A VISCOPLASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

ABDERREZAK KASRI

Abstract. The aim of this paper is to present a new result in the study of a contact problem between a viscoplastic body and an obstacle, the so-called foundation. The process is supposed to be quasistatic and the contact is modelled with a version of Coulomb’s law of dry friction, normal compliance and an ordinary differential equation which describes the adhesion effect. We derive a variational formulation for the model and under smallness assumption, we establish the existence of a weak solution to the problem. The proof is based on the Rothe time-discretization method, the Banach fixed point theorem and arguments of monotonicity, compactness and lower semicontinuity.

Keywords: viscoplastic materials, adhesion, quasistatic process, Coulomb’s law of dry friction, normal compliance, Rothe method, lower semicontinuity, the Banach fixed point theorem, variational inequalities.

1. Introduction

Adhesive contact problems have recently received increased attention in the mathematical literature. An early attempt to study the contact with adhesion, was done in [10, 11]. The main new idea is the introduction of an internal variable $\beta \in [0, 1]$, which represents the intensity of the adhesion. When $\beta = 0$ there are no active bonds; when $\beta = 1$ there is total adhesion; when $0 < \beta < 1$ partial adhesion takes place. Recent modeling and analysis of contact problems with adhesion can be found in [5, 7, 17, 18, 22, 23, 24, 25] and references therein. In [5], a class of dynamic thermal contact problems, with nonclamped condition, friction, normal compliance and adhesion was analyzed for viscoelastic materials with long memory. The unilateral contact problem with local friction and adhesion was studied in
A VISCOPLASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

[7]; an existence result, for small enough friction coefficients, was established. The dynamic contact problem with Tresca’s friction law and adhesion, for viscoelastic materials with damage, was considered in [17] where an existence and uniqueness result was obtained. In [18] the quasistatic bilateral contact problem with a general nonlocal friction law and adhesion, for viscoelastic materials with long memory, was investigated and a fully discrete scheme based on the finite element method was introduced to the case of Tresca’s friction law.

The novelty, in this paper, consists in dealing with a quasistatic contact problem for viscoplastic materials with a constitutive law of the form

\[\dot{\sigma} = A\varepsilon(\dot{u}) + B(\sigma, \varepsilon(u)), \]

such that the contact is modelled with normal compliance condition and both friction and adhesion are taken into account, which leads to a new and nonstandard mathematical problem. Here and below, the dot above a variable represents its derivative with respect to the time variable, \(u \) denotes the displacement field, \(\sigma \) represents the stress tensor, \(\varepsilon(u) \) is the linearized strain tensor, \(A \) is a fourth order tensor which describes the elastic behaviour of the material and \(B \) is a constitutive function that describes its viscoplastic properties.

Our analysis is based on the application of the so-called Rothe time-discretization method. By using the backward Euler scheme, we transform the quasistatic contact problem into a sequence of elliptic quasi-variational inequalities for which we prove an existence and uniqueness result of the solution. Then, after obtaining the necessary estimates, we construct approximate solutions and prove that the limit of a subsequence of the solutions of the approximate problems is a solution of the continuous problem. We note that the Rothe method was first introduced in [21] and since then used to investigate various types of boundary value problems by many authors, see for instance [7, 16, 23, 25].

The rest of this paper is organized as follows. In Section 2 we present the notation and some preliminary material. Section 3 is dedicated to describe the frictional contact problem and after state the assumptions on the data we derive its variational formulation in Section 4. In Section 5 we establish the existence of a weak solution to the model.

2. NOTATION AND PRELIMINARIES

Here we introduce the notation we shall use and some preliminary materials. For further details we refer the reader to [8, 13, 20]. We use the notation \(\mathbb{N}^* \) for the set of positive integers. We denote by \(S^d \) the space of second order symmetric tensors on \(\mathbb{R}^d \), \((d=2,3) \), and we define the inner products and the corresponding norms on \(\mathbb{R}^d \) and \(S^d \) by

\[u \cdot v = \sum_{i=1}^{d} u_i v_i, \quad |u| = \sqrt{\langle u, u \rangle}, \quad \forall u, v \in \mathbb{R}^d; \]

\[\sigma \cdot \zeta = \sum_{1 \leq i,j \leq d} \sigma_{ij} \zeta_{ij}, \quad |\sigma| = \sqrt{\langle \sigma, \sigma \rangle}, \quad \forall \sigma, \zeta \in S^d. \]

Let \(\Omega \subset \mathbb{R}^d \), \((d=2,3) \), be a bounded domain with a Lipschitz boundary \(\Gamma \) and let \(\nu \) denote the unit outer normal on \(\Gamma \). Let \([0, T], T > 0 \) be the time interval of interest and let \(x \in \overline{\Omega} \) and \(t \in [0, T] \) be the spatial and time variables, respectively. We
introduce the spaces

\[H = L^2(\Omega; \mathbb{R}^d), \quad Q = L^2(\Omega; \mathbb{S}^d), \]

\[H_1 = \{ u \in H; \epsilon(u) \in Q \}, \quad Q_1 = \{ \sigma \in Q; \text{Div}\sigma \in H \}, \]

where \(\epsilon : H_1 \to Q \) is the deformation operator, defined by

\[\epsilon(u) = (\epsilon_{ij}(u)), \quad \epsilon_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad 1 \leq i, j \leq d, \forall u \in H_1, \]

\[\text{Div} : Q_1 \to H \]

is the divergence operator, defined by

\[\text{Div} = (\text{Div}\sigma)_1 \leq d = \left(\sum_{j=1}^{d} \frac{\partial \sigma_{ij}}{\partial x_j} \right)_{1 \leq i \leq d}, \quad \forall \sigma \in Q_1. \]

Note that \(H, Q, H_1 \) and \(Q_1 \) are Hilbert spaces equipped with the respective canonical inner products

\[(u, v)_H = \int_{\Omega} u \cdot v \, dx, \quad (\sigma, \zeta)_Q = \int_{\Omega} \sigma \cdot \zeta \, dx, \]

\[(u, v)_{H_1} = (u, v)_H + (\epsilon(u), \epsilon(v))_Q, \]

\[(\sigma, \zeta)_{Q_1} = (\text{Div}\sigma, \text{Div}\zeta)_H + (\sigma, \zeta)_Q. \]

where the associated norms are denoted by \(\| \cdot \|_H, \| \cdot \|_Q, \| \cdot \|_{H_1} \) and \(\| \cdot \|_{Q_1} \).

