
S e⃝MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 17, стр. 380–394 (2020) УДК 510.5
DOI 10.33048/semi.2020.17.024 MSC 03D15,68Q15

THE EXPRESSIVENESS OF LOOPING TERMS IN THE
SEMANTIC PROGRAMMING

S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

Abstract. We consider the language of ∆0-formulas with list terms
interpreted over hereditarily finite list superstructures. We study the
complexity of reasoning in extensions of the language of ∆0-formulas with
non-standard list terms, which represent bounded list search, bounded
iteration, and bounded recursion. We prove a number of results on the
complexity of model checking and satisfiability for these formulas. In
particular, we show that the set of ∆0-formulas with bounded recursive
terms true in a given list superstructure HW (M) is non-elementary
(it contains the class kExpTime, for all k > 1). For ∆0-formulas with
restrictions on the usage of iterative and recursive terms, we show lower
complexity.
Keywords: semantic programming, list structures, bounded quantifi-
cation, reasoning complexity.

1. Introduction

In [1, 2] a paradigm of the Semantic Programming has been proposed, which
paved the way for a new generation of declarative programming languages. The
approach of the Semantic Programming allows to abstract away from details of
implementation and to focus on the desired properties of a software system un-
der development. It also includes imperative features, which allow to specify the
order of computations, when it is necessary. Semantic Programming rests on the
computability theory put in terms of Σ-definability in hereditarily finite list super-
structures (see, e.g., [3] for recent results). The concept of list appears to be general

Goncharov, S., Ospichev, S., Ponomaryov, D., Sviridenko, D., The expressiveness
of looping terms in the Semantic Programming.

c⃝ 2020 Goncharov S., Ospichev S., Ponomaryov D., Sviridenko D.
The authors were supported by the Russian Science Foundation (Grant No. 17-11-01176).
Received November, 19, 2019, published March, 10, 2020.

380

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 381

enough to represent common datatypes of programming languages. A program in
the Semantic Programming is a formula over a signature, which includes basic list
functions such as concatenation, adding an element to a list, taking head or tail of
a list, as well as predicates, which can be used to refer to elements and initial seg-
ments of lists. Computation is implemented in two ways. The first one is based on
testing whether a formula is true in an appropriate list superstructure and is con-
ceptually close to the idea of Model Checking in the field of Software Verification.
The second way is via deciding the entailment of a formula from an appropriate
theory, which axiomatizes properties of list superstructures. The latter approach is
close to the idea of Logic Programming and Deductive Verification. The language
of the Semantic Programming is powerful enough to formulate statements about
syntactic and semantic properties of programs, thus providing a unified framework
for program specification, validation, and verification. The approach has numerous
applications in model-driven software engineering and in particular, for the devel-
opment of AI tools. One of the recent use cases is the application of the Semantic
Programming to document processing in the area of Business Process Management
[9].

As a trade-off between the expressiveness and computational efficiency a number
of sublanguages of the Semantic Programming have been proposed. Of the most
important ones is the language of ∆0-formulas, in which only bounded quantifica-
tion over elements and initial segments of lists can be used. In [4], this language has
been extended with conditional list terms, which implement the “if-then-else” prim-
itive of programming languages. It has been noted in [10] that there are at least
two sources of the computational complexity of model checking for ∆0-formulas
and their extensions. The first one is the complexity of computing list terms in
a given list superstructure and the second one is the form of the quantifier prefix.
It has been shown that for any polynomially computable structure, there exists a
polynomially computable representation of its hereditarily finite list superstructure
with the above mentioned basic list functions. Thus, the basic list terms make no
contribution to the complexity of model checking (provided it is polynomial or su-
perpolynomial). The same has been shown for conditional terms. The authors have
noted the natural relationship with the truth problem for Quantified Boolean For-
mulas, which provided complexity bounds on the model checking for ∆0-formulas
with conditional terms and general or restricted quantifier prefix.

In [7, 8], the language of ∆0-formulas has been further extended to address primi-
tives, which implement looping in programming languages. The authors have intro-
duced non-standard list terms, which correspond to bounded list search, bounded
list recursion, and bounded iteration. In this paper, we study the complexity of
the language of ∆0-formulas extended with these non-standard terms, with the
goal to describe their contribution to the complexity of the basic reasoning tasks.
Naturally, the first task we consider is model checking, i.e., given a formula φ and
a list superstructure HW (M), decide whether HW (M) |= φ. The second one is
satisfiability, i.e., for a formula φ decide whether it is true in some list superstruc-
ture. The complexity of this task is obviously important for program validation,
since it indicates how complex it is to identify modelling errors, which might cause
inconsistency of the constructed program. To make the contribution of the non-
standard terms vivid, we omit two features of the language of ∆0-formulas, which
on their own may cause an increased complexity of the reasoning tasks. First of all,

382 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

we assume that the language contains constants, basic list functions, but no other
functions. Second, the range of any variable under a (bounded) quantifier must
be given by a ground list term. These restrictions are implicitly present in [10].
Our results evidence that the language with the non-standard list terms, which
implement bounded recursion or iteration, is more expressive than the language of
∆0-formulas under the mentioned restrictions. In particular, the complexity of rea-
soning is increased, which is due to the ability of non-standard terms to succinctly
represent lists of large size.

2. Preliminaries

We assume the reader is familiar with basics of the complexity theory. We
introduce below the complexity classes mentioned in this paper; all the necessary
details can be found in [5, 6].

