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Abstract. Borodin and Ivanova proved that every planar graph of
girth at least 7 is 2-choosable with the property that each monochromatic
component is a path with at most 3 vertices. Axenovich et al. proved that
every planar graph of girth 6 is 2-choosable so that each monochromatic
component is a path with at most 15 vertices. We improve both these
results by showing that planar graphs of girth at least 6 are 2-choosable
so that each monochromatic component is a path with at most 3 vertices.
Our second result states that every planar graph of girth 5 is 2-choosable
so that each monochromatic component is a tree with at most 515
vertices. Finally, we prove that every graph with fractional arboricity at
most 2d+2

d+2
is 2-choosabale with the property that each monochromatic

component is a tree with maximum degree at most d. This implies
that planar graphs of girth 5, 6, and 8 are 2-choosable so that each
monochromatic component is a tree with maximum degree at most 4,
2, and 1, respectively. All our results are obtained by applying the Nine
Dragon Tree Theorem, which was recently proved by Jiang and Yang,
and the Strong Nine Dragon Tree Conjecture partially confirmed by Kim
et al. and Moore.
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1. Introduction

The goal of this paper is to show how some strong results about defective and
clustered colourings of planar and sparse graphs can be derived from the recently
proved Nine Dragon Tree Theorem (NDTT) [15] and its stronger version known
as Strong Nine Dragon Tree Conjecture (SNDTC), which was posed in [26] and
partially proved in [21, 27].

A vertex k-colouring of a graph G = (V,E) is a mapping f : V → {1, 2, . . . , k},
where {1, 2, . . . , k} is the set of colours. A monochromatic component is a connected
component of any subgraph induced by all vertices of one colour. A colouring f is
proper if any two adjacent vertices are coloured differently. A graph G is (properly)
k-colourable if it has a proper k-colouring.

Along with the proper colouring, the various types of improper vertex colouring
of graphs are intensively studied. The most popular colourings are a defective
colouring, a clustered colouring and a Pn-free colouring. Cowen et al. [12] defined a
defective k-colouring with defect d as a vertex k-colouring such that any monochro-
matic component has maximum degree at most d. A slightly more general concept
is a defective (d1, . . . , dk)-colouring defined by the property that each vertex of any
colour i ∈ {1, . . . , k} has at most di neighbours coloured i. This implies that the
subgraph induced by all vertices of colour i has maximum degree at most di. Note
that if d1 = d2 = · · · = dk = d, then we have the definition of a defective k-colouring
with defect d.

Observe that defective colouring impose no restrictions on the size of mono-
chromatic components, their structure or the length of monochromatic paths in a
graph. Such types of restrictions give rise to other improper colourings. A vertex
colouring of a graph G is acyclic if G contains no monochromatic cycle, and hence
any monochromatic component of G is a tree. A colouring is Pn-free if G contains
no monochromatic path Pn with n vertices. The concept of a clustered colouring was
initially studied in [23] under the name of fragmented colouring. A k-colouring of a
graph G is a clustered k-colouring with clustering c (or fragmented (k, c)-colouring)
if any monochromatic component of G contains at most c vertices. Clearly, every
clustered colouring with clustering c is Pc-free and is defective with defect c − 1;
moreover, if f is acyclic, then any monochromatic component of G is a tree with
at most c vertices. On the other hand, it is easy to check that if f is a Pn-free
defective colouring with defect d, then f is a clustered colouring with clustering at
most max{n, (d− 1)(n+1)/2}.

Note that a defective colouring with defect 0, a clustered colouring with clustering
1, and a P2-free colouring are all equivalent to a proper colouring of G. Furthermore,
a defective colouring with defect 1 is equivalent to a clustered colouring with
clustering 2 and a P3-free colouring: in each case every monochromatic component
of G is a vertex or an edge.

For all colourings mentioned above we can consider their list versions. Suppose
L is a list assignment for a graph G, which assigns a list L(v) of admissible colours
to every vertex v ∈ V . The assignment L has size k if |L(v)| = k for each v ∈ V . An
L-colouring of G is a vertex colouring f such that f(v) ∈ L(v) for every v ∈ V . A
graph G is k-choosable if it has a proper L-colouring for any list assignment L of size
k. Along with the proper list colouring, the defective, clustered, Pn-free, and acyclic
list colourings are studied (for defective list colouring it is assumed that defect d is
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the same for all colours). The defectively k-choosable, clustered k-choosable, and
Pn-free k-choosable graphs are defined similarly to the properly k-choosable graphs.