Let \(\tilde{\gamma} : H_1 \to L^2(\Gamma; \mathbb{R}^d) \) be the trace map. We recall that \(\tilde{\gamma} \) is a compact operator, i.e., for any bounded sequence \(\{ \epsilon_n \} \) in \(H_1 \), there is a subsequence of \(\{ \epsilon_n \} \) which is convergent in \(L^2(\Gamma; \mathbb{R}^d) \). For every element \(v \in H_1 \) we use the notation \(\gamma \) to denote the trace \(\gamma(v) \) of \(v \) on \(\Gamma \) and for all \(v \in H_1 \) we denote by \(v_\nu \) and \(v_\tau \) the normal and the tangential components of \(v \) on the boundary \(\Gamma \)

\[v_\nu = v \cdot \nu, \quad v_\tau = v - v_\nu \nu \quad \text{on} \quad \Gamma. \]

In a similar manner, the normal and the tangential components of a regular (say \(C^1 \)) tensor field \(\sigma \) are defined by

\[\sigma_\nu = \sigma \nu \cdot \nu, \quad \sigma_\tau = \sigma \nu - \sigma_\nu \nu \quad \text{on} \quad \Gamma; \]

moreover the following Green’s formula holds

\[(\text{Div}\sigma, v)_H + (\sigma, \epsilon(v))_Q = \int_{\Gamma} \sigma \nu \cdot v \, da, \quad \forall v \in H_1, \]

where \(da \) is the surface measure element. For every real Banach space \((X, \| \cdot \|_X) \), we denote by \(C([0, T]; X) \) the space of continuous functions from \([0, T] \) to \(X \) and we use the standard notation for the spaces \(L^p(0, T; X) \) and \(W^{k,p}(0, T; X), \ p \in [1, \infty] \) and \(k \geq 1 \).

Finally, we conclude this section with two Gronwall type inequalities. Other versions of Gronwall inequalities can be found for instance in [9] and references therein.

Lemma 1. Assume that \(\tilde{a} \) and \(\tilde{b} : [0, T] \to \mathbb{R} \) are two functions in \(L^1(0, T) \) satisfying

\[\tilde{a}(t) \leq \tilde{b}(t) + \alpha \int_{0}^{t} \tilde{a}(s) \, ds, \quad \text{a.e.} \ t \in [0, T], \]
where \(\alpha \) is a nonnegative constant. Then, it follows

\[
\tilde{a}(t) \leq \tilde{b}(t) + \alpha \int_0^t e^{\alpha(t-s)} \tilde{b}(s) \, ds, \quad \text{a.e. } t \in [0, T].
\]

Moreover, if we replace "a.e. \(t \in [0, T] \)" in (2) with "\(\forall t \in [0, T] \)" in (2), then (3) holds for all \(t \in [0, T] \).

Proof. Use arguments similar to those in [9, proof of Proposition 2.1].

Lemma 2. Let \(T > 0 \) be a constant. Let \(\alpha_1 \) and \(\alpha_2 \) be two nonnegative constants. Let \(m \in \mathbb{N}^* \), let \(\{w_i\}_{i=0}^m \subset \mathbb{R} \) be a nonnegative sequence, which satisfies

\[
w_{i+1} \leq \alpha_1 + \alpha_2 h \sum_{j=0}^i w_j, \quad 0 \leq i \leq m - 1,
\]

where \(h = \frac{T}{m} \). Then, it holds

\[
w_{i+1} \leq (\alpha_1 + \alpha_2 Tw_0) e^{\alpha_2 T}, \quad 0 \leq i \leq m - 1.
\]

Proof. We introduce the function \(y : [0, T] \to \mathbb{R} \), defined by

\[
y(0) = 0, \quad y(t) = w_{i+1}, \quad \forall t \in (t_i, t_{i+1}], \quad t_i = ih, \, i = 0, \ldots, m - 1.
\]

Using (4) and (6), we get

\[
y(t) \leq \alpha_1 + \alpha_2 \sum_{j=1}^{i-1} \int_{t_{j-1}}^{t_j} y(s) \, ds + \alpha_2 hw_0
\]

\[
\leq (\alpha_1 + \alpha_2 hw_0) + \alpha_2 \int_0^t y(s) \, ds - \alpha_2 \int_{t_i}^t y(s) \, ds
\]

\[
\leq (\alpha_1 + \alpha_2 hw_0) + \alpha_2 \int_0^t y(s) \, ds, \quad t \in (t_i, t_{i+1}], \quad i \in \{0, \ldots, m - 1\}.
\]

We use now Lemma 1 to obtain

\[
y(t) \leq (\alpha_1 + \alpha_2 Tw_0) e^{\alpha_2 T}, \quad t \in (t_i, t_{i+1}], \quad i \in \{0, \ldots, m - 1\},
\]

and inequality (5) follows. \(\square \)

3. Problem statement

The physical setting is as follows. A deformable body occupies a bounded domain \(\Omega \subset \mathbb{R}^d \) (with \(d=2, 3 \)). The material’s behavior is modelled with a rate-type viscoplastic constitutive law and the process is quasistatic in the time interval of interest \([0, T]\). We assume that the boundary \(\Gamma \) of the domain \(\Omega \) is Lipschitz continuous, and it is divided into three disjoint measurable parts \(\Gamma_1, \Gamma_2, \Gamma_3 \), such that \(\text{meas}(\Gamma_1) > 0 \). The body is clamped on \(\Gamma_1 \) and therefore the displacement field vanishes there, while volume forces of density \(f_0 \) act in \(\Omega \) and surface tractions of density \(f_2 \) act on \(\Gamma_2 \). The body is supposed to be in adhesive contact over \(\Gamma_3 \) with a foundation and, moreover, both normal compliance and a version of Coulomb’s law of dry friction are included. Under the above assumptions, the classical formulation of our problem is the following.
Find a displacement field $u : \Omega \times [0, T] \to \mathbb{R}^d$, a stress field $\sigma : \Omega \times [0, T] \to \mathbb{S}^d$ and a bonding field $\beta : \Gamma_3 \times [0, T] \to \mathbb{R}$ such that

(7) $\dot{\sigma} = A\varepsilon(\dot{u}) + B(\sigma, \varepsilon(u))$, in $\Omega \times (0, T)$,

(8) $D\sigma + f_0 = 0$, in $\Omega \times (0, T)$,

(9) $u = 0$, on $\Gamma_1 \times (0, T)$,

(10) $\sigma \nu = f_2$, on $\Gamma_2 \times (0, T)$,

(11) $-\sigma_\nu = p_\nu(u_\nu) - \gamma_\nu \beta^2 R_\nu(u_\nu)$, on $\Gamma_3 \times (0, T)$,

\[
\begin{cases}
|\sigma_\tau| \leq p_\tau(u_\nu), \\
|\sigma_\tau| < p_\tau(u_\nu) \Rightarrow \dot{u}_\tau = 0, \\
|\sigma_\tau| = p_\tau(u_\nu) \Rightarrow \exists \lambda \geq 0
\end{cases}
on \Gamma_3 \times (0, T),
\]

such that $\sigma_\tau = -\lambda \dot{u}_\tau$,

(13) $\dot{\beta} = H_{ad}(\beta, \theta_\beta, R_\nu(u_\nu))$, on $\Gamma_3 \times (0, T)$,

(14) $\beta(0) = \beta_0$, on Γ_3.

We assume, here and in the sequel, that the functions $(A; B; p_\nu; p_\tau; H_{ad}; \sigma; u; \beta; \theta_\beta)$ depend on the spatial variable x explicitly. For example, the complete writing of expression (7) should be

$\dot{\sigma}(x, t) = A(x) \varepsilon(\dot{u}(x, t)) + B(x, \sigma(x, t), \varepsilon(u(x, t)))$, $(x, t) \in \Omega \times (0, T)$.

