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EQUILIBRIUM PROBLEM FOR AN THERMOELASTIC

KIRCHHOFF�LOVE PLATE WITH A NONPENETRATION

CONDITION FOR KNOWN CONFIGURATIONS OF CRACK

EDGES

N.P. LAZAREV

Abstract. We formulate a new variational problem on the equilibrium
of a thermoelastic Kirchho��Love plate in a domain with a cut. It is
assumed that the plate is under the special loads for which the con�gura-
tion of crack's edges is known in advance. This circumstance makes it
possible to write down the general boundary condition of nonpenetration
in a re�ned form, which, in turn, leads to new relations describing the
possible mechanical interaction of opposite crack edges. The initial formu-
lation of a problem presupposes the ful�llment of boundary conditions on
the crack curve in the form of system of two inequalities and an equality.
Solvability of the problem is proved, an equivalent di�erential setting is
found.

Keywords: thermoelastic plate, crack, non-penetration, variational ine-
quality, di�erential setting.

1. Introduction

The success of mathematical models describing the deformation of bodies with
cracks and validity of the further analysis of some properties of selected mathemati-
cal models depend, among other things, on the boundary conditions on crack faces.
In the framework of the elasticity theory, along with the classical approach of linear
boundary conditions of equality type (see, for example, [1�4]), there is a wide

Lazarev, N.P., Equilibrium problem for an thermoelastic Kirchhoff�Love plate

with a nonpenetration condition for known configurations of crack edges.

© 2020 Lazarev N.P.

The work was supported by the Russian Foundation for Basic Research and the Sakha Republic
(Yakutia) (project no. 18�41�140003).

Received November, 11, 2020, published December, 21, 2020.

2096



EQUILIBRIUM PROBLEM FOR AN THERMOELASTIC KIRCHHOFF�LOVE PLATE 2097

class of nonlinear problems applying boundary conditions of inequality type for
displacements. These conditions make it possible to model a possible mechanical
contact of two independent bodies, or opposite faces of a crack. [5�21].

In this context, as in the case of the well-known Signorini conditions [23], the
use of inequality-type constraints for displacements means that we already know
a de�nite behavior of body's points at some part of boundaries where a contact
interaction is possible. Taking into account that sets of contact zones for this type of
problems is unknown, they can be considered as so-called free boundary problems. A
wide range of various problems has been investigated in the framework of Kirchho��
Love plates with the well-known general non-penetration condition [13, 18, 20, 24,
25, 26]. The overwhelming majority of results for cracked Kirchho��Love plates
were obtained for vertical cracked plates. At the same time, some results were
obtained for plates with oblique cracks, see, for example, [9, 13, 15, 27].

In this work, we pay attention to the case when a certain con�guration of plate's
edges near the crack is known in advance for an equilibrium state of a plate.
This circumstance means that some geometrical features of a possible contact are
known, which makes it possible to write out the boundary condition in a re�ned
form. Based on these conditions, we de�ne the corresponding set of admissible
functions in a suitable Sobolev space. Taking into account temperature e�ects can
play a signi�cant role in applied problems arising from the issues of operation
in the Far North. It is well known that the Kirchho��Love model is formulated
in a two-dimensional domain, while plates are three-dimensional objects. In the
case when boundary conditions of nonpenetration in the form of inequalities are
applied, some di�culties arise with the description of a three-dimensional object
through a two-dimensional model. In particular, if a solution of an equilibrium
problem for this type of boundary conditions has nonzero jumps on the crack
curve for vertical displacements (de�ections), then the solution, generally speaking,
can have displacements that satisfy the general nonpenetration condition and,
nevertheless, for which we have a physically unacceptable phenomenon since there
is a mutual penetration of opposite crack faces, see [18]. Therefore, the above-
mentioned questions of the study of problems for special cases with re�ned
modi�cations of the nonpenetration condition is a justi�ed branch of the development
of the mechanics of deformable solids, see, for example, [28, 29].

A new mathematical model describing an equilibrium of a thermoelastic plate
with a crack is formulated. The existence of a solution is established for the
corresponding variational problem. Under an assumption of su�cient smoothness of
the solution, a di�erential formulation is found that is equivalent to the
corresponding variational formulation.