The famous Four Colour Theorem [2, 3] states that every planar graph is (properly)
4-colourable. The well-known result of Grötzsch [18] says that every triangle-free
planar graph is 3-colourable. However, the situation with list colouring of planar
graphs is significantly different. Voigt constructed an example of a planar graph
that is not 4-choosable [33] and an example of a triangle-free planar graph that is
not 3-choosable [34]. Thomassen [32] proved that all planar graphs are 5-choosable.

Cushing and Kierstead [13] proved that every planar graph is defectively 4-
choosable with defect 1 (and thus with clustering 2). Choi and Esperet [10] showed
that every graph with Euler genus γ > 0 is defectively (0, 0, 0, 9γ−4)-colourable. Poh
[30] proved that every planar graph is 3-colourable such that each monochromatic
component is a path (and hence is acyclically 3-colourable with defect 2). Cowen,
Cowen, and Woodall [12] proved that every planar graph is defectively 3-choosable
with defect 2. Woodall [35] generalized this result by showing that every graph
with Euler genus γ is 3-choosable with defect max{9, 2+

√
4γ + 6}. Montassier and

Ochem [25], for all d > 0, presented examples of 2-degenerate planar graphs of
girth 4 (respectively, 5 and 7) that are not defectively 2-colourable with defect d
(respectively, not defectively (3, 1)-colourable and not defectively (2, 0)-colourable).
Borodin et al. [6], for every d > 0, constructed 2-degenerate planar graphs of girth
6 that are not defectively (d, 0)-colourable.

On the other hand, it is known that if a graph G is sparse in the sense that
its maximum average degree, mad(G) = max

H⊆G
2 |E(H)|
|V (H)| , is low, then G is defectively

(d1, d2)-colourable (or (d1, d2)-choosable) for small constants d1 and d2. Borodin,
Kostochka, and Yancey [8] proved that every graph G with mad(G) ≤ 14

5 is
defectively 2-colourable with defect 1 (and thus P3-free 2-colourable with clustering
2). Borodin and Ivanova [5] proved that every graph G with girth g(G) ≥ 7 and
mad(G) < 14

5 admits a list 2-colouring where each monochromatic component is
a path with at most three vertices. Since every planar graph G with girth at least
g has mad(G) < 2g

g−2 , the results in [5, 8] are valid for planar graphs of girth at
least 7. Kim, Kostochka, and Zhu [22] proved that every triangle-free graph G with
|E(H)| < 11|V (H)|+5

9 for every subgraph H ⊆ G has a defective (0, 1)-colouring. This
implies that planar graphs with girth at least 11 are defectively (0, 1)-colourable.
It follows from the results of Borodin and Kostochka [7] that every planar graph G
with g(G) ≥ 8 (respectively, g(G) ≥ 7, g(G) ≥ 6, and g(G) ≥ 5) is defectively (0, 2)-
colourable (respectively, (0, 4)-colourable, (1, 4)-colourable, and (2, 6)-colourable).
Choi and Raspaud [11] proved that planar graphs with girth at least 5 are defectively
(3, 5)-colourable. Havet and Sereni [19] obtained, for every d ≥ 0, that each graph
G with mad(G) < 4d+4

d+2 is defectively 2-choosable with defect d. This implies that
every planar graph G is defectively 2-choosable with defect 1 if g(G) ≥ 8 and with
defect 2 if g(G) ≥ 6. Škrekovski [31] proved that planar graphs with girth at least
5 are defectively 2-choosable with defect 4.

The concept of a Pn-free colouring was introduced by Chartrand, Geller, and
Hedetniemi [9], who showed that for all n > 0, there exist planar graphs that
are not Pn-free 3-colourable. On the other hand, by Grötzsch Theorem [18], every
triangle-free planar graph is P2-free 3-colourable. Axenovich, Ueckerdt, and Weiner
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[4] constructed examples of triangle-free planar graphs (of girth 4) that are not Pn-
free 2-colourable for all n > 0. It follows from the result in [25] that not all planar
graphs of girth 5 are P3-free 2-colourable. Glebov [16] proved that every planar
graph of girth 5 is acyclically P8-free 2-choosable. Glebov and Zambalaeva [17]
proved that planar graphs with girth at least 6 are acyclically P6-free 2-colourable
while it was proved in [4] that any such a graph admits a list 2-colouring where
each monochromatic component is a path with at most 15 vertices. By the above
mentioned results in [5, 8, 19], planar graphs of girth 7 are (acyclically) P3-free
colourable [8] and P4-free 2-choosable [5] while planar graphs of girth at least 8 are
P3-free 2-choosable [19].