We now briefly comment on the problem (7)-(15). Equations (7) represents the rate-type viscoplastic constitutive law. Analysis of various contact problems with constitutive laws of the form (7) can be found for instance in [1, 2, 6, 13] and the references therein. For mechanical interpretation of constitutive laws of the form (7) we refer to [4]. Equation (8) is the equilibrium equation posed on the domain Ω. Equations (9)-(10) are the displacement-traction boundary conditions where $\sigma \nu$ represents the Cauchy stress vector. As in [5], (11)-(12) characterize the contact boundary conditions. Equation (11) is the normal compliance condition in which the contribution of the adhesive to the normal traction is represented by $\gamma_\nu \beta^2 R_\nu(u_\nu)$, where γ_ν is the adhesion coefficient, u_ν is the normal displacement and $R_\nu : \mathbb{R} \to \mathbb{R}$ is a truncation function defined by

\[
R_\nu(s) = \begin{cases} 0, & \text{if } 0 \leq s, \\ -s, & \text{if } -L \leq s \leq 0, \\ L, & \text{if } s \leq -L, \end{cases}
\]

where $L > 0$ is the characteristic length of the bond, beyond which it stretches without offering any additional resistance (see, e.g., [22, 24]). Clearly, the function R_ν satisfies

(16) $R_\nu(s) \leq 0, \ |R_\nu(s)| \leq |s|, \ |R_\nu(s)| \leq L, \ \forall s \in \mathbb{R}$,

(17) $|R_\nu(s_1) - R_\nu(s_2)| \leq |s_1 - s_2|, \ \forall s_1, s_2 \in \mathbb{R}$.
Moreover, R_{ν} is a decreasing function, i.e.
\begin{equation}
(R_{\nu}(s_1) - R_{\nu}(s_2))(s_1 - s_2) \leq 0, \forall s_1, s_2 \in \mathbb{R}.
\end{equation}

The normal compliance function p_{ν} is a nonnegative prescribed function which vanishes for negative arguments. An example of the normal compliance function p_{ν} is
\begin{equation}
p_{\nu}(r) = c_{\nu}(r)_{+},
\end{equation}
where $(r)_{+}$ denotes the positive part of r, that is $(r)_{+} = \max \{r, 0\}$, c_{ν} is the surface stiffness coefficient, such that Signorini’s nonpenetration condition is obtained in the limit $c_{\nu} \to \infty$. We note that an early attempt to study the contact problem with normal compliance was done in [14, 15]. Since then, the normal compliance law has been extensively employed as an approximation of the Signorini contact condition, see for instance [2, 23, 24] and references therein. The relations (12) represent a version of Coulomb’s law of dry friction where p_r is a prescribed nonnegative function, the so-called friction bound. A possible choice of the function p_r is
\begin{equation}
p_r(r) = \mu p_{\nu}(r),
\end{equation}
where $\mu \geq 0$ is the coefficient of friction (see, e.g., [23]). Equation (13) describes the evolution of the bonding field where H_{ad} is a general function which may change sign. This condition implies that cycles of rebonding after debonding may take place. Moreover, the process depends on the bonding history, which we denote by
\begin{equation}
\theta_{\beta}(x,t) = \int_0^t \beta(x,s) \, ds \text{ on } \Gamma_3 \times (0,T).
\end{equation}

An example of the adhesion rate function H_{ad} is
\begin{equation}
\dot{\beta} = H_{ad}(\beta, r) = -\left(\epsilon_{\nu}\beta r^2 - \epsilon_a\right)_{+}, \text{ on } \Gamma_3 \times (0,T),
\end{equation}
where ϵ_{ν}, ϵ_a are given positive material parameters. In (22), since $\dot{\beta} \leq 0$, the process is irreversible and once debonding occurs bonding cannot be reestablished. Another example, in which H_{ad} depends on all three variables is
\begin{equation}
H_{ad}(\beta, \theta_{\beta}, r) = -\gamma_1 \beta r^2 + \frac{\gamma_2 (1 - \beta)_{+}}{1 + d_*(\theta_{\beta})^2},
\end{equation}
where γ_1, γ_2 are given positive material parameters and $d_*>0$ is the history weight factor, see [23, 24] for details. Finally, (14)-(15) are the initial conditions.

4. Assumptions and variational formulation

In order to obtain the variational formulation of the mechanical problem (7)-(15), we introduce the space V defined by
\begin{equation}
V = \{v \in H_1, v = 0 \text{ on } \Gamma_1\}.
\end{equation}

Since $\text{meas}(\Gamma_1) > 0$, Korn’s inequality holds
\begin{equation}
C_K \|v\|_{H_1} \leq \|\varepsilon(v)\|_Q, \forall v \in V,
\end{equation}
where $C_K > 0$ is a positive constant depending only on Ω and Γ_1. A proof of Korn’s inequality can be found, for instance, in [19, page 79]. Over the space V, we consider the inner product given by
\begin{equation}
(w,v)_V = (\varepsilon(w),\varepsilon(v))_Q, \forall w, v \in V,
\end{equation}

and let \(\| \cdot \|_V \) be the associated norm. It follows from Korn's inequality (23) that \(\| \cdot \|_{H^1} \) and \(\| \cdot \|_V \) are equivalent norms on \(V \). Therefore \((V, (\cdot, \cdot)_V)\) is a real Hilbert space. Moreover, by the Sobolev trace theorem, there exists a positive constant \(c_0 \) depending only on the domain \(\Omega, \Gamma_1 \) and \(\Gamma_3 \) such that

\[
\| v \|_{L^2(\Gamma_3; \mathbb{R}^d)} \leq c_0 \| v \|_V, \forall v \in V.
\]

In the study of the mechanical problem (7)-(15), we consider the following assumptions.

We assume that \(A = (A_{ijkl}) : \Omega \times \mathbb{S}^d \rightarrow \mathbb{S}^d \) is a bounded symmetric positive definite fourth order tensor, i.e.

\[
(25)
\begin{align*}
(i) & \text{ There exists } m_A > 0 \text{ such that } \\
& A \varepsilon \cdot \varepsilon \geq m_A |\varepsilon|^2 \text{ a.e. } x \in \Omega, \forall \varepsilon \in \mathbb{S}^d; \\
(ii) & \ A_{ijkl} = A_{jikl} = A_{klij} \text{; } A_{ijkl} \in L^\infty(\Omega), \\
& \forall i, j, k, l \in \{1, \ldots, d\}.
\end{align*}
\]

We assume that \(B : \Omega \times \mathbb{S}^d \times \mathbb{S}^d \rightarrow \mathbb{S}^d \) satisfies

\[
(26)
\begin{align*}
(i) & \text{ There exists } L_B > 0 \text{ such that } \\
& |B(x, \sigma_1, \varepsilon_1) - B(x, \sigma_2, \varepsilon_2)| \leq L_B (|\sigma_1 - \sigma_2| + |\varepsilon_1 - \varepsilon_2|) \\
& \text{ a.e. } x \in \Omega, \forall \sigma_1, \sigma_2, \varepsilon_1, \varepsilon_2 \in \mathbb{S}^d; \\
(ii) & \text{ The mapping } x \mapsto B(x, \sigma, \varepsilon) \text{ is Lebesgue measurable on } \Omega \\
& \text{ for any } \sigma, \varepsilon \in \mathbb{S}^d; \\
(iii) & \text{ The mapping } x \mapsto B(x, 0_{\mathbb{S}^d}, 0_{\mathbb{S}^d}) \text{ belongs to } \mathcal{Q}.
\end{align*}
\]

