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ALL TIGHT DESCRIPTIONS OF 3-PATHS IN PLANE GRAPHS
WITH GIRTH AT LEAST 8

O.V.BORODIN, A.O. IVANOVA

Abstract. Lebesgue (1940) proved that every plane graph with mini-
mum degree δ at least 3 and girth g (the length of a shortest cycle) at least
5 has a path on three vertices (3-path) of degree 3 each. A description is
tight if no its parameter can be strengthened, and no triplet dropped.

Borodin et al. (2013) gave a tight description of 3-paths in plane
graphs with δ ≥ 3 and g ≥ 3, and another tight description was given by
Borodin, Ivanova and Kostochka in 2017.

In 2015, we gave seven tight descriptions of 3-paths when δ ≥ 3
and g ≥ 4. Furthermore, we proved that this set of tight descriptions
is complete, which was a result of a new type in the structural theory of
plane graphs. Also, we characterized (2018) all one-term tight descriptions
if δ ≥ 3 and g ≥ 3. The problem of producing all tight descriptions for
g ≥ 3 remains widely open even for δ ≥ 3.

Recently, eleven tight descriptions of 3-paths were obtained for plane
graphs with δ = 2 and g ≥ 4 by Jendrol’, Maceková, Montassier, and
Soták, four of which descriptions are for g ≥ 9. In 2018, Aksenov, Borodin
and Ivanova proved nine new tight descriptions of 3-paths for δ = 2 and
g ≥ 9 and showed that no other tight descriptions exist.

The purpose of this note is to give a complete list of tight descriptions
of 3-paths in the plane graphs with δ = 2 and g ≥ 8.
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1. Introduction

Throughout the paper, G is a plane graph. Let δ(G) be the minimum vertex
degree and let wk(G) be the minimum degree-sum of a path on k vertices in G. We
will drop the argument when G is clear from context. The degree of a vertex v or
a face f , that is the number of edges incident with v or f , is denoted by d(v) or
d(f), respectively. A k-vertex is a vertex v with d(v) = k. By k+ or k− we denote
any integer not smaller or not greater than k, respectively. Hence, a k+-vertex v
satisfies d(v) ≥ k, etc. An edge uv is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. A path
uvw is a path of type (i, j, k) or (i, j, k)-path if d(u) ≤ i, d(v) ≤ j, and d(w) ≤ k.

Already in 1904, Wernicke [29] proved that every G with δ = 5 has a (5, 6)-edge,
and Franklin [17] strengthened this to the existence of at least two 6−-neighbors of a
5−-vertex; this implies that w3 ≤ 17, which bound is sharp. Recently, we proved [8]
that there is also a (5, 6, 6)-path, which is tight, and there are no tight descriptions
of 3-paths for δ = 5 other than {(6, 5, 6)} and {(5, 6, 6)}. (A description of paths is
tight if no its parameter can be strengthened and no term dropped).

In 1996, Jendrol’ and Madaras [25] ensured for δ = 5 that w4 ≤ 23, which is
sharp. Recently, we found [9] the first tight description of 4-paths for δ = 5, and then
Batueva, Borodin and Ivanova [4] found all remaining nine such tight descriptions.

It follows from Lebesgue’s [28] results in 1940 that each G with δ ≥ 3 satisfies
w2 ≤ 14. For 3-connected plane graphs, Kotzig [27] proved a precise result: w2 ≤ 13.

In 1972, Erdős (see [18]) conjectured that Kotzig’s bound w2 ≤ 13 holds for
all plane graphs with δ ≥ 3. Barnette (see [18]) announced to have proved this
conjecture, but the proof has never appeared in print. The first published proof of
Erdős’ conjecture is due to Borodin [5]. More generally, Borodin [6] proved that
every G with δ ≥ 3 contains a (3, 10)-, or (4, 7)-, or (5, 6)-edge, which description
is tight.

In 1993, Ando, Iwasaki, Kaneko [3] proved that every 3-connected G satisfies
w3 ≤ 21, which is sharp due to the Jendrol’ construction in [19]. This was refined
by Borodin [7] in 1997 as follows: every 3-connected G has: (i) either w3 ≤ 18 or a
vertex of degree ≤ 15 adjacent to two 3-vertices, and (ii) either w3 ≤ 17 or w2 ≤ 7.
Here, the bounds w3 ≤ 21 and w3 ≤ 17 were known to be tight long ago, and the
sharpness of w3 ≤ 18 was recently confirmed by Borodin et al. [14].

In 1997, Jendrol’ [20] gave an approximate description of 3-paths: every G with
δ ≥ 3 and g ≥ 3 has a 3-path of one of the following types: (10, 3, 10), (7, 4, 7),
(6, 5, 6), (3, 4, 15), (3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7), or (4, 7, 5).