The result in [13] implies that every planar graph is clustered 4-choosable with
clustering 2. The examples of planar graphs presented in [4, 9, 25] show that for any
constant c > 0, there exist planar graphs that are not 3-colourable with clustering c
and there exist triangle-free planar graphs that are not 2-colourable with clustering
c. By the results in [4, 5, 8, 19], planar graphs of girth 6 are 2-choosable with
clustering 15, planar graphs of girth 7 are 2-colourable with clustering 2 and 2-
choosable with clustering 3, and planar graphs of girth at least 8 are 2-choosable
with clustering 2. Dvořák and Norin [14] proved that every graph of Euler genus
γ and of girth g is 4-choosable with clustering 1500(γ + 2), is 3-choosable with
clustering O(γ) if g ≥ 4, and is 2-choosable with clustering O(γ) if g ≥ 5. Linial
et al. [24] proved that if z is any non-trivial minor-closed family of graphs, then
every n-vertex graph G ∈ z is k-colourable with clustering O(n2/(k+1)) and that
for k = 2 the bound O(n2/3) is asymptotically optimal and is attained by planar
graphs. Haxell, Szabó, and Tardos [20] proved that every graph G with maximum
degree ∆ is 2-colourable with clustering 6 if ∆ = 4, is 2-colourable with clustering
20000 if ∆ = 5, and is 3-colourable with constant clustering if ∆ ≤ 8. For larger
values of ∆ they established that G is

⌈
∆+1
3

⌉
-colourable with constant clustering

independent of ∆. Alon et al. [1], for every c > 0, constructed a family of 6-regular
graphs that are not 2-colourable with clustering c and a family of 10-regular graphs
that are not 3-colourable with clustering c.

2. Our results

In this paper we present some new results about clustered and defective choosability
of planar and sparse graphs. Our proof method essentially involves the idea of edge
decomposition of a graph into forests. So, the natural mesaure of sparseness of a
graph here would be its fractional arboricity rather than the maximum average
degree. Let H = (VH , EH) be an arbitrary subgraph of a graph G. The fractional
arboricity of G is

Arbf (G) = max
H⊆G,|VH |>1

|EH |
|VH | − 1

.

Our first result is about acyclic defective choosability of a graph.

Theorem 1. Let d be a positive integer. If G is a graph with Arbf (G) ≤ 2d+2
d+2 , then

G is acyclically 2-choosable with defect d. This implies that every monochromatic
component of G is a tree of maximum degree at most d.

Observe that for every graph G, Arbf (G) is close to 1
2mad(G) and is greater than

1
2mad(G). Thus, our Theorem 1 can be treated as an ”asymptotical improvement”
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of the result by Havet and Sereni [19] that every graph G with mad(G) < 4d+4
d+2 is

2-choosable with defect d.
By Euler’s formula and the definition of mad(G) and Arbf (G) it follows that

every planar graph G of girth g satisfies mad(G) < 2Arbf (G) < 2g
g−2 . Thus, we get

the following

Corollary 1. Let G be a planar graph of girth g.
1) If g ≥ 5, then G is acyclically 2-choosable with defect 4.
2) If g ≥ 6, then G is acyclically 2-choosable with defect 2. This implies that

each monochromatic component of G is a path.
3) If g ≥ 8, then G is 2-choosable with defect 1 (and hence with clustering 2).

The first statement of Corollary 1 improves the result of Škrekovski [31] that
every planar graph of girth 5 is 2-choosable with defect 4 while the second statement
is the relaxation of the result of Axenovich et al. [4] who gave the upper bound 15
for the number of vertices in each monochromatic path. Our next theorem decreases
this bound from 15 to 3 and improves the result in [17] that every planar graph
of girth 6 is acyclically P6-free 2-colourable and the result in [5] that every planar
graph of girth 7 is 2-choosable with clustering 3.