We assume that the function \(p_\alpha : \Gamma_3 \times \mathbb{R} \rightarrow \mathbb{R}^+, (\alpha = \nu, \tau) \), satisfies

\[
(27)
\begin{align*}
(i) & \text{ There exists } L_\alpha > 0 \text{ such that } \\
& |p_\alpha(x, r_1) - p_\alpha(x, r_2)| \leq L_\alpha |r_1 - r_2|, \\
& \forall r_1, r_2 \in \mathbb{R}, \text{ a.e. } x \in \Gamma_3; \\
(ii) & p_\alpha(x, r) = 0, \forall r \leq 0, \text{ a.e. } x \in \Gamma_3; \\
(iii) & \text{ The mapping } x \mapsto p_\alpha(x, r) \text{ is Lebesgue measurable on } \Gamma_3, \\
& \forall r \in \mathbb{R}.
\end{align*}
\]
The adhesion rate function $H_{ad} : \Gamma_3 \times \mathbb{R} \times \mathbb{R} \times [-L, L] \to \mathbb{R}$ is assumed to satisfy

\begin{enumerate}[(i)]
 \item There exists $L_{H_{ad}} > 0$ such that \\
 \[|H_{ad}(x, \beta_1, z, r) - H_{ad}(x, \beta_2, z, r)| \leq L_{H_{ad}} |\beta_1 - \beta_2|, \]
 \[
 a.e. x \in \Gamma_3, \forall \beta_1, \beta_2, z \in \mathbb{R}, \forall r \in [-L, L];
 \]
 \item \[
 \forall b_1, b_2 \in \mathbb{R}, \text{ there exists } L_{b_1b_2} > 0 \text{ such that } \\
 \[|H_{ad}(x, \beta_1, z_1, r_1) - H_{ad}(x, \beta_2, z_2, r_2)| \leq L_{b_1b_2} (|\beta_1 - \beta_2| + |z_1 - z_2| + |r_1 - r_2|), \]
 \[
 \forall \beta_1, \beta_2 \in [b_1, b_2], \forall z_1, z_2 \in \mathbb{R}, \forall r_1, r_2 \in [-L, L], \text{ a.e. } x \in \Gamma_3;
 \]
 \item The mapping $x \mapsto H_{ad}(x, \beta, z, r)$ is Lebesgue measurable on Γ_3, \\
 \[
 \forall \beta, z \in \mathbb{R}, \forall r \in [-L, L];
 \]
 \item The mapping $(\beta, z, r) \mapsto H_{ad}(x, \beta, z, r)$ is continuous on $\mathbb{R} \times \mathbb{R} \times [-L, L]$, \\
 \[
 a.e. x \in \Gamma_3;
 \]
 \item $H_{ad}(x, 0, 0, r) = 0$, \forall $z \in \mathbb{R}, \forall r \in [-L, L]$, \text{ a.e.} x \in \Gamma_3;
 \]
 \item $H_{ad}(x, \beta, z, r) \geq 0$, \forall $\beta \leq 0$, \forall $z \in \mathbb{R}$, \forall $r \in [-L, L]$, a.e. x \in Γ_3 and \\
 $H_{ad}(x, \beta, z, r) \leq 0$, \forall $\beta \geq 1$, \forall $z \in \mathbb{R}$, \forall $r \in [-L, L]$, a.e. x \in Γ_3.
\end{enumerate}

We assume that the adhesion coefficient $\gamma_\nu : \Gamma_3 \to \mathbb{R}^+$ satisfies

\begin{equation}
\gamma_\nu \in L^\infty(\Gamma_3).
\end{equation}

The densities of forces satisfy

\begin{enumerate}[(i)]
 \item $f_0 \in W^{1,\infty}(0, T; H)$, \text{ (ii) } $f_2 \in W^{1,\infty}(0, T; L^2(\Gamma_2; \mathbb{R}^d))$.
\end{enumerate}

Finally, we assume that the initial data satisfy

\begin{enumerate}[(i)]
 \item $u_0 \in V$, \text{ (ii) } $\sigma_0 \in Q$.
\end{enumerate}

In the sequel, we use the functionals $\psi : V \times V \to \mathbb{R}$, $j_{ad} : L^\infty(\Gamma_3) \times V \times V \to \mathbb{R}$ and $\varphi : L^\infty(\Gamma_3) \times V \times V \to \mathbb{R}$ defined, respectively, by

\begin{equation}
\psi(v, w) = \int_{\Gamma_3} p_\nu(v_\nu) w_\nu \, da + \int_{\Gamma_3} p_\tau(v_\tau) |w_\tau| \, da,
\end{equation}

\begin{equation}
\varphi(\beta, v, w) = \int_{\Gamma_3} \gamma_\nu \beta^2 R_\nu(v_\nu) w_\nu \, da,
\end{equation}

\begin{equation}
\varphi(\beta, v, w) = j_{ad}(\beta, v, w) + \psi(v, w),
\end{equation}

for all $v, w \in V$ and for all $\beta \in L^\infty(\Gamma_3)$. Using (24), (27) and (33), we deduce that the functional ψ satisfies the following

\begin{enumerate}[(i)]
 \item $\psi(g, v) - \psi(g, w) + \psi(z, w) - \psi(z, v) \leq c_0^2 (L_\tau + L_\nu) \|g - z\|_V \|v - w\|_V$,
 \item $\psi(g, -z) - \psi(g, w - z) \leq c_0^2 (L_\tau + L_\nu) \|g\|_V \|w\|_V$,
 \item $\psi(g, w) - \psi(z, w) \leq c_0^2 (L_\tau + L_\nu) \|g - z\|_V \|w\|_V$,
 \item $\psi(g, v) - \psi(g, w) \leq \psi(g, v - w)$,
\end{enumerate}
Moreover, since $v,g,w,z \in V$. Also, using (16), (17), (18), (24), (29) and (34), we get the following properties: There exists $L_{ad} > 0$ such that

$$|j_{ad}(\beta_1, v, w) - j_{ad}(\beta_2, v, w)|$$

for all $v, g, w \in V$ and for all $\beta_1, \beta_2 \in L^\infty(\Gamma_3)$. It follows from (30) that the function $f : [0,T] \rightarrow V$ defined by

$$(f(t), w)_V = \int_\Omega f_0(t) \cdot w dx + \int_\Gamma f_2(t) \cdot w da, \forall w \in V,$$

has the following regularity

$$f \in W^{1,\infty}(0,T; V).$$

We turn now to derive a variational formulation of the mechanical problem (7)-(15). To do that, let us assume that (u, σ, β) are smooth functions satisfying (7)-(15). Let $w \in V$ and let $t \in [0,T]$. We use (8) and Green’s formula (1), to obtain

$$\left(\sigma(t), \varepsilon(w)\right)_V - \int_\Omega f_0(t) \cdot w dx = \int_\Gamma \sigma(t) v \cdot w da.$$