2. Formulation of the problem

Let Ω ⊂ IR2 be a bounded domain with a smooth boundary Γ. Suppose that a
smooth curve without self-intersections lies strictly inside Ω, i.e. γ̄ ⊂ Ω. In addition,
we assume that γ can be extended to Γ so that Ω is splitted into two subdomains
Ω1 and Ω2 with Lipschitz boundaries ∂Ω1 and ∂Ω2 where meas(Γ ∩ ∂Ωi) > 0, i =
1, 2. The assumption is su�cient for Korn's inequality to hold in the non-Lipschitz
domain Ωγ = Ω\γ̄ [13]. Depending on the direction of the normal ν = (ν1, ν2) to γ
we will speak about a positive face γ+ or a negative face γ− of the curve γ. The
jump [q] of the function q on the curve γ is found by the formula [q] = q| γ+ − q| γ− .
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For simplicity, we assume that the thickness 2h of the plate is constant and
is equal to two, i.e. h = 1. We introduce a three-dimensional Cartesian space
{x1, x2, z} such that the set {Ωγ} × {0} ⊂ IR3 corresponds to the middle plane
of the plate. The curve γ de�nes a vertical crack (a cut) in the plate. This means
that the cylindrical surface of the through crack speci�ed by the relations x =
(x1, x2) ∈ γ,−1 ≤ z ≤ 1, where |z| is the distance to the middle plane. Denote by
χ = (W,w) the vector of mid-plane displacements, where W = (w1, w2) are the
displacements in the plane and {x1, x2} and w are the displacements along the axis
z. The temperature �eld in the plate is denoted by θ. We also need the following
set Qγ = Ωγ × (0, T ), T > 0. The strain and integrated stress tensors are denoted
by εij = εij(W ), σij = σij(W ), respectively [13]:

σ11 = ε11 + κε22, σ22 = ε22 + κε11, σ12 = (1− κ)ε12,

εij(W ) =
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
, i, j = 1, 2, x1 = x, x2 = y,

where κ = const, 0 < κ < 1/2.
In order to describe the possible contact interaction of the crack's edges, for

the case of prior knowledge of a certain equilibrium con�guration of plate edges
near the crack (see Fig. 1), we specify following mutual nonpenetration condition
of opposite crack faces [29]

(1) [
∂w

∂ν
] ≥ 0, [W ]ν ≥ [

∂w

∂ν
], [w] = 0 on γT = γ × (0, T ).

Ðèñ. 1. An example of crack edges con�gurations for initial (the
upper image) and equilibrium (the lower image) states.

We should note that the inequality (1) is written for functions χ given in the
domain Qγ . In the case when considered functions are de�ned in Ωγ , we change γ

T

to γ and the non-penetration condition will be written as:

(2) [
∂w

∂ν
] ≥ 0, [W ]ν ≥ [

∂w

∂ν
], [w] = 0 on γ.

In addition, we can mention that if condition (1) holds for some function, then
this function also satis�es following well-known general nonpenetration condition
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for cracks in Kirchho��Love plates [8, 13].

(3) [W ]ν ≥ |[∂w
∂ν

]| on γT .

Let some initial temperature distribution be given:

(4) θ = θ0 at t = 0.

On the exterior boundary of the plate, we require the ful�llment of the following
conditions:

(5) θ = w =
∂w

∂n
= W = 0 on Γ× (0, T ).

Introduce the Sobolev spaces

H1,0(Ωγ) =
{
v ∈ H1(Ωγ)

∣∣∣ v = 0 on Γ
}
,

H2,0(Ωγ) =
{
v ∈ H2(Ωγ)

∣∣∣ v = ∂v
∂e = 0 on Γ

}
,

H(Ωγ) = H1,0(Ωγ)2 ×H2,0(Ωγ),

where e is the external normal vector to Γ. Consider the following sets

K = {χ = (W,w) ∈ H(Ωγ) | χ satis�es (2) a. e. on γ} ,

K = {χ ∈ L2(0, T ;H(Ωγ)) | χ(t) ∈ K a. e. on (0, T )}
of admissible displacements. We will use the following well-known bilinear forms
for Kirchho��Love plates

B(W, W̃ ) = 〈σij(W ), εij(W̃ )〉,

b(w, w̃) =

∫
Ωγ

(wxxw̃xx + wyyw̃yy + κwxxw̃yy + κwyyw̃xx

+ 2(1− κ)wxyw̃xy),

where 〈 · , · 〉 corresponds to the inner product in L2(Ωγ).