Theorem 2. Every graph G with mad(G) < 3 (and hence every planar graph of
girth at least 6) is acyclically 2-choosable with clustering 3. This implies that each
monochromatic component of G is a path with at most 3 vertices.

Our last result can be considered as a refinement (in the case of planar graphs)
of the more general result by Dvořák and Norin [14] that every graph of girth 5 and
Euler genus γ is 2-choosable with clustering O(γ).

Theorem 3. Every graph G with Arbf (G) ≤ 5/3 (and hence every planar graph
of girth at least 5) is acyclically 2-choosable with clustering 515. This implies that
each monochromatic component of G is a tree with at most 515 vertices.

3. Application of Nine Dragon Tree Theorem

In order to prove Theorems 1–3 we apply some results about forest decomposition
of graphs. The celebrated Nash-Williams Theorem characterizes graphs that can
be decomposes into k forests.

Theorem 4. (Nash-Williams Theorem [28, 29]) The edge set of a graph G can be
decomposed into k forests if and only if Arbf (G) ≤ k.

If a graph G has Arbf (G) = k + ε for some small ε > 0, then Nash-Williams
Theorem says that G decomposes into k+1 forests but cannot be decomposed into
k forests. However, intuitively, you can hope that there exists a decomposition of
G into k + 1 forests such that ”allmost all” edges belong to some k forests while
the last forest is sparse or restricted in some way. This intuition is confirmed by
the following theorem of Jiang and Yang [15], which was initially formulated as the
Nine Dragon Tree Conjecture in [26].

Theorem 5. (Nine Dragon Tree Theorem [15]) Let k and d be positive integers.
Every graph G with Arbf (G) ≤ k + d

k+d+1 decomposes into k + 1 forests such that
one of the forests has maximum degree at most d.
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It was shown by Montassier et al. [26] that the fractional arboricity bound in the
Nine Dragon Tree Theorem is best possible. Despite this, they posed the following
significant strengthening of the Nine Dragon Tree Theorem.

Conjecture 1. (Strong Nine Dragon Tree Conjecture [26]) Let k and d be positive
integers. Every graph G with Arbf (G) ≤ k + d

k+d+1 decomposes into k + 1 forests
such that for one of the forests, each connected component has at most d edges.

Kim et al. [21] verified SNDTC for k = 1 and d = 2. Actually, they proved a
stronger result that every graph G with mad(G) < 3 decomposes into two forests
such that for one of the forests, each component has at most two edges.

Moore [27] made an impressive step towards the SNDTC by showing the conjecture
is true for d ≤ k+1 and by giving a relaxed upper bound for the size of components
in other cases.

Theorem 6. [27] Let k and d be positive integers. If d ≤ k + 1, set c(k, d) = 0.
Otherwise, set R = ⌈ d

k+1 + 2⌉ and set c(k, d) = dk(RR−1)
k+1 . Every graph G with

Arbf (G) ≤ k+ d
k+d+1 decomposes into k+1 forests such that for one of the forests,

every connected component has at most d+ c(k, d) edges.

Our Theorems 1–3 are easy corollaries of Theorems 5, 6, the result in [21], and
the following trivial observation.

Lemma 1. Let G = (V,E) be a graph and E = E1 ∪ E2 be its edge decomosition
into subgraphs G1 = (V,E1) and G2 = (V,E2). If G1 is properly k-colourable
(properly k-choosable), then G has a (list) k-colouring of its vertices such that each
monochromatic component of G is contained in some connected component of G2.

Indeed, any proper (list) k-colouring of G1 gives a desired k-colouring of G. Since
any forest is properly 2-choosable, Lemma 1 implies that if G has a decomposition
into a forest F1 and a forest F2 with restricted connected components, then G is
acyclically 2-choosable so that monochromatic components have the same restrictions
as the components of F2.

Now combining Lemma 1 with Theorem 5, where k = 1, yields Theorem 1.
Theorem 2 can be derived from Lemma 1 and the result in [21]. Finally, Theorem
3 follows from Lemma 1 and Theorem 6 with k = 1, d = 4, since c(1, 4) = 510 in
Theorem 6.

Observe that by Lemma 1, any further improvements in approaching SNDTC
will give better bounds for clustered and acyclic colourings of planar and sparse
graphs. In particular, if SNDTC is true, then the bound 515 in Theorem 3 can be
replaced by 5.
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