For a finite alphabet Σ, let Σ∗ be the set of all words over Σ and for a subset
A ⊆ Σ∗, let f : A→ Σ∗ be a function. f is said to be P-computable/NP-computable
if there is a deterministic/non-deterministic Turing Machine (TM) T , respectively,
and a polynomial p such that for any x ∈ A the value of f(x) can be computed
by T in at most p(|x|) steps, where |x| is the length of the word x. The function
f is PSpace-computable if for any x ∈ A the value of f(x) can be computed by
a deterministic TM T using at most p(|x|) cells of the tape of T , where p is a
polynomial.

For a given n > 0, let 1exp(n) be the notation for 2n and for k > 1, let
(k+ 1)exp(n) = 2kexp(n).

For k > 1, the function f is called kExpTime/NkExpTime-computable, respec-
tively, if for any word x ∈ A, the value of f(x) can be computed by a deterministic/
non-deterministic TM, respectively, in at most kexp(p(|x|)) steps, where p is a poly-
nomial.

We slightly abuse the terminology and define C ∈ {P/NP/PSpace/kExpTime/
NkExpTime} as the class of subsets A ⊆ Σ∗ such that their characteristic function
is C-computable. A subset A ⊆ Σ∗ is called C-hard if any set from C ism-reducible
to A by a P-computable function. A subset A is called C-complete if it is C-hard
and is contained in C.

A structure M is P-computable if so are the functions of M, the characteristic
functions of predicates, and the domain of M.

In this paper, we define the language of ∆0-formulas as a first-order language
with sorts “urelement” and “list” , in which only bounded quantification of the
following form is allowed:

• a restriction onto the list elements ∀x ∈ t and ∃x ∈ t;
• a restriction onto the initial segments of lists ∀x ⊑ t and ∃x ⊑ t.

where t is a variable-free list term (i.e., it does not contain variables). A list term
is defined inductively via constant lists, variables of sort “list”, and list functions
given below. A constant list (which can be nested) is built over constants of sort
“urelement” (called “urelements”, for short) and a constant nil of sort “list”, which
represents the empty list. The list functions are:

(1) head – the last element of a non-empty list and nil, otherwise;
(2) tail – the list without the last element, for a non-empty list, and nil, oth-

erwise;

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 383

(3) cons – the list obtained by adding a new last element to a list;
(4) conc – concatenation of two lists;

We assume that the language contains constants, list functions, but no other
functions. The predicates ∈,⊑ are allowed to appear in ∆0-formulas without any
restrictions, i.e., they can be used in bounded quantifiers and atomic formulas.

∆0-formulas are interpreted over hereditarily finite list superstructures HW (M),
where M is a structure. Urelements are interpreted as distinct elements of the
domain of M and lists are interpreted as lists over urelements and the distinguished
“empty list” nil. In particular, the following equations hold in every HW (M) (the
free variables below are assumed to be universally quantified):

¬∃x x ∈ nil

cons(x, y) = cons(x′, y′) → x = x′ ∧ y = y′

tail(cons(x, y)) = x, head(cons(x, y)) = y

tail(nil) = nil, head(nil) = nil

conc(nil, x) = conc(x, nil) = x

cons(conc(x, y), z) = conc(x, cons(y, z))

conc(conc(x, y), z) = conc(x, conc(y, z))

It was shown in [10] that for any P-computable structure M, there exists a P-
computable representation of its superstructure of finite lists HW (M), in which
the value of any list term is given by a P-computable function. In this paper,
we omit subtleties related to the representation of models and we simply assume
that any HW (M) mentioned in the paper is P-computable and so is the value of
any (standard) list term in HW (M). Since we assumed that no functions except
constants and list functions are in the language of ∆0-formulas, it follows that the
set of variable-free ∆0-formulas true in a given structure HW (M) is P-computable.
In turn, the set of variable-free ∆0-formulas satisfiable in some structure HW (M)
is NP-complete, which is due to the correspondence with the satisfiability problem
for propositional boolean formulas. In particular, the upper bound is shown as
follows. Given a variable-free ∆0-formula φ, every list term in φ is replaced with
its value, a constant list; by Lemma 2 in [10], this transformation can be done by
a P-computable function. Next, every ground atom s ∝ t, where s, t are constant
lists and ∝∈ {∈,⊑}, is evaluated as true/false and every equality s = t is replaced
with true or false if s, t are equal or non-equal, respectively. The resulting formula
can again be obtained as a value of a P-computable function. Finally, every ground
atom P (s1, . . . , sk) is replaced with a boolean variable xP (s1,...,sk), which gives a
propositional boolean formula, which is satisfiable iff so is the initial ∆0-formula φ.

3. Looping Terms

We consider extensions of the language of ∆0-formulas with bounded search terms
(or b-search terms, for short), recursive terms, and iterative terms of sort “list”.
The corresponding language extensions are denoted as ∆0+bSearch, ∆0+Rec, ∆0+
Iteration. By default, any formula or a list term in the language of ∆0-formulas
is a formula/list term in these language extensions. Non-standard list terms are
defined as follows.

384 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

If t(v) and θ(v, x) is a ∆0+bSearch list term and formula, respectively, then the
expression bSearch∈(θ, t)(v) and bSearch⊑(θ, t)(v) is a b-search term. It is equal
to the first element/initial segment a of t(v), respectively, such that θ(v, a) holds
and it is equal to t(v), otherwise (i.e., if there is no such a).