Moreover, since $w \in V$, it follows from (10)-(11), that

$$\int_\Gamma \sigma(t) v \cdot w da = \int_{\Gamma_2} \sigma(t) v \cdot w da + \int_{\Gamma_3} \sigma_v(t) w_v da + \int_{\Gamma_3} \sigma_\tau(t) \cdot w_\tau da$$

$$= \int_{\Gamma_2} f_2(t) \cdot w da - \int_{\Gamma_3} p_\nu (u_\nu(t)) w_\nu da$$

$$+ \int_{\Gamma_3} \gamma_\nu (\beta(t))^2 R_\nu (u_\nu(t)) w_\nu da + \int_{\Gamma_3} \sigma_\tau(t) \cdot w_\tau da.$$

Thus, (48), (50) and (51), lead us to

$$\begin{align*}
\left(\sigma(t), \varepsilon(w) - \varepsilon(\hat{u}(t))\right)_V + \int_{\Gamma_3} p_\nu (u_\nu(t)) (w_\nu - \hat{u}_\nu(t)) da \\
- \int_{\Gamma_3} \gamma_\nu (\beta(t))^2 R_\nu (u_\nu(t)) (w_\nu - \hat{u}_\nu(t)) da \\
- \int_{\Gamma_3} \sigma_\tau(t) \cdot (w_\tau - \hat{u}_\tau(t)) da = (f(t), w - \hat{u}(t))_V.
\end{align*}$$
On the other hand, using (12), we get
\[
\int_{\Gamma_3} \sigma_\tau(t) \cdot \dot{u}_\tau(t) \, da = -\int_{\Gamma_3} |\sigma_\tau(t)| |\dot{u}_\tau(t)| \, da
\]
\[
= -\int_{\Gamma_3} p_\tau(u_\nu(t)) |\dot{u}_\tau(t)| \, da,
\]
which, together with the fact that
\[
-\int_{\Gamma_3} \sigma_\tau(t) \cdot w_\tau da \leq \int_{\Gamma_3} |\sigma_\tau(t)| |w_\tau| da
\]
\[
\leq \int_{\Gamma_3} p_\tau(u_\nu(t)) |w_\tau| da,
\]
gives
\[
\int_{\Gamma_3} p_\tau(u_\nu(t)) (|w_\tau| - |\dot{u}_\tau(t)|) da \geq -\int_{\Gamma_3} \sigma_\tau(t) \cdot (w_\tau - \dot{u}_\tau(t)) da.
\]
Now, from (52) and (53), we find that
\[
\left\{ \begin{array}{l}
(\sigma(t), \varepsilon(w) - \varepsilon(\dot{u}(t)))_Q + \int_{\Gamma_3} p_\nu(u_\nu(t)) (w_\nu - \dot{u}_\nu(t)) da \\
-\int_{\Gamma_3} \gamma_\nu(\beta(t))^2 R_\nu(u_\nu(t)) (w_\nu - \dot{u}_\nu(t)) da \\
+ \int_{\Gamma_3} p_\tau(u_\nu(t)) (|w_\tau| - |\dot{u}_\tau(t)|) da \geq (f(t), w - \dot{u}(t))_V.
\end{array} \right.
\]
Therefore, we use the fact that the operator \(\mathcal{A} \) defined in (25) is a bounded linear operator, integrate (7) and (13) on \((0, t)\), use the initial conditions (14)-(15), combine (54) with the notation (33)-(35), to obtain the following variational formulation of the mechanical problem (7)-(15).

Problem 2. Find a displacement field \(u : [0, T] \to V \), a stress field \(\sigma : [0, T] \to Q \) and a bonding field \(\beta : [0, T] \to L^\infty(\Gamma_3) \) such that

\[
\sigma(t) = \mathcal{A}(u(t)) + \int_0^t \mathcal{B}(\sigma(s), \varepsilon(u(s))) ds + \sigma_0 - \mathcal{A}(\varepsilon(u_0)), \quad \forall t \in [0, T],
\]

\[
\left\{ \begin{array}{l}
(\sigma(t), \varepsilon(w) - \varepsilon(\dot{u}(t)))_Q + \varphi(\beta(t), u(t), w) - \varphi(\beta(t), u(t), \dot{u}(t)) \\
\geq (f(t), w - \dot{u}(t))_V, \quad \text{for all } w \in V, \quad \text{for a.e. } t \in (0, T),
\end{array} \right.
\]

\[
\beta(t) = \int_0^t H_{ad}(\beta(s), \theta_\beta(s), R_\nu(u_\nu(s))) ds + \beta_0, \quad \forall t \in [0, T],
\]

\[
u(0) = u_0.
\]

Here \(\theta_\beta \) is given by (21). To study Problem (55)-(58), we need the following additional compatibility condition on the initial data

\[
(\sigma_0, \varepsilon(w))_Q + \varphi(\beta_0, u_0, w) \geq (f(0), w)_V, \quad \forall w \in V,
\]
and we make the following smallness assumption

\[
L_\tau + L_\nu < \frac{m_A}{c_0^2},
\]
where \(c_0, m_A \) and \(L_\alpha, (\alpha = \nu, \tau) \) are given in (24), (25) and (27), respectively.
We end this section with few comments on the assumptions (59)-(60). First, we note that the assumptions (59)-(60) are made for mathematical reasons, otherwise the results obtained in Lemma 3 and Lemma 4, in the next Section, may be invalid. Physically, the compatibility condition (59) means that initially the state is in equilibrium and without it the inertial terms cannot be neglected and the problem becomes dynamic (see, [23]). Finally, in order to verify that the condition (60) is being met, we use specific mechanical problems. For example, if we consider the case in which the function \(p_\nu \) is defined by (19) and the function \(p_\tau \) is given by (20), then (27 (i)) holds if we take \(L_\nu = c_\nu \) and \(L_\tau = \mu c_\nu \) and therefore, the assumption \((60)\) holds if \(c_\nu (1 + \mu) < \frac{\mu}{c_0} \), which is satisfied if \(c_\nu (1 + \mu) \) is sufficiently small.

5. Existence of a weak solution

The following theorem is the main result of this paper.

Theorem 1. Assume that (25)-(32) and (59)-(60) are fulfilled. Then, Problem (55)-(58) has at least a solution \(\{u, \sigma, \beta\} \) which satisfies

\[
\begin{align*}
(61) & \quad u \in W^{1,\infty}(0,T; V), \\
(62) & \quad \sigma \in W^{1,\infty}(0,T; Q_1), \\
(63) & \quad \beta \in W^{1,\infty}(0,T; L^\infty(\Gamma_3)), 0 \leq \beta(t) \leq 1, \text{ a.e. } x \in \Gamma_3, \forall t \in [0,T].
\end{align*}
\]

We will divide the proof into several steps.