3. Existence of a solution.

Let us introduce the following spaces for sought functions and their components
Ξ = {θ ∈ L2(0, T ;H1,0(Ωγ)) | θt ∈ L2(Qγ)} equipped with the norm

‖θ‖2Ξ = ‖θ‖2L2(0,T ;H1,0(Ωγ)) + ‖θt‖2L2(Qγ);

H = H1(0, T ;H(Ωγ)), U = Ξ×H.
We will assume that θ0 ∈ H1,0(Ωγ). Properties of Ξ guarantee that an arbitrary
θ ∈ Ξ has a well-de�ned trace at t = 0; in particular, θ(0) ∈ L2(Ωγ). The operation
of taking a trace acts continuously from Ξ into L2(Ωγ). It is easy to show that the
following set

S = {(θ, χ) ∈ U | θ(0) = θ0 in Ωγ , χ ∈ K}
is convex in U . Consider the following linear and continuous operator L : U → U?,
with values in the dual space U? de�ned by the formula

{L(θ, χ), (θ̄, χ̄)} =

∫
Qγ

(
θt + δ2 ∂

∂t
(divW −∆w)

)
θ̄
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+

∫
Qγ

∇θ∇θ̄ +

T∫
0

(B(W, W̃ ) + b(w, w̃) + δ2〈θ,∆w̃〉 − δ2〈θ,div W̃ 〉),

where bracket { · , · } denotes the dual pairing between U and U? [5].
Now we can formulate our problem. Assume that f ∈ L2(Qγ). An element

(θ, χ) ∈ U is said to be a solution to the equilibrium problem for a thermoelastic
plate with a crack if it satis�es the variational inequality

(6) {L(θ, χ), (θ̄, χ̄)− (θ, χ)} ≥
∫
Qγ

f(θ̄ − θ), (θ, χ) ∈ S ∀ (θ̄, χ̄) ∈ S.

Note that L is pseudo-monotone, but non-coercive in space U [5]. The following
result can be proved.

Òåîðåìà 1. For δ small enough, there is a solution to problem (6).

The proof of this statement repeats the steps of reasonings given in [5]. It is
expedient to note here that the di�erence between the considered sets of admissible
functions in [5] from K and K of this paper does not make a signi�cant di�erence
to the course of reasoning.

4. Equivalent differential statement

In this section, we derive equations for describing quasistatic equilibrium for the
plate and conditions that are satis�ed on γT for the solution (θ, χ) of (6). In order
to focus on the qualitative properties of the considered model, assume that the
parameter δ = 1. In what follows, we will assume that the solution is su�ciently
smooth. For brevity, hereafter we denote the quantities W t, wt, θt by W , w, θ,
indicating each time the value of the variable t at which the corresponding relations
hold. With respect to the geometry Ωγ , we require additional properties necessary
to use Green's formulas. Suppose that γ can be extended to a closed curve Σ so
that the domain Ωγ is split into two domains Ω1, Ω2 with boundaries of class C1,1

and ∂Ω1 = Σ, Ω̄1 ⊂ Ω, ∂Ω2 = Σ ∪ Γ.
Substituting into (6) test functions of the form (θ̄, χ̄), θ̄ = θ + θ̃, θ̃ ∈ C∞0 (Qγ),

χ̄ = χ+ χ̃, χ̃ ∈ C∞0 (Qγ), we obtain that the following equalities hold

(7)
∂θ

∂t
−∆θ +

∂

∂t
(divW −∆w) = f in Qγ ,

(8) −σij,j + θ,i = 0, i = 1, 2, in Qγ ,

(9) ∆2w + ∆θ = 0 in Qγ .

Let O ⊂ R2 be a bounded domain with a smooth boundary Υ and having an
outer normal n = (n1, n2). Below we write out auxiliary Green's formulas that are
valid for su�ciently smooth functions u and v

(10) bO(u, v) =

〈
M(u),

∂v

∂n

〉
Υ

− 〈R(u), v〉Υ + 〈∆2u, v〉O.

Here, the subscripts O and Υ signify that the integration is taken over the domain
O and the boundary Υ respectively. The operators in the formula (10) are de�ned
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on Υ as follows:

M(u) = κ∆u+ (1− κ)
∂2u

∂n2
, R(u) =

∂

∂n
∆u+ (1− κ)

∂3u

∂n∂s2
,

where s = (−n2, n1). For functions of the form ϕ = (ϕ1, ϕ2), the following formula
holds:

〈ϕ,∇u〉O = 〈ϕn, u〉Υ − 〈divϕ, u〉O.
Applying the last formulas, it is easy to derive the following equalities which hold
for the domain Ωγ and smooth functions vanishing on the outer boundary Γ