If f(v), h(v, y) are ∆0+Iteration list terms and i is a natural number given in
either unary or binary representation, then the expression < i > Iter[f, h](v) is an
iterative term and its value is given by gi(v) with the following definition:

• g0(v) = f(v)
• gj+1(v) = h(v, gj(v))

If f(v), h(v, y, z), and t(v) are ∆0+Rec list terms then the expressionRec[f, h, t](v)
is a recursive term and its value is given by g(v, t) with the following definition:

• g(v, nil) = f(v)
• g(v, cons(α, b)) = h(v, g(v, α), b), for any lists α, b such that cons(α, b) ⊑ t.

Let s be a ∆0+Rec term. s is called explicit if in every term Rec[f, h, t](v),
which occurs in s, the term t is variable-free. The term s is called flat if in every
term Rec[f, h, t](v), which occurs in s, f and h are ∆0-terms. A ∆0+Rec formula
is flat if so is every term in it. The notion of flat ∆0+Iteration term or formula is
defined identically.

Intuitively, the terms, which are not flat, may implement nested looping, which
is an additional source of computational complexity. In the paper, we will show
however that the complexity of reasoning is increased if ∆0-formulas are extended
only with flat iterative and recursive terms.

Terms s(v) and t(v) are called equivalent if HW (M) |= s(a) = t(a), for any
structure HW (M) and any substitution for v with a vector of values a.

The rank of a ∆0+Rec term s (notation: rank(s)) is defined as follows. If s is a
∆0-term then rank(s) = 0. If s = Rec[f, h, t](v) then rank(s) is the maximum rank
of the terms f, h, t increased by 1. If s is not a recursive term then rank(s) if the
maximum rank of the recursive terms in s. The rank of other non-standard terms
is defined similarly wrt the maximum rank of the list terms in their parameters.
The rank of a formula φ (notation: rank(φ)) equals to the maximum rank of the
terms in φ.

For a list s, the length of s, denoted as len(s), is the number of elements in s,
i.e., for s = ⟨t1, . . . , tn⟩ (where every ti, i = 1, . . . , n, is a urelement or a list), we
have len(s) = n. For a urelement or a list term t, the size of t (denoted by |t|)
is the length of the string, which represents t. The size of a formula (we use the
same notation |φ|) is defined identically.

4. Expressiveness of Formulas with Looping Terms

We begin with an observation that bounded search terms add no expressiveness
to ∆0-formulas in terms of the computational complexity of model checking.

Theorem 1 (Complexity of Model Checking for ∆0+bSearch Formulas). The set
of ∆0+bSearch formulas true in a given structure HW (M) is PSpace-complete.

Proof. Hardness follows from Theorem 3 in [10], where it is proved that the set
of ∆0-formulas true in a given structure HW (M) is PSpace-complete. The upper
complexity bound is shown as follows.

Let φ be a ∆0+bSearch formula and HW (M) a structure. First, we consider
the case when every b-search term in φ is variable-free and use induction on the

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 385

rank of φ to prove the claim of the theorem. We simultaneously show by induction
that there is a PSpace-computable function, which for a variable-free b-search term
s computes the value of s as a list s in HW (M) such that the size of s is bounded
by |s|.

For rank(φ) = rank(s) = 0 the claims above readily follow from Theorem 3
and Lemma 2 in [10]. For k = rank(φ) > 1, take an arbitrary (variable-free) term
s = bSearch∝[θ, t], ∝∈ {∈,⊑} of rank k in φ. Then t is variable-free, θ has a
single free variable, and the ranks of t and θ are less than k. Then by the induction
assumption t is given by a PSpace-computable function and the size of t is bounded
by |t|. By applying the induction assumption again, we conclude that there is a
PSpace-computable function, which gives the first element/initial segment a of t,
for which HW (M) |= θ(a). Clearly, the size of a is bounded by |s|.

Now let φ′ be a ∆0-formula obtained from φ by replacing every b-search term
s with s. By the observation above, φ′ can be obtained by a PSpace-computable
function, it has size bounded by |φ|, and it holds HW (M) |= φ iff HW (M) |= φ′.
Since φ′ is a ∆0-formula, we conclude that the claim of the theorem holds for
formulas, in which non-standard terms are variable-free.

For the general case, note that if there is a quantifier ax ∝ t, with a ∈ {∃,∀},
∝∈ {∈,⊑}, in a ∆0+bSearch formula φ, then by the definition of ∆0-formulas, the
list term t is variable-free. Let φ′ be a formula obtained from φ by replacing every
quantifier of the form ax ∝ t with ax ∝ t, for ∝∈ {∈,⊑}. By Lemma 2 in [10] and
the above shown, φ′ can be obtained by a PSpace-computable function, it has size
bounded by |φ|, and it holds HW (M) |= φ iff HW (M) |= φ′. Then HW (M) |= φ′

can be decided by a PSpace-computable function. It is given by the standard
procedure of bounded quantifier elimination, which stores the selected value for
each quantified variable. After all quantifiers are eliminated, a formula ψ from φ′

is obtained, in which every variable is substituted with the corresponding selected
value. The formula ψ is variable-free, thus, by the above shown, HW (M) |= ψ can
be decided by a PSpace-computable function, from which the claim of the theorem
follows. �

In the rest of the paper we focus on the expressiveness of recursive and iterative
terms and provide the corresponding complexity results.

Let L be an extension of the language of ∆0-formulas.
For k > 0, we say that a k-list is expressible in L if there exists a variable-free

L-term t such that for any structure HW (M), the interpretation of t in HW (M)
is a list of length k.

Let × be a map, which for non-empty lists s1, s2 gives a list ×[s1, s2], which
consists of conc(α1, α2), for all αi ∈ si, i = 1, 2. Now let ◦k be a map defined
as follows: for a non-empty list s, it holds s1 = s and for k > 2, we have sk =
×[sk−1, s].

