x

0

tθ cosπkt dt,

Ai =

∫ 1

0

tθ sinπit dt = a(θ, i, 1), Bi =

∫ 2

1

tθ sinπit dt = a(θ, i, 2)− a(θ, i, 1),

Ci =

∫ 1

0

tθ+1 cosπit dt = b(θ + 1, i, 1),
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Di =

∫ 2

1

tθ(2− t) cosπit dt = 2b(θ, i, 2)− 2b(θ, i, 1)− b(θ + 1, i, 2) + b(θ + 1, i, 1),

Eij =

∫ 1

0

tθ sinπit cosπjt dt, Fi =

∫ 1

0

K(t, 1) sinπit dt,

Gi =

∫ 1

0

tθ log t sinπit dt, Hi =

∫ 1

0

K(t, 1/2) sinπit dt.

Then we have

qij = Jij −
1

πj
(Ai − Eij)−

1

πi
(Aj − Eji)

−AiFj −AjFi +K(1, 1)AiAj

−Gj
Fi − 2θHi

log 2
−Gi

Fj − 2θHj

log 2

+(AiGj +AjGi)
K(1, 1)− 2θK(1, 1/2)

log 2

+GiGj
K(1, 1)− 2θ+1K(1, 1/2) + 22θK(1/2, 1/2)

log2 2
.

We calculate Jij substituting t = u− s, s ≤ u ≤ s+ 1. So

Jij =

∫ 1

0

uθ du

∫ u

0

sinπis sinπj(u− s) ds+

∫ 2

1

uθ du

∫ 1

u−1

sinπis sinπj(u− s) ds.

If i 6= j then we have

Jij =
1

2

∫ 1

0

uθ du

∫ u

0

(cosπ(is− ju+ js)− cosπ(is+ ju− js)) ds

+
1

2

∫ 2

1

uθ du

∫ 1

u−1

(cosπ(is− ju+ js)− cosπ(is+ ju− js)) ds

=
1

2

∫ 1

0

uθ
(

sinπiu+ sinπju

π(i+ j)
− sinπiu− sinπju

π(i− j)

)
du

+
1

2

∫ 2

1

uθ
(

sin(π(i+ j)− πju) + sin(π(i+ j)− πiu)

π(i+ j)

− sin(π(i− j) + πju) + sin(π(i− j)− πiu)

π(i− j)

)
du

=
iAj − jAi − (−1)i+j(iBj − jBi)

π(i2 − j2)
.

If i = j then we have

Jii =
1

2

∫ 1

0

uθ du

∫ u

0

(cosπ(2is− iu)− cosπiu) ds

+
1

2

∫ 2

1

uθ du

∫ 1

u−1

(cosπ(2is− iu)− cosπiu) ds

=
1

2

∫ 1

0

(
uθ

sinπiu

πi
− uθ+1 cosπiu

)
du

+
1

2

∫ 2

1

uθ
sin(2πi− πiu)− sin(2πiu− 2πi− πiu)

2πi
du− 1

2

∫ 2

1

uθ(2− u) cosπiu du
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=
Ai −Bi

2πi
− Ci +Di

2
.

We know

a(θ, k, x) = πkxθ+2
1F2

(
θ/2 + 1, 3/2, θ/2 + 2,−k2π2x2/4

)
/(θ + 2),

b(θ, k, x) = xθ+1
1F2

(
θ/2 + 1/2, 1/2, θ/2 + 3/2,−k2π2x2/4

)
/(θ + 1),

Eij =
1

2
Ai+j +

1

2
Ai−j ,

Fi = (−1)iBi +
(−1)i − 1

πi
,

Gi =

∫ 1

0

tθ log t

∞∑
k=0

(−1)k(πit)2k+1

(2k + 1)!
dt = −

∞∑
k=0

(−1)k(πi)2k+1

(2k + 1)!(2k + θ + 2)2

= −πi 2F3

(
θ/2 + 1, θ/2 + 1, 3/2, θ/2 + 2, θ/2 + 2,−i2π2/4

)
/(θ + 2)2,

Hi =

∫ 3/2

1/2

tθ sin(πit− πi/2) dt+ (cos(πi/2)− 1)2−θ/(πi)−
∫ 1

1/2

tθ sinπit dt

= πi cos(πi/2)

(
(3/2)θ+2

1F2

(
θ/2 + 1, 3/2, θ/2 + 2,−9i2π2/16

)
−2−θ−2

1F2

(
θ/2 + 1, 3/2, θ/2 + 2,−i2π2/16

))
/(θ + 2)

− sin(πi/2)

(
(3/2)θ+1

1F2

(
θ/2 + 1/2, 1/2, θ/2 + 3/2,−9i2π2/16

)
−2−θ−1

1F2

(
θ/2 + 1/2, 1/2, θ/2 + 3/2,−i2π2/16

))
/(θ + 1)

+(cos(πi/2)−1)2−θ/(πi)−Ai+πi2−θ−2
1F2

(
θ/2 + 1, 3/2, θ/2 + 2,−i2π2/16

)
/(θ+2).