(11) 〈ϕ,∇u〉 = −[〈ϕν, u〉γ ]− 〈divϕ, u〉Ωγ ,

(12) 〈σij(U), εij(V )〉 = −〈σij,j(U), vi〉 −
[
〈σν(U), V ν〉γ + 〈στ (U), V τ〉γ

]
,

where

σν(U) = σij(U)νiνj , στ (U) = (σ1
τ (U), σ2

τ (U)) = (σ1j(U)νj , σ2j(U)νj)− σν(U)ν,

V ν = viνi, V τ = (V 1
τ , V

2
τ ), vi = (V ν)νi + V iτ , i = 1, 2;

(13) b(u, v) = −
[
〈M(u),

∂v

∂ν
〉γ
]

+

[
〈R(u), v〉γ

]
+ 〈∆2u, v〉.

Substituting separately into (6) the functions of the both types (θ̄, χ), (θ, χ̃), we
obtain two variational inequalities

(14)

∫
Qγ

(
∂θ

∂t
+
∂

∂t
(divW −∆w)− f

)
(θ̄ − θ)+

+

∫
Qγ

∇θ(∇θ̄ −∇θ) ≥ 0 ∀ (θ̄, χ) ∈ S,

(15)

T∫
0

(
B(W, W̃ −W ) + b(w, w̃ − w) + 〈θ,∆w̃ −∆w〉

−〈θ,div W̃ − divW 〉
)
≥ 0, ∀ (θ, χ̃) ∈ S.

Note that summing (14) and (15), we get the relation (6). Using (11) from (14) we
�nd that

(16)

∫
Ωγ

(
∂θ

∂t
+
∂

∂t
(divW −∆w)− f −4θ

)
θ̄ −

∫
γ

[
∂θ

∂ν
θ̄ ] = 0, ∀ θ̄ ∈ H1,0(Ωγ).

Hence, in view of (7) and the arbitrariness of θ̄ ∈ H1,0(Ωγ), we get

∂θ

∂ν
= 0 on γ+,

∂θ

∂ν
= 0 on γ−,

or

(17)
∂θ

∂ν
= 0 on γ.

From (15) it follows that for a.e. t ∈ (0, T ) the inequality

(18) B(W, W̄ −W ) + b(w, w̄ − w)+
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〈θ,∆w̄ −∆w〉 − 〈θ,div W̄ − divW 〉 ≥ 0, ∀ χ̄ ∈ K
takes place. Substituting in the last inequality test functions of the form (W̄ , w)
satisfying

[W̄ ]ν ≥ [
∂w

∂ν
] on γ,

we derive

(19) B(W, W̄ −W )− 〈θ,div W̄ − divW 〉 ≥ 0, ∀ χ̄ ∈ K.

Considering (19) with test functions W̄ = W + W̃ , W̃ ∈ H1(Ωγ), [W̃ ]ν ≥ 0 on γ,
we obtain by the Green's formulas (11), (12) the following boundary conditions

(20) [σν(W )− θ] = 0, στ (W ) = 0 on γ.

Substituting now (W, w̃) into (18), we justify the inequality

(21) b(w, w̃ − w) + 〈θ,∆w̃ −∆w〉 ≥ 0,

which holds for all w̃ satisfying conditions

[W ]ν ≥ [∂w̃/∂ν] ≥ 0 on γ, w̃ ∈ H2,0(Ωψ).

Let us analyze (21) by substituting into it the test functions w + ϕ, with smooth
functions ϕ de�ned on the domain Ωγ such that supp(ϕ) ⊂ O+(x), O(x) is a
neighborhood of some point x ∈ γ, and O+(x) is a subdomain of O(x) lying to
the side γ+, [∂ϕ/∂ν] = 0, [ϕ] = 0. Further transforming, taking into account the
formulas (11), (13) and the conditional arbitrariness of ϕ, we �nd

(22) [M(w) + θ] = 0, [R(w)] = 0 on γ.

We continue the analysis of (18) by substituting test functions (W,w) + (W̃ , w̃),

(W̃ , w̃) ∈ K. After some transformation, we have

B(W, W̃ ) + b(w, w̃) + 〈θ,∆w̃〉 − 〈θ,div W̃ 〉 ≥ 0.

Application of the formulas (11), (13) along with (20), (22) gives

(23)

〈
M(w) + θ,

[
∂w̃

∂ν

]〉
γ

+ 〈σν(W )− θ, [W̃ ]ν〉γ ≤ 0.