We say that × is expressible in L if there is a L-term t(x1, x2) such that in any
structure HW (M) for any non-empty lists s1, s2, the term t(s1, s2) is interpreted
as ×[s1, s2]. Similarly, for k > 1, ◦k is said to be expressible in L if there is a
L-term t(x) such that in any structure HW (M) for any non-empty list s, the term
t(s) is interpreted as sk. Whenever we want to specify the L-term t, we say that t
represents × (·k, respectively), or × (·k, respectively) is expressible by t. We omit
a direct reference to the language L, whenever it is clear from the context.

386 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

Lemma 1 (Succinctness of Recursive Terms). For k > 1, n > 0, a kexp(n)-list,
×, and ◦kexp(n) is expressible by a recursive term of size linear in k and n.

Proof. Let s0 denote the list ⟨nil⟩ (i.e., the list, which consists of the single element
being the empty list) and for all n > 0, let sn+1 = cons(sn, nil). Given n > 0, we
define by induction on k > 1 a variable-free recursive term ϵk as follows.

For k = 1, we let ϵ1 be the term

Rec[⟨nil⟩, conc(g(α), g(α)), sn].
For k > 2, we define

ϵk = Rec[⟨nil⟩, conc(g(α), g(α)), ϵk−1].

It easy to verify by induction that the interpretation of ϵk in any structure HW (M)
is a list, which consists of kexp(n)-many elements (being empty lists). Clearly, the
size of ϵk is linear in k and n.

Now consider a recursive term, which for any lists x, y gives a list consisting of
conc(x, b), for all b ∈ y. It is defined as

Rec[nil, conc(g(α), conc(x, b)), y](x, y)

We denote this term by multiply element(x, y). Now a term which represents × is
defined as

Rec[nil, conc(g(α), multiply element(b, x2))), x1](x1, x2)

Denote it by multiply(x1, x2).
Finally, a recursive term which represents ◦kexp(n) is given by

Rec[x, multiply(g(α), x), tail(ϵk)](x)

and it is of size linear in k and n. �

Lemma 2 (Succinctness of Iterative terms). For any n > 0, a 1exp(n)-list and
2exp(n)-list is expressible by an iterative term of size linear in n, in which the
number of iterations is given in the unary and binary representation, respectively.

Proof. The proof is identical to Lemma 1, the variable-free term

< n > Iter[⟨nil⟩, conc(g(α), g(α))]
is the required one. It represents a 1exp(n)-/2exp(n)-list, respectively, if n is given
in unary or binary (since the binary representation is exponentially more succinct
than the unary one) and its size is linear in n. �

Lemma 3 (Unfolding Lemma). For any flat ∆0+Iteration term t(v), there exists
an equivalent ∆0-term t0(v) such that |t0| 6 1exp(p(|t|)) or |t0| 6 2exp(p(|t|)), for
a polynomial p, if the number of iterations is given in unary or binary, respectively.

For any explicit flat ∆0+Rec term t(v) of rank bounded by k > 1, there is an
equivalent ∆0-term t0(v), with |t0| 6 kexp(p(|t|)), for a polynomial p.

Proof. Let t be a flat ∆0+Iteration term. If t is a ∆0-term, there is nothing to
prove, therefore, we assume there is an iterative term s =< i > Iter[f, h](v) in
t. We use induction on i to show that the size of a ∆0-term equivalent to s is
bounded by |f | · |h|i. The case i = 0 is trivial. For i > 1, consider the term
gi(v) in the definition of s. It is given as a combination of a definition for gi−1(v)
with list functions, where gi−1(v) is equivalent to < i − 1 > Iter[f, h](v). The

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 387

number of occurrences of gi−1(v) in gi(v) is at most |h|, thus, by applying the
induction assumption, the size of a ∆0-term equivalent to gi(v) is bounded by
|h| · |f | · |h|i−1. It follows that the size of the ∆0-term equivalent to s is bounded by
|s|p(|s|) or |s|1exp(p(|s|)), respectively, for a polynomial p, if the number i is given in
unary/binary. Hence, it is bounded by 1exp(p(|s|)) or 2exp(p(|s|)), respectively, for
an appropriate polynomial p. Since the number of iterative terms in t is bounded
by t and the choice of s was arbitrary, we conclude that the claim of the lemma
holds for t.

Now let t be an explicit flat ∆0 + Rec term. First, we show that in case t =
Rec[f, h, l0](v), where l0 is a constant list, there is a ∆0-term equivalent to t of size
bounded by 1exp(p(|t|)), for a polynomial p.

Consider the terms g(v, α) in the definition of t and denote tα = Rec[f, h, α](v),
for α = nil or α ⊑ l0 We use induction on the length of l0 to show that for
any list α such that α = nil or α ⊑ l0, there is a ∆0-term t0α equivalent to tα
such that |t0α| is bounded by |f | · |h|len(α). The case l0 = nil is trivial. For l0 ̸=
nil, observe that for all lists α, b the term g(v, cons(α, b)) in the definition of t is
given as a combination of g(v, cons(α)) with list functions, where g(v, cons(α)) is
equivalent to tα. Thus, by applying the induction assumption, the size of a ∆0-term
equivalent to g(v, cons(α, b)) is bounded by |h| · |f | · |h|len(α). It follows that for all
α = nil or α ⊑ l0, the size of the ∆0-term equivalent to tα is bounded by |tα|p(|tα|),
for a polynomial p. Hence, the size of a ∆0-term equivalent to t is bounded by
1exp(p(|t|)), for an appropriate polynomial p.