First step. For each \(m \in \mathbb{N}^* \), we introduce a uniform partition of the time interval \([0,T]\), denoted by \(t^m_i = ih_m, \; h_m = \frac{T}{m}, \; i = 0,\ldots,m \). For a sequence \(\{w^m_i\}_{i=0}^m \), we denote \(\delta w^{m+1}_i = \frac{w^{m+1}_i - w^m_i}{h_m} \) and for a continuous function \(g \in C([0,T]; X) \) with values in a normed space \(X \), we use the notation \(g^m_i = g(t^m_i), \; i = 0,\ldots,m \). Using the Riesz representation theorem, we can introduce the operator \(F : V \to V \) defined by

\[
(64) \quad (Fw, v)_V = (A\varepsilon(w), \varepsilon(v))_Q + (\sigma_0 - A\varepsilon(u_0), \varepsilon(v))_Q, \forall v, w \in V.
\]

It follows from (25) and (64), that the operator \(F \) satisfies

\[
(65) \quad m_A \|w_1 - w_2\|^2_V \leq (Fw_1 - Fw_2, w_1 - w_2)_V, \forall w_1, w_2 \in V.
\]

There exists \(L_A > 0 \) such that

\[
(66) \quad \|Fw_1 - Fw_2\|_V \leq L_A \|w_1 - w_2\|_V, \forall w_1, w_2 \in V.
\]

We consider the following incremental problems \(\mathcal{P}^{i+1}_m, \; i \in \{0,\ldots,m-1\} \).

Problem 3 \((\mathcal{P}^{i+1}_m) \). Find \(u^{i+1}_m \in V \), such that

\[
\begin{align*}
(Fu^{i+1}_m, w - \delta u^{i+1}_m)_V + & \left(h_m \sum_{j=0}^i B(\sigma^i_j, \varepsilon(u^m_j)), \varepsilon(w - \delta u^{i+1}_m) \right)_Q \\
+ & \varphi(\beta^{i+1}_m, u^{i+1}_m, w) - \varphi(\beta^{i+1}_m, u^{i+1}_m, \delta u^{i+1}_m) \\
\geq & (f^m_{i+1}, w - \delta u^{i+1}_m)_V, \text{ for all } w \in V,
\end{align*}
\]
where \(u_j^i \) is the unique solution of problem \(\mathcal{P}_m^j \), \(1 \leq j \leq i \),

(68) \[
\sigma_m^{j+1} = \mathcal{A} \varepsilon (u_{m+1}^{j+1}) + h_m \sum_{i=0}^j \mathcal{B} \left(\sigma_m^i, \varepsilon (u_m^i) \right) + \sigma_m^0 - \mathcal{A} \varepsilon (u_m^0), \quad 0 \leq j \leq i,
\]

(69) \[
\beta^{j+1}_m = h_m \sum_{j=0}^i H_{ad} \left(\beta_m^j, h_m \sum_{k=0}^j \beta_m^k, R_v (u_m^j) \right) + \beta_m^0,
\]

(70) \[
(i) \quad u_m^0 = u_0, \quad (ii) \quad \sigma_m^0 = \sigma_0, \quad (iii) \quad \beta_m^0 = \beta_0,
\]

(71) \[
f_{m}^0 = f(0), \quad f_{m}^{i+1} = f(t_{i+1}).
\]

We notice that, from (28 (i)), (28 (v)) and (69), we obtain

\[
|\beta_m^{j+1} - \beta_m^j| \leq L_{H_m} |\beta_m^i|, \quad a.e. x \in \Gamma_3, \quad i \in \{0, \ldots, m - 1\},
\]

which implies that if \(\beta_m^i \in L^\infty(\Gamma_3) \), then \(\beta_m^{j+1} \in L^\infty(\Gamma_3) \), \(i \in \{0, \ldots, m - 1\} \). Now, by setting \(w = \frac{v - u_m^i}{h_m} \) in (67), it follows that \(\mathcal{P}_m^{j+1} \) is formally equivalent to the following problem.

Problem 4 \(\mathcal{Q}_m^{j+1} \). Find a function \(u_m^{j+1} \in V \), such that

(72) \[
\left\{
\begin{array}{l}
\left(\mathcal{F} u_m^{j+1}, v - u_m^{j+1} \right)_V + \left(h_m \sum_{j=0}^i \mathcal{B} \left(\sigma_m^j, \varepsilon (u_m^j) \right), \varepsilon (v - u_m^{j+1}) \right)_V \\
\Phi(\beta_m^{j+1}, v - u_m^{j+1}) - \Phi(\beta_m^j, v - u_m^j) - \Phi(\beta_m^i, v - u_m^i) \\
\geq (f_{m}^{i+1}, v - u_m^{i+1})_V, \quad \text{for all } v \in V,
\end{array}
\right.
\]

where \(\{\sigma_m^i\}_{0 \leq i \leq m}, \{\beta_m^i\}_{0 \leq i \leq m}, \{f_{m}^i\}_{0 \leq i \leq m} \) and \(u_m^0 \) are given by (68)-(71) and \(u_m^i \) is the unique solution of the problem \(\mathcal{P}_m^i, \quad 1 \leq j \leq i \).

Lemma 3. Problem \(\mathcal{P}_m^{j+1}, \quad i \in \{0, \ldots, m - 1\} \), has a unique solution.

Proof. Let \(A : V \rightarrow V \) be the operator defined by

(73) \[
(Aw, v)_V = (\mathcal{F} w, v)_V + \left(h_m \sum_{j=0}^i \mathcal{B} \left(\sigma_m^j, \varepsilon (u_m^j) \right), \varepsilon (v) \right)_V + j_{ad}(\beta_m^{j+1}, w, v),
\]

for all \(w, v \in V \). Using (65)-(66), (73), (44) and (46), we deduce that the operator \(A \) is strongly monotone and Lipschitz continuous on \(V \). Let \(g \in V \), it follows from (33) and (40), that the functional \(\Theta : V \rightarrow \mathbb{R} \), defined by:

\[
\Theta(v) = \psi(g, v - u_m^i), \quad \forall v \in V,
\]

is a proper convex and continuous functional on \(V \). Hence, from a standard result on elliptic variational inequalities of second kind (see [13, p.60]), the following problem: Find \(u_m^{i+1} \in V \), such that

(74) \[
\left\{
\begin{array}{l}
(A u_m^{i+1}, v - u_m^{i+1})_V + \psi(g, v - u_m^i) - \psi(g, u_m^{i+1} - u_m^i) \\
\geq (f_{m}^{i+1}, v - u_m^{i+1})_V, \quad \text{for all } v \in V,
\end{array}
\right.
\]

is a proper convex and continuous functional on \(V \). Hence, from a standard result on elliptic variational inequalities of second kind (see [13, p.60]), the following problem: Find \(u_m^{i+1} \in V \), such that