In 2013, Borodin et al. [14] gave the first tight description of 3-paths: every
G with δ ≥ 3 and g ≥ 3 has a 3-path of one of the following types: (3, 4, 11),
(3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (7, 4, 7), (6, 5, 6). Another similar tight
description for δ ≥ 3 and g ≥ 3 was given by Borodin, Ivanova and Kostochka [15].

In 2015, we [10] gave seven tight descriptions of 3-paths when δ ≥ 3 and g ≥ 4.
Furthermore, we proved that this set of descriptions is complete, which was a result
of a new type in the structural theory of plane graphs. Also, we [12] characterized
all one-term tight descriptions if δ ≥ 3 and g ≥ 3. The problem of producing all
tight descriptions for g ≥ 3 remains widely open even for δ ≥ 3. Other results
on k-paths with k ≥ 3 and δ ≥ 3 can be found in surveys Borodin–Ivanova [11],
Cranston–West [16] and Jendrol’–Voss [26].
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Aksenov, Borodin and Ivanova [1] proved precise upper bounds for w3 in several
natural classes of plane graphs with δ = 2 and 5 ≤ g ≤ 7 and disproved a conjecture
by Jendrol’ and Maceková [21] concerning the case g = 5.

Recently, eleven tight descriptions of 3-paths were obtained for δ = 2 and g ≥ 4
by Jendrol’, Maceková, Montassier, and Soták [21–24], four of which descriptions
are for g ≥ 9 (for details, see Theorems 1 and 2 below).

Aksenov, Borodin and Ivanova [2] gave the following complete list of tight descriptions
of 3-paths for δ = 2 and g ≥ 9.

Theorem 1 ( [2]). There exist precisely these tight descriptions of 3-paths in plane
graphs with minimum degree 2 and girth g at least 9:

(A) g ≥ 16: {(2, 2, 2)} (folklore);
(B) 11 ≤ g ≤ 15:

{(2, 2, 3)} ( [22]) and
{(2, 3, 2)};

(C) g = 10:
{(2, 2, 3), (2, 3, 2)} ( [21], the tightness shown in [22]),
{(2, 4, 2)} ( [22]),
{(2, 3, 3)}, {(2, 2, 4), (3, 2, 3)}, and
{(3, 2, 4)};

(D) g = 9:
{(2, 2, 5), (2, 3, 2)} ( [23]),
{(2, 5, 2), (2, 2, 3)}, {(2, 2, 5), (3, 2, 3)}, {(2, 5, 3)}, {(2, 3, 5)}, and
{(3, 2, 5)}.

In [13] we described all tight descriptions of 3-paths centered at 2-vertices whenever
g ≥ 6.

The purpose of this note is to completely resolve the case g ≥ 8, as follows.

Theorem 2. There exist these and only these five tight descriptions of 3-paths in
plane graphs with minimum degree 2 and girth at least 8:

(i) {(2, 2, 5), (2, 3, 2)} ( [22]);
(ii) {(2, 5, 2), (2, 2, 3)};
(iii) {(3, 2, 5)} ( [13]);
(iv) {(2, 3, 5)};
(v) {(2, 5, 3)}.

2. Proving Theorem 2

Since {(2, 2, 5), (2, 3, 2)} is a tight description ( [22]), it follows that {(2, 3, 5)} is
also a description, since both a (2, 2, 5)-path and a (2, 3, 2)-path are also (2, 3, 5)-
paths. So, we first prove that {(2, 5, 2), (2, 2, 3)} is a description. This implies that
{(2, 5, 3)} is also a description, since both a (2, 5, 2)-path and a (2, 2, 3)-path are
also (2, 5, 3)-paths.

Next, we show that all descriptions {(2, 5, 2), (2, 2, 3)}, {(2, 3, 5)} and {(2, 5, 3)}
are tight.

Finally, we show that there are no tight descriptions for g ≥ 8 other than those
five listed in Theorem 2.
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2.1. Proving that {(2, 5, 2), (2, 2, 3)} is a description. We need the following
refinement of the already mentioned Borodin’s [6] tight description
{(3, 10), (4, 7), (5, 6)} of 2-paths (that is, edges) in plane graphs with δ ≥ 3.

Lemma 1 ( [13]). Every plane graph with minimum degree at least 3 has at least
one of the following:

(a) a 3-face incident with a (3, 10)-, or (4, 7)-, or (5, 6)-edge;
(b) a 4-face incident either with two 3-vertices and another 5−-vertex or with a

3-vertex, two 4-vertices and the forth vertex of degree at most 5;
(c) a 5-face incident with four 3-vertices and the fifth vertex of degree at most 5,

where all parameters are best possible.

Suppose on the contrary that G does not obey the description {(2, 5, 2), (2, 2, 3)}.
We consider the graph G∗ with δ(G∗) ≥ 3 obtained from G by contracting all

2-vertices and look at its 5−-faces f∗ implied by Lemma 1. Note that g(G∗) ≥ 3
since g(G) ≥ 8 and due to the absence (2, 2, 2)-paths in G.

