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ALL TIGHT DESCRIPTIONS OF 3-PATHS IN PLANE GRAPHS
WITH GIRTH AT LEAST 8

0.V.BORODIN, A.O0.IVANOVA

ABSTRACT. Lebesgue (1940) proved that every plane graph with mini-
mum degree § at least 3 and girth g (the length of a shortest cycle) at least
5 has a path on three vertices (3-path) of degree 3 each. A description is
tight if no its parameter can be strengthened, and no triplet dropped.

Borodin et al. (2013) gave a tight description of 3-paths in plane
graphs with § > 3 and g > 3, and another tight description was given by
Borodin, Ivanova and Kostochka in 2017.

In 2015, we gave seven tight descriptions of 3-paths when 6 > 3
and g > 4. Furthermore, we proved that this set of tight descriptions
is complete, which was a result of a new type in the structural theory of
plane graphs. Also, we characterized (2018) all one-term tight descriptions
if § > 3 and g > 3. The problem of producing all tight descriptions for
g > 3 remains widely open even for § > 3.

Recently, eleven tight descriptions of 3-paths were obtained for plane
graphs with 6 = 2 and g > 4 by Jendrol’, Macekova, Montassier, and
Soték, four of which descriptions are for g > 9. In 2018, Aksenov, Borodin
and Ivanova proved nine new tight descriptions of 3-paths for 6 = 2 and
g > 9 and showed that no other tight descriptions exist.

The purpose of this note is to give a complete list of tight descriptions
of 3-paths in the plane graphs with 6 = 2 and g > 8.
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1. INTRODUCTION

Throughout the paper, G is a plane graph. Let §(G) be the minimum vertex
degree and let wy(G) be the minimum degree-sum of a path on k vertices in G. We
will drop the argument when G is clear from context. The degree of a vertex v or
a face f, that is the number of edges incident with v or f, is denoted by d(v) or
d(f), respectively. A k-vertex is a vertex v with d(v) = k. By k™ or k= we denote
any integer not smaller or not greater than k, respectively. Hence, a kT-vertex v
satisfies d(v) > k, etc. An edge uv is an (4, j)-edge if d(u) < i and d(v) < j. A path
wvw is a path of type (i,4,k) or (i,7,k)-path if d(u) < i, d(v) < j, and d(w) < k.

Already in 1904, Wernicke [29] proved that every G with § = 5 has a (5, 6)-edge,
and Franklin [17] strengthened this to the existence of at least two 6~ -neighbors of a
57 -vertex; this implies that ws < 17, which bound is sharp. Recently, we proved [8]
that there is also a (5, 6, 6)-path, which is tight, and there are no tight descriptions
of 3-paths for § = 5 other than {(6,5,6)} and {(5,6,6)}. (A description of paths is
tight if no its parameter can be strengthened and no term dropped).

In 1996, Jendrol’ and Madaras [25] ensured for 6 = 5 that wy < 23, which is
sharp. Recently, we found [9] the first tight description of 4-paths for § = 5, and then
Batueva, Borodin and Ivanova [4] found all remaining nine such tight descriptions.

It follows from Lebesgue’s [28] results in 1940 that each G with § > 3 satisfies
wg < 14. For 3-connected plane graphs, Kotzig [27] proved a precise result: wy < 13.

In 1972, Erdss (see [18]) conjectured that Kotzig’s bound we < 13 holds for
all plane graphs with § > 3. Barnette (see [18]) announced to have proved this
conjecture, but the proof has never appeared in print. The first published proof of
Erdés’ conjecture is due to Borodin [5]. More generally, Borodin [6] proved that
every G with 6 > 3 contains a (3,10)-, or (4,7)-, or (5, 6)-edge, which description
is tight.

In 1993, Ando, Iwasaki, Kaneko [3] proved that every 3-connected G satisfies
ws < 21, which is sharp due to the Jendrol’ construction in [19]. This was refined
by Borodin [7] in 1997 as follows: every 3-connected G has: (¢) either w3 < 18 or a
vertex of degree < 15 adjacent to two 3-vertices, and (i¢) either w3 < 17 or wgy < 7.
Here, the bounds w3 < 21 and ws < 17 were known to be tight long ago, and the
sharpness of w3 < 18 was recently confirmed by Borodin et al. [14].

In 1997, Jendrol’ [20] gave an approximate description of 3-paths: every G with
0 > 3 and g > 3 has a 3-path of one of the following types: (10, 3,10), (7,4,7),
(6,5,6), (3,4,15), (3,6,11), (3,8,5), (3,10,3), (4,4,11), (4,5,7), or (4,7,5).