(74) \[
\left\{
\begin{array}{l}
(A u_m^{i+1}, v - u_m^{i+1})_V + \psi(g, v - u_m^i) - \psi(g, u_m^{i+1} - u_m^i) \\
\geq (f_{m}^{i+1}, v - u_m^{i+1})_V, \quad \text{for all } v \in V,
\end{array}
\right.
\]
has a unique solution $u^{i+1}_{m} \in V$. To continue, we define the operator $\Psi : V \to V$, by

$$(75) \quad \Psi (g) = u^{i+1}_{m}, \forall g \in V.$$

Let $g_1, g_2 \in V$, using the notation $u_1 = u^{i+1}_{m}$ and $u_2 = u^{i+1}_{m}$, then by (74), we get

$$(Au_1 - Au_2, u_1 - u_2)_V \leq \psi(g_1, u_2 - u^i_{m}) - \psi(g_1, u_1 - u^i_{m}) + \psi(g_2, u_1 - u^i_{m}) - \psi(g_2, u_2 - u^i_{m}),$$

which together with (36), (46), (65) and (73), implies that

$$m_A \|u_1 - u_2\|_V^2 \leq c_0^2 \|g_1 - g_2\|_V \|u_1 - u_2\|_V,$$

and using (75), we have

$$\|\Psi g_2 - \Psi g_1\|_V \leq \frac{c_0^2}{m_A} \|g_1 - g_2\|_V.$$

This last inequality implies that if $L_T + L_\nu < \frac{m_A}{c_0}$, then Ψ is a contraction function on the Banach space V. Therefore, Ψ has a unique fixed point $g^* \in V$. We have now all the ingredients to prove Lemma 3. Let g^* be the unique fixed point of Ψ defined by (75) and let $u^{i+1}_{m} = g^* = u^{i+1}_{m}$ be the unique solution of the problem (74) for $g = g^*$ and keeping in mind (73) and (35), we deduce that u^{i+1}_{m} is a solution for the problem Q^{i+1}_{m} which is equivalent to P^{i+1}_{m}. The uniqueness of the solution, now, is a consequence of the uniqueness of the fixed point of the operator Ψ and of the uniqueness of the solution of the problem (74).

In the rest of this paper, the same letter c will be used to denote different positive constants which do not depend on $m \in \mathbb{N}^*$ nor on $t \in (0, T)$.

Second step. In this step we have the following result.

Lemma 4. There exists $c > 0$, such that for all $m \in \mathbb{N}^*$,

$$(76) \quad \|\sigma^i_m\|_Q + \|\nu^i_m\|_V + \|\beta^i_m\|_{L^\infty(\Gamma_3)} \leq c, \quad i \in \{0, ..., m - 1\},$$

$$(77) \quad \|\delta u^i_m\|_V \leq c, \quad i \in \{0, ..., m - 1\}.$$

Proof. It follows from (31), (32) and (70), that there exists $c > 0$, such that

$$(78) \quad \|\sigma^0_m\|_Q + \|u^0_m\|_V + \|\beta^0_m\|_{L^\infty(\Gamma_3)} \leq c,$$

for all $m \in \mathbb{N}^*$. Using (28 (i)), (28 (v)) and (69), we get

$$\|\beta^i_m\|_{L^\infty(\Gamma_3)} \leq c \sum_{j=0}^{i} \|\beta^i_j\|_{L^\infty(\Gamma_3)} + \|\beta^i_m\|_{L^\infty(\Gamma_3)}, \quad i \in \{0, ..., m - 1\}.$$

Therefore, applying Lemma 2, leads to

$$(79) \quad \|\beta^i_m\|_{L^\infty(\Gamma_3)} \leq c, \quad i \in \{0, ..., m - 1\}.$$
Taking \(v = 0 \) in (72) and keeping in mind (35), yields
\[
(F'_{m+1} u_{m+1}^i, u_{m+1}^i)_V + j_{ad}(\beta_{m+1}^i, u_{m+1}^i, u_{m+1}^i, u_{m+1}^i)
\leq \psi(u_{m+1}^i - u_{m+1}^i, u_{m+1}^i, u_{m+1}^i - u_{m+1}^i) +
- \left(h_m \sum_{j=0}^i B(\sigma_m^i, \varepsilon(u_m^i)), \varepsilon(u_{m+1}^i) \right)_Q + (f_{m+1}^i, u_{m+1}^i)_V,
\]
and using (65), (47), (37), (26), we get
\[
m \alpha \left\| u_{m+1}^i \right\|_V^2 \leq c_0^2 (L_T + L_u) \left\| u_{m+1}^i \right\|_V^2 + ch_m \sum_{j=0}^i \left(\left\| \sigma_m^i \right\|_Q + \left\| u_m^j \right\|_V \right) \left\| u_{m+1}^i \right\|_V +
c B(0 \beta, 0 \beta) \left\| u_{m+1}^i \right\|_V + \left\| F(0 \beta) \right\|_V \left\| u_{m+1}^i \right\|_V + \left\| f_{m+1}^i \right\|_V + \left\| v_{m+1}^i \right\|_V.
\]
Hence, due to the assumption (60) and (49), we obtain
\[
\left\| v_{m+1}^i \right\|_V \leq c h_m \sum_{j=0}^i \left(\left\| \sigma_m^j \right\|_Q + \left\| u_m^j \right\|_V \right) + c.
\]
On the other hand, from (25)-(26) and (68), we find that
\[
\left\| \sigma_m^{i+1} \right\|_Q \leq c \left\| u_m^{i+1} \right\|_V + ch_m \sum_{j=0}^i \left(\left\| \sigma_m^j \right\|_Q + \left\| u_m^j \right\|_V \right) \left\| \sigma_m^{i+1} \right\|_V + c,
\]
this inequality combined with (80), gives
\[
\left\| \sigma_m^{i+1} \right\|_Q + \left\| u_m^{i+1} \right\|_V \leq c h_m \sum_{j=0}^i \left(\left\| \sigma_m^j \right\|_Q + \left\| u_m^j \right\|_V \right) + c.
\]
Now, applying Lemma 2, in the last inequality, yields
\[
\left\| \sigma_m^{i+1} \right\|_Q + \left\| u_m^{i+1} \right\|_V \leq c, \ i \in \{0, ..., m - 1\},
\]
and employing (79) we obtain (76). To continue, using (28 (i)), (28 (v)) and (69), one has
\[
\left\| \beta_m^{i+1} - \beta_m^i \right\|_{L^\infty(\Gamma^3)} \leq c h_m \left\| \beta_m^i \right\|_{L^\infty(\Gamma^3)}, \ i \in \{0, ..., m - 1\},
\]
and thanks to (78) and (79), we have
\[
\left\| \delta_m^{i+1} \right\|_{L^\infty(\Gamma^3)} \leq c, \ i \in \{0, ..., m - 1\}.
\]
Setting \(v = u_m^0 \) in (72) for \(i = 0 \), and \(w = u_m^1 - u_m^0 \) in (59), adding the two inequalities, we obtain
\[
\left\{
\begin{array}{l}
(F'_{m+1} u_m^i - F u_m^i, u_m^i - u_m^0)_V \\
+ j_{ad}(\beta_m^0, u_m^1, u_m^0, u_m^1 - u_m^0) - j_{ad}(\beta_m^0, u_m^0, u_m^0, u_m^0) \\
\leq j_{ad}(\beta_m^0, u_m^1, u_m^0, u_m^1 - u_m^0) - j_{ad}(\beta_m^0, u_m^1, u_m^0, u_m^0) \\
- (h_m B(\sigma_m^0, \varepsilon(u_m^0)), \varepsilon(u_m^1 - u_m^0))_Q \\
+ \psi(u_m^0, u_m^1 - u_m^0) - \psi(u_m^0, u_m^1 - u_m^0) + (f_m^1 - f_m^0, u_m^1 - u_m^0)_V \\