1F2 and 2F3 are generalized hypergeometric functions, hyp1f2 and hyp2f3 in
Python.

We calculate eigenvalues λi, 1 ≤ i ≤ L, of the matrix Q. Then we use the Smirnov
formula to calculate the p-value.

Let W 2
n =

1∫
0

(
Z0
n(t)

)2
dt. It is equal to

(14) W 2
n =

1

3n

n−1∑
k=1

Z0
n

(
k

n

)(
2Z0

n

(
k

n

)
+ Z0

n

(
k + 1

n

))
.

Then W 2
n converges weakly to W 2

θ =
1∫
0

(
Z0
θ (t)

)2
dt.

So the test rejects the basic hypothesis if W 2
n ≥ C. The p-value of the test is

1− Fθ(W 2
n,obs). Here Fθ is the cumulative distribution function of W 2

θ and W 2
n,obs

is a concrete value of W 2
n for observations under consideration.

So, we developed the following text homogeneity analysis algorithm.
Algorithm

1. Remove all punctuation marks.
2. Calculate the process of numbers of di�erent words.

3. Calculate the estimate θ̂ of the parameter θ by (6).
4. Calculate the estimate q̂ of the parameter q by (11) with (12) for k = n

and (10).
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5. Calculate the normalised di�erence of the process of numbers of di�erent

words and its estimate (the empirical bridge Z̃n) by (9) with (12).
6. Calculate the integral W 2

n,obs = W 2
n of the square of the empirical bridge

by (14).

7. Represent the kernel K̂ by the matrix Q = (qij)
L
i,j=1 by (13). The integrals

are calculated by methods of Section 3.
8. Find eigenvalues λi of the matrix.
9. Calculate the p-value 1− Fθ(W 2

n,obs) by (7).

L and M are the parameters of the algorithm, L is the matrix dimension, M is
the constant in (12).

4. Examples of text analysis

We use the algorithm with L = 100, M = 1000.
We �nd q̂ by dichotomy method for rn = Rn with 20 iterations on segment

[−0.9, 40].
Here are given an example of French poetry, Les Regrets by Joachim du Bellay

(1558), sonnet 1 (Pic. 1) and Shakespeare's sonnet 1 (Pic. 2).
These are examples of homogeneous texts.

Ðèñ. 1. Les Regrets by Joachim du Bellay (1558), sonnet 1

This approach can work with texts on any language.
See the �rst stanza of the �rst chapter of Eugene Onegin by Pushkin (Pic. 3) for

example of Russian homogeneous text.
We use hieroglyphs instead of words when analyzing Chinese texts. We substitute

hieroglyphs with their HTML codes. We analyse Danqing Painting by Du Fu (Pic.
4). This text is homogeneous, too.

An example of a nonhomogeneous text is Shakespeare's sonnet 1 with 3 repeated
lines (Pic. 5).
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Ðèñ. 2. Shakespeare's sonnet 1

Ðèñ. 3. The �rst stanza of the �rst chapter of Eugene Onegin by Pushkin

Another example of nonhomogeneity is a text from di�erent languages. The
example is Du Bellay's sonnet 1 + Shakespeare's sonnet 1 (Pic. 6).

To �nd nonhomogeneity for a text in one language we need more longer texts.
Here the �rst three stanzas of Childe Harold's Pilgrimage by Byron and the �rst
three Shakespeare's sonnets (Pic. 7).
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Ðèñ. 4. Danqing Painting by Du Fu

Ðèñ. 5. Shakespeare's sonnet 1 with 3 repeated lines

5. Discussion

There are some open questions in the application of this approach. The �rst
open question is the Poisson approximation. If the number of identical words is
small, then the Gaussian approximation is inaccurate. Barbour (2009) proposed an
approximation by a translated Poisson distribution. We need a functional version
of his theorem.
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Ðèñ. 6. Du Bellay's sonnet 1 + Shakespeare's sonnet 1

Ðèñ. 7. The �rst three stanzas of Childe Harold's Pilgrimage by
Byron and the �rst three Shakespeare's sonnets
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Another open question is the implementation of the Simon model. Let Rn,1 be
the number of words that occur exactly once. Under the assumptions made, there
should be convergence Rn,1/Rn → θ a.s. (Karlin, 1967). But real texts behave
di�erently. Typically, the number of words that occur once is signi�cantly less than

θ̂Rn.
Simon (1955) proposed the next stochastic model: the (n + 1)-th word in the

text is new with probability p; it coincides with each of the previous words with
probability (1−p)/n. The drawback of Simon's model is that the number of di�erent
words grows linearly. We need some kind of hybrid of an in�nite urn model and
Simon's model.
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