Now let t be an arbitrary explicit flat ∆0 +Rec term. We use induction on the
rank bound k > 1 for t to show the claim of the lemma. If t is a ∆0-term then
there is nothing to prove. Assume there is a recursive term s = Rec[f, h, l](v) in t,
then f, h are ∆0-terms (since t is flat). If k = 1 then rank(s) = 1 and hence, l is a
variable-free ∆0-term, since t is explicit. By Lemma 2 in [10], l is equivalent to a
constant list l0 of size bounded by a polynomial in the size of l (and hence, in the
size of s). Then by the above shown, there is a ∆0-term equivalent to s, for which
the claim of the lemma holds.

For k > 2, observe that the term l is given as a combination of recursive terms
of rank less than k with list functions. Hence, by the induction assumption, the
size of a constant list term l0 equivalent to l is bounded by (k− 1)exp(p(|s|)), for
a polynomial p. Then by the above shown we conclude that there is a ∆0-term
equivalent to s of size bounded by kexp(p(|t|)), for a polynomial p. Since the choice
of s in the term t was arbitrary and the number of non-standard terms in t is
bounded by |t|, we obtain the required statement. �

Lemma 4 (Hardness of Model Checking). Let L be an extension of the language
of ∆0-formulas such that × is expressible in L and for all n > 0 and some k > 1,
◦kexp(n) is expressible by a L-term of size polynomial in k and n. Then the set of
L-formulas true in a given structure HW (M) is NkExpTime-hard.

Proof. The lemma is proved by a reduction of the inequality problem for regular-
like expressions without the Kleene star, but with the exponentiation operation.
Regular-like expressions of this kind are defined over a finite alphabet Σ by using
the operation of union ∪, concatenation ·, and exponentiation ·kexp(n), where k > 1
and n > 0. For a regular-like expression E, the language L(E) is given inductively
as a subset of all strings over Σ by the following definition:

388 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

• L(a) = {a}, for a ∈ Σ
• L(E1 ∪ E2) = L(E1) ∪ L(E2)
• L(E1 · E2) = {s1 · s2 | si ∈ L(Ei), i = 1, 2}
• L(Ekexp(n)) = L(E) · . . . · L(E)︸ ︷︷ ︸

kexp(n) times

The size of a regular-expression is the length of the string, which represents it.
The inequality problem for regular-like expressions is the set of pairs ⟨E1, E2⟩ such
that L(E1) ̸= L(E2). It is shown in [11] that the inequality problem is NExpTime-
hard for regular-like expressions, in which exponentiation is restricted to 1exp(n),
for n > 0. The proof employs a direct reduction from the halting problem for non-
deterministic Turing machines making at most 1exp(n)-many steps on an input of
size n > 0. For the reduction, the subsequent configurations of the TM are encoded
by regular-like expressions over an alphabet Σ of the TM , which represent the tape
content and the state of the TM. In particular, each configuration is represented as
a word of length 2 ·1exp(n)+1. Expressions of the form (σ)f(n) are used to refer to
(parts of) configurations of TM, where σ ⊆ Σ∪{λ} and f(n) = c0·1exp(n)+nc1+c2,
with c0 > 0 and c1, c2 being integers such that |ci| 6 n, for i = 0, 1, 2.

If instead, each configuration is represented by a word of length 2·1exp(n)+n+2
(which can be made without loss of generality), then every regular-like expression
of the form (σ)f(n), with f(n) as above, can be replaced by (σ)g(n), where g(n) =
c0 · 1exp(n) + nd1 + d2 is a function, with 0 6 c0, d1, d2 6 n. Then the proof works
for exponentiation kexp(n) with any k > 1, n > 0 and gives NkExpTime-hardness
of the inequality problem for regular-like expressions with the operation ·kexp(n).
We reduce this problem to checking the truth of L-formulas.

Let t×(x) be a L-term, which represents ×, and tkexp(n)(x1, x2) a L-term of size

polynomial in k and n, which represents ◦kexp(n). For a regular-like expression E
we inductively define the L-term list(E), which encodes the language L(E) as:

• list({a}) = ⟨⟨a⟩⟩, for a ∈ Σ;
• list(E1 ∪ E2) = conc(list(E1), list(E2));
• list(E1 · E2) = t×(list(E1), list(E2));
• list(Ekexp(n)) = tkexp(n)(list(E)).

Clearly, the size of list(E) is linear in the size of the expression E.
Now it suffices to note that for any structure HW (M) and any regular-like

expressions E1, E2, it holds L(E1) ̸= L(E2) iff

HW (M) |= ∃x ∈ list(E1)(x ̸∈ list(E2)) ∨ ∃x ∈ list(E2)(x ̸∈ list(E1))

Indeed, if there is such x then it has the form ⟨a1, . . . , ak⟩, where k > 1, ai ∈ Σ,
and then the word a1 . . . ak witnesses the difference between L(E1) and L(E2). The
opposite direction is straightforward. �

Theorem 2 (Complexity of Model Checking for ∆0+Rec). The set of ∆0+Rec
formulas true in a given structure HW (M) contains the class kExpTime, for every
k > 1, and hence, it is non-elementary. It follows that there is a ∆0+Rec formula
φ, which is not equivalent to a ∆0-formula ψ of size polynomial in |φ|.

Proof. By Lemma 1, × is expressible in ∆0+Rec and for all k > 1 and n > 0,
◦kexp(n) is expressible by a ∆0+Rec term of size linear in k and n. Then by Lemma
4, for any k > 1, there exists a NkExpTime-hard set of ∆0+Rec formulas true in a

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 389

given HW (M). For all k > 1, it holds kExpTime ⊆ NkExpTime and hence, the set
of ∆0+Rec formulas true in HW (M) is non-elementary.