Substituting into (23) functions W̃ , w̃ smooth in Ωγ and having support in O(x)+,

for an arbitrary point x ∈ γ, [∂w̃/∂ν] = [W̃ ]ν, we obtain

(24) M(w) + σν(W ) = M(w) + θ + σν(W )− θ ≤ 0 on γ.

Now choosing in (23) functions W̃ , w̃, smooth in Ωγ , with the following properties:

w̃ ≡ 0, supp(W̃ ) ⊂ O+(x) ⊂ γ, for an arbitrary point x ∈ γ, [W̃ ]ν ≥ 0, we get

〈σν(W )− θ, [W̃ ]ν〉γ ≤ 0 on γ.

Whence, due to the arbitrariness of x ∈ γ and the conditional arbitrariness of W̃ ,
we derive that

(25) σν(W )− θ ≤ 0 on γ.

Now we rewrite (23) for (W̃ , w̃) = (W,w) in the following form

(26)

∫
γ

(M(w) + θ + σν(W )− θ)
[
∂w

∂ν

]
+ (σν(W )− θ)

(
[W ]ν −

[
∂w

∂ν

])
≤ 0.
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Hence, since each term in (26) is non-positive, we deduce that

(27) M(w)

[
∂w

∂ν

]
+ σν(W )[W ]ν = 0 on γ.

Let us justify that from the di�erential setting consisting of equations (7)�(9),
initial and boundary conditions (1), (4), (5), (17), (20), (22), (24), (25), (27) the
variational inequality (6) can be derived. To do this, consider a smooth function

χ̃ = (W̃ , w̃) ∈ K. Multiply equations (8), (9), taken at a �xed t ∈ (0, T ), by
w̃i −wi(t) and w̃−w(t), respectively. Afterwards, integrate over Ωγ and apply the
formulas (11)�(13) on taking boundary conditions (5), (17), (20), (22). Further,
summing the found relations, for a �xed t, we conclude that the equality holds
(within the framework of this section δ = 1)

B(W, W̃ −W ) + b(w, w̃ − w) + 〈θ,∆w̃ −∆w〉 − 〈θ,div W̃ − divW 〉

+

〈
M(w) + θ,

[
∂w̃

∂ν

]
−
[
∂w

∂ν

]〉
γ

+ 〈σν(W )− θ, [W̃ ]ν − [W ]ν〉γ = 0.

In view of (24), (25), (27) in the last equality the sum of the integrals over the
boundary have non-positive values, whence inequality (18) immediately follows.

Consequently, we derive (15). For �xed t ∈ (0, T ), multiplying (7) by θ̃ − θ(t) and
integrating again over Ωγ along with the formulas (11) and boundary conditions
(4), (5), (17), we get (14). At this stage, we can apply the approach used in [5], and
obtain the inequality (6).

Òåîðåìà 2. Assuming that the solution (θ, χ) is su�ciently smooth, the variational
problem (6) is equivalent to the boundary value problem consisting of the equations
(7)�(9), initial and boundary conditions (1), (4), (5), (17), (20), (22), (24), (25),
(27).

References

[1] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, etc., 1985. Zbl
0695.35060
[2] N.F. Morozov, Mathematical questions in the theory of cracks, Nauka, Moscow, 1984. Zbl
0566.73079
[3] S.A. Nazarov, B.A. Plamenevski, Elliptic problems in domains with piecewise smooth

boundaries, De Gruyter Expositions in Mathematics, 13, de Gruyter, Berlin, 1994. Zbl 0806.35001
[4] K. Ohtsuka, Mathematics of Brittle Fracture. Theoretical Studies on Fracture Mechanics in

Japan, Hiroshima-Denki Inst. Technol., Hiroshima, 1997, 99�172.
[5] A.M. Khludnev, The equilibrium problem for a thermoelastic plate with a crack, Sib. Math.
J. 37:2 (1996), 394�404. Zbl 0886.73024
[6] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, Nonlinear elasticity with limiting small strain for

cracks subject to nonpenetration, Math. Mech. Solids., 22:6 (2017), 1334�1346. Zbl 1371.74245
[7] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko, V.V. Shcherbakov,Mathematical and numerical

simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion, Comput. Math.
Math. Phys., 58:5 (2018), 761�774. Zbl 06920540
[8] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010.
[9] A.M. Khludnev, Equilibrium problem of an elastic plate with an oblique crack, J. Appl. Mech.
Tech. Fiz., 38:5 (1997), 757�761. Zbl 0920.73107
[10] A.M. Khludnev, On modeling thin inclusions in elastic bodies with a damage parameter,
Math. Mech. Solids, 24:9 (2019), 2742�2753. Zbl 07273337
[11] A.I. Furtsev, The unilateral contact problem for a Timoshenko plate and a thin elastic