In 2013, Borodin et al. [14] gave the first tight description of 3-paths: every
G with 6 > 3 and g > 3 has a 3-path of one of the following types: (3,4,11),
(3,7,5), (3,10,4), (3,15,3), (4,4,9), (6,4,8), (7,4,7), (6,5,6). Another similar tight
description for 6 > 3 and g > 3 was given by Borodin, Ivanova and Kostochka [15].

In 2015, we [10] gave seven tight descriptions of 3-paths when 6 > 3 and g > 4.
Furthermore, we proved that this set of descriptions is complete, which was a result
of a new type in the structural theory of plane graphs. Also, we [12] characterized
all one-term tight descriptions if 6 > 3 and g > 3. The problem of producing all
tight descriptions for ¢ > 3 remains widely open even for § > 3. Other results
on k-paths with £ > 3 and 6 > 3 can be found in surveys Borodin-Ivanova [11],
Cranston—West [16] and Jendrol’~Voss [26].
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Aksenov, Borodin and Ivanova [1] proved precise upper bounds for w3 in several
natural classes of plane graphs with § = 2 and 5 < g < 7 and disproved a conjecture
by Jendrol’ and Macekovd [21] concerning the case g = 5.

Recently, eleven tight descriptions of 3-paths were obtained for 6 =2 and g > 4
by Jendrol’, Macekova, Montassier, and Sotdak [21-24], four of which descriptions
are for g > 9 (for details, see Theorems 1 and 2 below).

Aksenov, Borodin and Ivanova [2] gave the following complete list of tight descriptions
of 3-paths for § =2 and g > 9.

Theorem 1 ( [2]). There exist precisely these tight descriptions of 3-paths in plane
graphs with minimum degree 2 and girth g at least 9:
(A) g >16: {(2,2,2)} (folklore);
(B) 11 < g < 15:
(2.2, ([22]) and

(@232}
(C) g =10:
{(2,2,3),(2,3,2)} ([21], the tightness shown in [22]),
{(2,4,2)} ([22)),
{(2,3,3)}, {(2,2,4),(3,2,3)}, and
{(3,2,4)};
(D) g =9:
{(2,2,5),(2,3,2)} ([23]),
{(2,5,2),(2,2,3)}, {(2,2,5),(3,2,3)}, {(2,5,3)}, {(2,3,5)}, and
{(3,2,5)}.

In [13] we described all tight descriptions of 3-paths centered at 2-vertices whenever
g = 6.

The purpose of this note is to completely resolve the case g > 8, as follows.

Theorem 2. There exist these and only these five tight descriptions of 3-paths in
plane graphs with minimum degree 2 and girth at least 8:

(1) {(2,2,5),(2,3,2)} ([22]);

1) {(2,5,2),(2,2,3)};
) {(3,2,5)} ([13]);

N

2. PROVING THEOREM 2

Since {(2,2,5), (2,3,2)} is a tight description ( [22]), it follows that {(2,3,5)} is
also a description, since both a (2,2,5)-path and a (2,3, 2)-path are also (2,3,5)-
paths. So, we first prove that {(2,5,2),(2,2,3)} is a description. This implies that
{(2,5,3)} is also a description, since both a (2,5,2)-path and a (2,2, 3)-path are
also (2,5, 3)-paths.

Next, we show that all descriptions {(2,5,2),(2,2,3)}, {(2,3,5)} and {(2,5,3)}
are tight.

Finally, we show that there are no tight descriptions for g > 8 other than those
five listed in Theorem 2.
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2.1. Proving that {(2,5,2),(2,2,3)} is a description. We need the following
refinement of the already mentioned Borodin’s [6] tight description
{(3,10),(4,7),(5,6)} of 2-paths (that is, edges) in plane graphs with § > 3.

Lemma 1 ( [13]). Every plane graph with minimum degree at least 3 has at least
one of the following:

(a) a 3-face incident with a (3,10)-, or (4,7)-, or (5,6)-edge;

(b) a 4-face incident either with two 3-vertices and another 5~ -vertex or with a
3-vertex, two 4-vertices and the forth vertex of degree at most 5;

(¢) a 5-face incident with four 3-vertices and the fifth vertex of degree at most 5,
where all parameters are best possible.

Suppose on the contrary that G does not obey the description {(2, 5, 2), (2,2, 3)}.

We consider the graph G* with 6(G*) > 3 obtained from G by contracting all
2-vertices and look at its 5~ -faces f* implied by Lemma 1. Note that g(G*) > 3
since g(G) > 8 and due to the absence (2,2, 2)-paths in G.