It was proved in [10] that the set of ∆0-formulas true in a given structure
HW (M) is PSpace-complete. Assume that for any ∆0+Rec formula φ, there is an
equivalent ∆0-formula ψ of size polynomial in the size of φ. Then ∪k>1kExpTime ⊆
PSpace, which is a contradiction, since already 2ExpTime is not contained in PSpace.

�

Theorem 3 (Complexity of Model Checking for Flat ∆0+Iteration). The set of
flat ∆0+Iteration formulas true in a given structure HW (M) is PSpace-hard and it
is in ExpTime or 2ExpTime if the number of iterations is given in unary or binary,
respectively.

Proof. The lower complexity bound follows from Theorem 3 in [10], where it is
shown that the set ∆0-formulas true in a given structure HW (M) is PSpace-
complete. The upper bound is shown as follows. We consider the case, when
the number of iterations in formulas is given in unary, the proof for the binary case
is identical.

Let HW (M) be a structure and φ a flat ∆0+Iteration formula of the form

a1x1 ∝1 t1 . . . anxn ∝n tn ψ(x1, . . . , xn)

where n > 0, ai ∈ {∃, ∀}, and ∝i∈ {∈,⊑}, for all i = 1, . . . , n. Let T denote the
total size of the terms t1, . . . , tn. We will show by induction on the complexity of φ
that satisfiability of φ can be decided by at most 1exp(p(|T |))-many tests for satis-
fiability of formulas ψ′ obtained from ψ by substitutions of x1, . . . , xn with vectors
of constant lists, each of size bounded by 1exp(p(T)), where p is a polynomial. We
refer to this claim further as (∗).

Then it follows from the proof of Lemma 3 that satisfiability of φ can be decided
by at most 1exp(p(T))-many tests for satisfiability of ∆0-formulas, each of which is
either ψ′ as above (if ψ does not contain non-standard terms) or obtained from ψ′ as
a value of a ExpTime-computable function and has size bounded by 1exp(r(|φ|)),
for some polynomials p, r. As T 6 |φ| and the set of variable-free ∆0-formulas
true in a given structure HW (M) is P-computable, we obtain the statement of the
theorem.

We now show that claim (∗) holds. If φ is quantifier-free, there is nothing to
prove. Now assume φ has the form ax ∝ t θ(x), where a ∈ {∃, ∀} and ∝∈ {∈,⊑}.
It is equivalent to the formula φ′ = ax ∝ t0 θ(x), where t0 is a constant term
equivalent to t. It follows from the proof of Lemma 3 that t0 can be obtained as a
value of a ExpTime-computable function. In particular, the number and the size of
lists a ∝ t0 is bounded by 1exp(p(T)), where p is a polynomial. Then satisfiability
of φ can be decided by 1exp(p(T))-many tests of satisfiability of θ(a), one for each
a ∝ t0, and thus, by applying the induction assumption to the formulas θ(a), we
obtain the required claim. �

We now turn to the complexity results on satisfiability. Note that Theorem 2
provides a lower bound on the complexity of testing satisfiability of ∆0+Rec, while
Theorem 3 does not provide any lower bound (other than PSpace, which is known
already for ∆0-formulas). However, it is possible to obtain tight complexity results
by using the reduction, which we describe next.

390 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

Lemma 5 (Hardness of Satisfiability). Let L be an extension of the language of
∆0-formulas such that for all n > 0 and some k > 1, a kexp(n)-list is expressible in
L by a L-term of size polynomial in k and n. Then the set of satisfiable L-formulas
is NkExpTime-hard.

Proof. The lemma is proved by a reduction from the (bounded) domino tiling prob-
lem [12]. A domino system is a triple D = (T, V,H, init), where T = {1, . . . , p}, for
p > 1, is a finite set of tiles, H,V ⊆ T × T are horizontal and vertical tile match-
ing relations, and init = ⟨t1, . . . , ts⟩ is an initial tiling condition, where ti ∈ T ,
for 1 6 i 6 s, and s > 0. A tiling of size m × m for a domino system D is a
mapping t : {1, . . . ,m} × {1, . . . ,m} → T such that ⟨t(y − 1, x), t(y, x)⟩ ∈ V , for
1 < y 6 m, 1 6 x 6 m, ⟨t(y, x − 1), t(y, x)⟩ ∈ H, for 1 6 y 6 m, 1 < x 6 m,
and t(1, x) = tx, for 1 6 x 6 s. The size of a domino system is measured as s plus
the sum of the cardinalities of V,H, and T . It is known that the set of domino
systems, which admit a tiling of size kexp(n) × kexp(n), where k > 1, n > 0, is
NkExpTime-complete.

Let D be a domino system, k > 1, n > 0, and let ϵ be a L-term of size polynomial
in k and n, which represents a kexp(n)-list. We define a set of L-formulas T
with quantification over elements and initial segments of ϵ, which encode the tiling
problem for D and a grid of dimension kexp(n)×kexp(n) to be “tiled”. We assume
without loss of generality that s 6 kexp(n).

The theory T is defined over a signature Σ, which contains a binary predicate
Ti, for every tile i ∈ {1, , . . . , p}. In particular, it includes predicates t1, . . . , ts
corresponding to the tiles in the initial condition. In our encoding of the tiling
problem, we represent an element of a grid of an exponential size by a pair of lists
being initial segments of ϵ (there are kexp(n)-many of them), which corresponds to
the “coordinate” of the grid element.