obstacle, Sib. Electron. Mat. Izv., 17 (2020), 364�379. Zbl 1435.35374



2104 N.P. LAZAREV

[12] A.M. Khludnev, L. Faella, C. Perugia, Optimal control of rigidity parameters of thin

inclusions in composite materials, Z. Angew. Math. Phys., 68:2 (2017), Paper No. 47. Zbl
1371.35125
[13] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton,
2000.
[14] A.M. Khludnev, V.V. Shcherbakov, A note on crack propagation paths inside elastic bodies

Appl. Math. Lett., 79:1 (2018), 80�84. MR3748614
[15] V.A. Kovtunenko, A.N. Leont'ev, A.M. Khludnev, An equilibrium problem of a plate with an

oblique cut, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302�311. Zbl 0920.73108
[16] A. Furtsev, H. Itou, E. Rudoy, Modeling of bonded elastic structures by a variational method:

Theoretical analysis and numerical simulation, Int. J. Solids Struct. 182�183 (2020), 100�111.
[17] N.P. Lazarev, Di�erentiation of the energy functional in the equilibrium problem for a

Timoshenko plate containing a crack, J. Appl. Mech. Tech. Phys. 53:2 (2012), 299�307. Zbl
1298.74093
[18] N.P. Lazarev, T.S. Popova, Variational problem of the equilibrium of a plate with

geometrically nonlinear nonpenetration conditions on a vertical crack, J. Math. Sci., 188:4
(2013), 398�409. Zbl 1260.74023
[19] N.P. Lazarev, T.S. Popova, G.A. Rogerson, Optimal control of the radius of a rigid circular

inclusion in inhomogeneous two-dimensional bodies with cracks, Z. Angew. Math. Phys., 69:3
(2018), Paper No. 53. Zbl 1395.49004
[20] N.P. Lazarev, E.M. Rudoy, Optimal size of a rigid thin sti�ener reinforcing an elastic plate

on the outer edge, Z. Angew. Math. Mech., 97:9 (2017), 1120�1127. MR3689455
[21] N. Lazarev, G. Semenova, An optimal size of a rigid thin sti�ener reinforcing an elastic

two-dimensional body on the outer edge, J. Optim. Theory Appl., 178:2 (2018), 614�626. Zbl
1401.49012
[22] N.A. Nikolaeva,Method of �ctitious domains for Signorini's problem in Kirchho�-Love theory

of plates, J. Math. Sci. (N.Y.), 221:6 (2017), 872�882. MR3608989
[23] G. Fichera, Boundary Value Problems of Elasticity with Unilateral Constraints, In: Handbuch
der Physik, Band 6a/2, Springer-Verlag, Berlin, 1972.
[24] E.M. Rudoy, Asymptotics of the energy functional for a fourth-order mixed boundary value

problem in a domain with a cut, Sib. Math. J., 50:2 (2009), 341�354. Zbl 1224.35099
[25] V.V. Shcherbakov, Existence of an optimal shape of the thin rigid inclusions in the Kirchho�-

Love plate, J. Appl. Ind. Math., 8:1 (2014), 97�105. Zbl 1340.74087
[26] V.V. Shcherbakov, Shape optimization of rigid inclusions for elastic plates with cracks, Z.
Angew. Math. Phys., 67:3 (2016), Article ID 71. Zbl 1436.74024
[27] N.P. Lazarev, N.V. Neustroeva, N.A. Nikolaeva, Optimal control of tilt angles in equilibrium

problems for the Timoshenko plate with a oblique crack, Sib. Elektron. Mat. Izv. , 12 (2015),
300�308. Zbl 1343.49016
[28] N.P. Lazarev, H. Itou, Equilibrium problems for Kirchho�-Love plates with nonpenetration

conditions for known con�gurations of crack edges, Mathematical Notes of NEFU, 27:3 (2020),
52�65.
[29] N.P. Lazarev, V.V. Everstov, N.A. Romanova, Fictitious domain method for equilibrium

problems of the Kirchho��Love plates with nonpenetration conditions for known con�gurations

of plate edges, Journal of Siberian Federal University - Mathematics and Physics, 12:6 (2019),
674�686.

Nyurgun Petrovich Lazarev

North-Eastern Federal University,

48, Kulakovsky str.,

Yakutsk, 677000, Russia

Email address: nyurgun@ngs.ru