If f* = vyvevs with d(v1) < 5, then then the boundary 9(f) of the pre-image f
of f* in G must have at most two 2-vertices at the pair of edges since g(G) > 8,
which is impossible due to the absence (2,2, 3)-paths in G. On the other hand, both
edges v1vy and vyvs cannot contain a 2-vertices due to the absence of (2,5, 2)-paths
in G. This implies d(f) < 3+2+ 1 < 8, a contradiction.

Now suppose d(f*) = v1vav3v4. It follows from Lemma 1(b) that f* must have
a 3-vertex, say v, opposite to a 5~ -vertex, vz, in d(f). It is not hard to see that
to avoid (2, 5,2)-paths and (2,2, 3)-paths, our f can have at most one 2-vertex at
the pair of edges v1vs, v1v4 and at most two 2-vertices at vovs, v3v4. However, then
d(f) <4+ 1+1 <8, a contradiction.

Finally, suppose d(f*) = vy ...v5 with d(v1) = ... = d(vy) = 3 and d(vs) < 5.
Now at most one 2-vertex may be put on every edge in 9(f) and, moreover, at
most one 2-vertex can appear at any two consecutive edges in 9(f). This implies
d(f) <542 x 1< 8, a contradiction.

2.2. Proving the tightness of {(2,5,2),(2,2,3)}, {(2,3,5)} and {(2,5,3)}. To
show the tightness of {(2,5,2),(2,2,3)}, we have to prove that neither {(2,4,2),
(2,2,3)} nor {(2,5,2),(2,2,2)} is a description. To reject the former option, it
suffices to put two 2-vertices on every edge of the icosahedron and note that the
graph H; obtained has girth 9 but no (4,4, 4)-paths, since each its 3-path goes
through 5-vertex.

To reject the latter, we reproduce the graph obtained in Jendrol’ et al. (see Fig. 5
in [22]). Take concentric cycles Wg = wy ... ws, XY16 = Z1y1 ... TsYs, Zs = 21 - - - 28,
and add a path with two internal 2-vertices between w; to x; and also between y;
and z; whenever 1 < ¢ < 8. It remains to observe that Hy obtained has no (2,5, 2)-
paths (and, in particular, no (2,2, 2)-paths) and g(Hsz) = 8.

The tightness of {(2,5,3)} follows similarly from the same graphs H; and Hs.
Indeed, we cannot strengthen {(2,5,3)} to {(2,4,3)}, since each 3-path in H; goes
through 5-vertex, and to {(2,5,2)}, since Hs has no vertex adjacent to two 2-
vertices.

Finally, to see the tightness of {(2,3,5)}, it suffices to observe that {(2,3,4)} is
invalid due to Hy, while {(2,2,5)} fails to describe the graph Hj that is a result of
deleting all edges joining 10-vertices to 10-vertices from the triangulation obtained
from the icosahedron by putting a 3-vertex into each face and joining it to the
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boundary vertices of this face. Note that Hj is bipartite, with every edge joining a
3-vertex to a 5-vertex.

2.3. Proving the non-existence of tight descriptions other than those five
in Theorem 2. Suppose D = {(z1,y1,21),.-.,(Zk, Yk, 21) } is a tight description
of 3-paths in plane graphs with 6 = 2 and g > 8. By symmetry, we can assume that
x; < z; whenever 1 < i < k. It follows from the graph H; above that D must have
an entry, say y; or z1, not smaller than 5.

CasE 1. y; > 5. Now (z1,y1,21) = (2,5T,2) since {(2,5,3)} is already a tight
description. It follows from Hs (which has no (2, 5, 2)-paths) that, say, (z2, ya, 22) =
(2F,2+,3%).

Since {(2,5,2),(2,2,3)} is known to be a tight description, it follows that
D ={(2,5,2),(2,2,3)}.

CASE 2. z; > 5. Now (z1,y1,21) = (2,2,5T) since {(3,2,5)} and {(2,3,5)} are
tight descriptions. Let Hy be a graph obtained from the dodecahedron by putting
a 2-vertex on each edge. Clearly, H, satisfies g(H4) = 10 and has only (3, 2, 3)- and
(2,3,2)-paths. This implies that D must have a term, say (x2,ya2, 22), such that
either (z2,y2,22) = (37,2%,3%) or (z2,y2,22) = (37,2%,3™).

In the first case, we have D = {(2,2,5),(3,2,3)} since {(2,2,5),(3,2,3)} is
known to be a tight description. In the second case, we similarly deduce that D =
{(2,2,5),(2,3,2)}, as desired.
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