First of all, the theory T contains axioms

(1) ∀x, y ⊑ ϵ
∨
i∈T

Ti(y, x)

and

(2) ∀x, y ⊑ ϵ ¬(Ti(y, x) ∧ Tj(y, x))

for all distinct i, j ∈ T .

These axioms state that every element of the grid is “occupied” by exactly one
tile.

The next axiom encodes the initial tiling condition ⟨t1, . . . , ts⟩ and we assume
that it is present in T if s > 1:

(3) t1(ϵ, ϵ) ∧ t2(ϵ, tail(ϵ)) ∧ . . . ∧ ts(ϵ, tail(tail(. . . tail︸ ︷︷ ︸
s−1 times

(ϵ)) . . .)

The following axioms represent the vertical matching condition on tiling:

(4) ∀ x, y1, y2 ⊑ ϵ ¬(y1 = tail(y2) ∧ Ti(y1, x)) ∧ Tj(y2, x)))

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 391

for all i, j ∈ T such that ⟨j, i⟩ ̸∈ V .

Finally, the next axioms represent the horizontal matching condition:

(5) ∀ x1, x2, y ⊑ ϵ ¬(x1 = tail(x2) ∧ Ti(y, x1) ∧ Tj(y, x2))

for all i, j ∈ T such that ⟨j, i⟩ ̸∈ H.

The definition of the theory T is complete.

It is easy to see that the size of T is polynomially bounded by the size of the
domino system D. We claim that D admits a tiling of size kexp(n) × kexp(n) iff
there is a structure M such that HW (M) |= T .

For a list s and 1 6 z 6 len(s), let segz(s) denote the initial segment of s, which
consists of (len(s)− z + 1)-many elements.

(⇐): Given a model HW (M) of T , define a mapping t : {1, . . . , kexp(n)} ×
{1, . . . , kexp(n)} → T by setting t(y, x) = k iff HW (M) |= Tk(seg

y(ϵ), segx(ϵ)).
By axioms 1,2, the mapping t is well defined. By axiom 3, it respects the initial
tiling condition and by axioms 4,5 it satisfies the vertical and horizontal matching
conditions. Thus, the mapping t is a tiling.

(⇒): Given a tiling t, consider a structure HW (M) of signature Σ, in which
ϵ is interpreted as some list s (of length kexp(n)) and the binary predicates are
interpreted as follows: for any tile k ∈ T and lists l1, l2, it holds HW (M) |=
Tk(l1, l2) iff l1 = segy(s) and l2 = segx(s))⟩, for some 1 6 x, y 6 kexp(n) and
t(y, x) = k. Since t is a map, the structure HW (M) defined this way is a model of
axioms 1,2. As t respects the initial condition and matching conditions, HW (M)
is a model of axioms 3-5 and hence, it is a model of T . �

Now we are in the position to formulate the complexity results on satisfiability
of flat ∆0-formulas extended with iterative or recursive terms.

Theorem 4 (Complexity of Satisfiability for Flat ∆0+Iteration). The set of satis-
fiable flat ∆0+Iteration formulas is NExpTime-complete if the number of iterations
is given in unary and it is N2ExpTime-complete if the number of iterations is given
in binary.

Proof. Hardness follows from Lemma 5 and the construction from the proof of
Lemma 2, where it is shown that for any n > 0 and k = 1 or k = 2, respectively, a
kexp(n)-list is expressible by a flat iterative term, in which the number of iterations
is given in unary/binary. The upper complexity bound is shown by a repetition of
the proof of Theorem 3 and by using the fact that the set of satisfiable variable-free
∆0-formulas is in NP. �

Theorem 5 (Complexity of Satisfiability for Flat ∆0+Rec). The set of satisfiable
flat ∆0+Rec formulas, which contain at most k > 1 recursive terms, is NkExpTime-
complete.

Proof. Hardness follows from Lemma 5 and the construction from the proof of
Lemma 1, which shows that for any k > 1 and n > 0, a kexp(n)-list is expressible
by a flat term, which contains k recursive terms. The proof for the upper bound is
similar to the proof of Theorem 3.

Let φ be a flat ∆0+Rec formula of the form

a1x1 ∝1 t1 . . . anxn ∝n tn ψ(x1, . . . , xn)

392 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

where n > 0, ai ∈ {∃, ∀}, and ∝i∈ {∈,⊑}, for all i = 1, . . . , n. Let T denote the
total size of the terms t1, . . . , tn. We will show by induction on the complexity of
φ that satisfiability of φ can be decided by at most mexp(p(|T |))-many tests for
satisfiability of formulas ψ′ obtained from ψ by substitutions of x1, . . . , xn with a
vector of constant lists, each of size bounded by mexp(p(T)), where p is a polynomial
and m = max(rank(t1), . . . , rank(tn)). We refer to this claim further as (∗). It
yields the statement of the theorem due to the following observation.

Since m is bounded by the number of recursive terms in the quantifier prefix
of φ, the number of recursive terms in ψ′ (and hence, their rank) is less or equal
than k − m. Then it follows from the proof of Lemma 3 that satisfiability of φ
can be decided by at most mexp(p(T))-many tests for satisfiability of ∆0-formulas,
each of which is either ψ′ as above (if ψ does not contain non-standard terms)
or obtained from ψ′ as a value of a kExpTime-computable function and has size
bounded by kexp(r(|φ|)), for some polynomials p, r. Since m 6 k, T 6 |φ|, and the
set of satisfiable variable-free ∆0-formulas is in NP, we obtain the statement of the
theorem.