If f∗ = v1v2v3 with d(v1) ≤ 5, then then the boundary ∂(f) of the pre-image f
of f∗ in G must have at most two 2-vertices at the pair of edges since g(G) ≥ 8,
which is impossible due to the absence (2, 2, 3)-paths in G. On the other hand, both
edges v1v2 and v1v3 cannot contain a 2-vertices due to the absence of (2, 5, 2)-paths
in G. This implies d(f) ≤ 3 + 2 + 1 < 8, a contradiction.

Now suppose d(f∗) = v1v2v3v4. It follows from Lemma 1(b) that f∗ must have
a 3-vertex, say v1, opposite to a 5−-vertex, v3, in ∂(f). It is not hard to see that
to avoid (2, 5, 2)-paths and (2, 2, 3)-paths, our f can have at most one 2-vertex at
the pair of edges v1v2, v1v4 and at most two 2-vertices at v2v3, v3v4. However, then
d(f) ≤ 4 + 1 + 1 < 8, a contradiction.

Finally, suppose d(f∗) = v1 . . . v5 with d(v1) = . . . = d(v4) = 3 and d(v5) ≤ 5.
Now at most one 2-vertex may be put on every edge in ∂(f) and, moreover, at
most one 2-vertex can appear at any two consecutive edges in ∂(f). This implies
d(f) ≤ 5 + 2× 1 < 8, a contradiction.

2.2. Proving the tightness of {(2, 5, 2), (2, 2, 3)}, {(2, 3, 5)} and {(2, 5, 3)}. To
show the tightness of {(2, 5, 2), (2, 2, 3)}, we have to prove that neither {(2, 4, 2),
(2, 2, 3)} nor {(2, 5, 2), (2, 2, 2)} is a description. To reject the former option, it
suffices to put two 2-vertices on every edge of the icosahedron and note that the
graph H1 obtained has girth 9 but no (4, 4, 4)-paths, since each its 3-path goes
through 5-vertex.

To reject the latter, we reproduce the graph obtained in Jendrol’ et al. (see Fig. 5
in [22]). Take concentric cycles W8 = w1 . . . w8, XY16 = x1y1 . . . x8y8, Z8 = z1 . . . z8,
and add a path with two internal 2-vertices between wi to xi and also between yi
and zi whenever 1 ≤ i ≤ 8. It remains to observe that H2 obtained has no (2, 5, 2)-
paths (and, in particular, no (2, 2, 2)-paths) and g(H2) = 8.

The tightness of {(2, 5, 3)} follows similarly from the same graphs H1 and H2.
Indeed, we cannot strengthen {(2, 5, 3)} to {(2, 4, 3)}, since each 3-path in H1 goes
through 5-vertex, and to {(2, 5, 2)}, since H2 has no vertex adjacent to two 2-
vertices.

Finally, to see the tightness of {(2, 3, 5)}, it suffices to observe that {(2, 3, 4)} is
invalid due to H1, while {(2, 2, 5)} fails to describe the graph H3 that is a result of
deleting all edges joining 10-vertices to 10-vertices from the triangulation obtained
from the icosahedron by putting a 3-vertex into each face and joining it to the
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boundary vertices of this face. Note that H3 is bipartite, with every edge joining a
3-vertex to a 5-vertex.

2.3. Proving the non-existence of tight descriptions other than those five
in Theorem 2. Suppose D = {(x1, y1, z1), . . . , (xk, yk, zk)} is a tight description
of 3-paths in plane graphs with δ = 2 and g ≥ 8. By symmetry, we can assume that
xi ≤ zi whenever 1 ≤ i ≤ k. It follows from the graph H1 above that D must have
an entry, say y1 or z1, not smaller than 5.

Case 1. y1 ≥ 5. Now (x1, y1, z1) = (2, 5+, 2) since {(2, 5, 3)} is already a tight
description. It follows from H2 (which has no (2, 5, 2)-paths) that, say, (x2, y2, z2) =
(2+, 2+, 3+).

Since {(2, 5, 2), (2, 2, 3)} is known to be a tight description, it follows that
D = {(2, 5, 2), (2, 2, 3)}.

Case 2. z1 ≥ 5. Now (x1, y1, z1) = (2, 2, 5+) since {(3, 2, 5)} and {(2, 3, 5)} are
tight descriptions. Let H4 be a graph obtained from the dodecahedron by putting
a 2-vertex on each edge. Clearly, H4 satisfies g(H4) = 10 and has only (3, 2, 3)- and
(2, 3, 2)-paths. This implies that D must have a term, say (x2, y2, z2), such that
either (x2, y2, z2) = (3+, 2+, 3+) or (x2, y2, z2) = (3+, 2+, 3+).

In the first case, we have D = {(2, 2, 5), (3, 2, 3)} since {(2, 2, 5), (3, 2, 3)} is
known to be a tight description. In the second case, we similarly deduce that D =
{(2, 2, 5), (2, 3, 2)}, as desired.
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