Let us now show that (∗) holds. If φ is quantifier-free, there is nothing to prove.
Now assume that φ has the form ax ∝ t θ(x), where a ∈ {∃, ∀} and ∝∈ {∈,⊑}.
It is equivalent to the formula φ′ = ax ∝ t0 θ(x), where t0 is a constant list term
equivalent to t. It follows from the proof of Lemma 3 that t0 can be obtained as a
value of a mExpTime-computable function, wherem is the maximal rank of terms ti,
i = 1, . . . , n, in the quantifier prefix of φ. In particular, the number and the size of
every list a ∝ t0 is bounded by mexp(p(T)), for a polynomial p. Then satisfiability
of φ can be decided by mexp(p(T))-many tests of satisfiability of θ(a), one for each
a ∝ t0, and thus, by applying the induction assumption to the formulas θ(a), we
obtain the claim. �

5. Conclusions

We have shown that looping terms can succinctly represent exponentially long
lists and can express Cartesian concatenation of lists, which may be the source of
the increased computational complexity. For the latter operation, nested iteration
over lists is required. If the number of iterations is bounded by some number k,
then it is possible to implement Cartesian concatenation via iterative terms only for
lists of k-bounded length. Thus, there remains a certain gap in understanding the
expressiveness of iterative terms. On one hand, the can succinctly represent expo-
nentially long lists (even when terms are flat and the number of iterations is given
in unary), on the other hand, they allow for expressing Cartesian concatenation
of lists only of polynomially bounded length. We leave it open whether the lower
bound on the complexity of model checking for flat ∆0-formulas with iterative terms
matches the upper bound shown in this paper. We have proved tight complexity
bounds for satisfiability, which hint to the natural connection with model checking
in terms of complexity. If model checking is complete in some complexity class (e.g.,
ExpTime), then typically satisfiability is complete in the non-deterministic variant
of this class (i.e., NExpTime), and vice versa. In the paper we considered extensions
of the language of ∆0-formulas with bounded search, iterative, and recursive terms
as separate languages. In further research, we plan to study the interplay between
non-standard terms, when they are used in formulas simultaneously, and to identify

THE EXPRESSIVENESS OF LOOPING TERMS IN THE SEMANTIC PROGRAMMING 393

syntactic restrictions on the form of terms and formulas which guarantee tractable
reasoning.

References

[1] S. Goncharov, D. Sviridenko, Σ-Programming, Transl., Ser.2, Am. Math. Soc., 142 (1989),
101–121. Zbl 0671.03021

[2] S. Goncharov, D. Sviridenko, Theoretical Aspects of Σ-programming, Lect. Notes Comp. Sci.,
215 (1986), 169–179. Zbl 0621.68021

[3] S. Aleksandrova, N. Bazhenov, On Decidability of List Structures, Sib. Math. J., 60:3 (2019),

377–388. Zbl 07125226
[4] S. Goncharov, Conditional Terms in Semantic Programming, Sib. Math. J., 58:5 (2017),

794–800. Zbl 1420.03059
[5] S. Arora, B. Barak, Computational Complexity. A Modern Approach, Cambridge University

Press, Cambridge, 2009. Zbl 1193.68112
[6] C. Papadimitriou, Computational Complexity, Addison-Wesley, Amsterdam, 1994. Zbl

0833.68049
[7] S. Goncharov, D. Sviridenko, The Logic Language of Polynomial Computability, Dokl. Math.,

99:2 (2019), 121–124. Zbl 07082241
[8] S. Goncharov, D. Sviridenko, Recursive Terms in Semantic Programming, Sib. Math. J., 59:6

(2018), 1014-–1023. Zbl 07035746
[9] A. Mantsivoda, D. Ponomaryov, A Formalization of Document Models with Semantic Mod-

elling, Izv. Irkutsk. Gos. Univ., Ser. Mat., 27 (2019), 36–54. MR3938213
[10] S. Ospichev, D. Ponomarev, On the Complexity of Formulas in Semantic Programming, Sib.

Electron. Math. Izv., 15 (1918), 987–995. Zbl 1403.03061
[11] L. Stockmeyer, A. Meyer, Word Problems Requiring Exponential Time: Preliminary Report,

Proc. 5th ann. ACM Symp. Theor. Comput., Austin, (1973), 1–9. Zbl 0359.68050
[12] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Problem, Perspectives in Mathe-

matical Logic, Springer, Berlin, 1997. Zbl 0865.03004

Sergey Goncharov
Sobolev Institute of Mathematics,
4, Koptyuga ave.,

Novosibirsk, 630090, Russia
Novosibirsk State University,
2, Pirogova str.,
Novosibirsk, 630090, Russia

E-mail address: gonchar@math.nsc.ru

Sergey Ospichev

Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia

Novosibirsk State University,
2, Pirogova str.,
Novosibirsk, 630090, Russia
E-mail address: ospichev@math.nsc.ru

Denis Ponomaryov
Sobolev Institute of Mathematics,

4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Ershov Institute of Informatics Systems,
6, Lavrentyeva ave.,

Novosibirsk, 630090, Russia
Novosibirsk State University,
2, Pirogova str.,

Novosibirsk, 630090, Russia
E-mail address: ponom@iis.nsk.su

394 S. GONCHAROV, S. OSPICHEV, D. PONOMARYOV, D. SVIRIDENKO

Dmitri Sviridenko

Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Novosibirsk State University,

2, Pirogova str.,
630090, Novosibirsk, Russia
E-mail address: dsviridenko47@gmail.com