\end{array}
\right.
\]
we use now (65), (46), (78), (79), (42), (26), (38), to see that
\[
\begin{aligned}
&\left\{ \begin{array}{l}
m_A \|u_m^i - u_m^0\|^2_V \leq c \|\beta_m^i - \beta_m^0\|_{L^2(\Gamma_3)} \|u_m^i - u_m^0\|_V \\
+ c_{m_0} \left(\|\sigma_m^i\|_{Q} + \|u_m^0\|_V \right) \|u_m^i - u_m^0\|_V \\
+ c_{m_0} \|B(0_{2\mathbb{Z}}, 0_{2\mathbb{Z}})\|_Q \|u_m^i - u_m^0\|_V \\
+ c_0^2 (L_\tau + L_\nu) \|u_m^i - u_m^0\|^2_V + \|f_m^i - f_m^0\|_V \|u_m^i - u_m^0\|_V.
\end{array} \right. \\
\end{aligned}
\]

and thanks to (60), (49), (78) and (81), we get
\[
\|u_m^i - u_m^0\|_V \leq c + c \|f_m^i - f_m^0\|_V.
\]

Thus, we have
\[
(82) \quad \|\delta u_m^i\|_V \leq c.
\]

Taking \(w = 0_V\) in problem \(P_{m+1}^i\), and \(w = \frac{u_m^{i+1} - u_m^{i-1}}{h_m}\) in problem \(P_m^i\), adding the two inequalities, we obtain
\[
\begin{aligned}
&\left\{ \begin{array}{l}
(F u_m^{i+1} - F u_m^i, \delta u_m^{i+1})_V + j_{ad}(\beta_m^{i+1}, u_m^{i+1}, \delta u_m^{i+1}) - j_{ad}(\beta_m^i, u_m^i, \delta u_m^{i+1}) \\
\leq j_{ad}(\beta_m^i, u_m^i, \delta u_m^{i+1}) - j_{ad}(\beta_m^{i+1}, u_m^{i+1}, \delta u_m^{i+1}) + \\
- (h_m B(\sigma_m^i, \epsilon (u_m^i)), \epsilon (\delta u_m^{i+1}))_Q \\
+ \left(\psi(u_m^i, \frac{u_m^{i+1} - u_m^{i-1}}{h_m}) - \psi(u_m^i, \frac{u_m^{i+1} - u_m^{i-1}}{h_m}) \right) - \psi(u_m^i, \frac{u_m^{i+1} - u_m^{i-1}}{h_m}) \\
+ (f_m^{i+1} - f_m^i, \delta u_m^{i+1})_V.
\end{array} \right.
\end{aligned}
\]

It follows from (65), (42), (46), (79), (26), (38) and (39), that
\[
\begin{aligned}
&\left\{ \begin{array}{l}
m_A \|u_m^{i+1} - u_m^i\|^2_V \leq c \|\beta_m^{i+1} - \beta_m^i\|_{L^2(\Gamma_3)} \|u_m^{i+1} - u_m^i\|_V \\
+ c_{m_0} \left(\|\sigma_m^i\|_{Q} + \|u_m^i\|_V + c \right) \|u_m^{i+1} - u_m^i\|_V \\
+ c_0^2 (L_\tau + L_\nu) \|u_m^{i+1} - u_m^i\|^2_V + \|f_m^{i+1} - f_m^i\|_V \|u_m^{i+1} - u_m^i\|_V,
\end{array} \right.
\end{aligned}
\]

which, together with (60), (49) and (76), gives
\[
(83) \quad \|\delta u_m^{i+1}\|_V \leq c \|\delta u_m^{i+1}\|_{L^2(\Gamma_3)} + c + c \|f_m\|_{L^\infty(0, T; V)}.
\]

Now, (77) is a consequence of (81), (82) and (83).

Third step. In this step we construct an approximate solution for the problem (55)-(58). To this end, for each \(m \in \mathbb{N}^*\), let \(u_m^i\) be the unique solution of the problem \(P_m^j\), \(j = 1, \ldots, m\). We introduce the following functions \(u_m : [0, T] \to V\),
There exists $\tilde{u}_m : [0,T] \to V, \tilde{\sigma}_m : [0,T] \to Q, \tilde{\beta}_m : [0,T] \to L^2(\Gamma_3), \tilde{\theta}_m : [0,T] \to L^2(\Gamma_3), B_m : [0,T] \to Q$ and $f_m : [0,T] \to V$ defined, respectively, by

$$u_m(0) = u_0, \quad u_m(t) = u_i^m + (t - t_i^m) \delta u_i^{m+1}, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (84)

$$\tilde{u}_m(0) = u_0, \quad \tilde{u}_m(t) = u_i^m, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (85)

$$\tilde{\sigma}_m(0) = \sigma_0, \quad \tilde{\sigma}_m(t) = \sigma_i^{m+1}, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (86)

$$\tilde{\beta}_m(0) = \beta_0, \quad \tilde{\beta}_m(t) = \beta_i^{m+1}, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (87)

Here $\{\sigma_i^m\}_{0 \leq i \leq m}, \{\beta_i^m\}_{0 \leq i \leq m}$ and u_m^0 are given by (68)-(70).

$$\tilde{\theta}_m(0) = 0, \quad \tilde{\theta}_m(t) = h_m \sum_{j=0}^{i+1} \beta_j^m, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (88)

$$B_m(t) = \left\{ \begin{array}{lc}
 h_m \sum_{j=0}^{i} B_i^m \left(\sigma_j^m, \varepsilon(u_m^j) \right), & \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1, \\
 B_m(0) = 0Q & \end{array} \right.$$ \hspace{1cm} (89)

$$f_m(0) = f(0), \quad f_m(t) = f_i^m, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (90)

From (84), the function u_m has a derivative function which is given by

$$\dot{u}_m(t) = \delta u_i^{m+1}, \forall t \in (t_i^m, t_i^{m+1}], i = 0, ..., m - 1.$$ \hspace{1cm} (91)

We have the following estimate results.

Lemma 5. There exists $c > 0$, such that for all $m \in \mathbb{N}^*$,

$$\|\tilde{\sigma}_m(t)\|_{Q} + \|\tilde{\sigma}_m(t)\|_{V} + \|\tilde{\beta}_m(t)\|_{L^\infty(\Gamma_3)} \leq c, \forall t \in [0,T],$$ \hspace{1cm} (92)

$$\|u_m(t)\|_{V} \leq c, \forall t \in [0,T],$$ \hspace{1cm} (93)

$$\|\tilde{u}_m(t)\|_{V} \leq c, a.e.t \in [0,T],$$ \hspace{1cm} (94)

$$\|\tilde{u}_m(t) - u_m(t)\|_{V} \leq ch_m, \forall t \in [0,T],$$ \hspace{1cm} (95)

$$\|f_m(t) - f(t)\|_{V} \leq ch_m, \forall t \in [0,T],$$ \hspace{1cm} (96)

$$\|u_m(t) - u_m(s)\|_{V} \leq c|t-s|, \forall t, s \in [0,T],$$ \hspace{1cm} (97)

$$\|u_m(t) - u_m(s)\|_{L^2(\Gamma_3;\mathbb{R}^n)} \leq c|t-s|, \forall t, s \in [0,T].$$ \hspace{1cm} (98)

Proof. It is clear that (92)-(94) are consequences of Lemma 4, (84)-(87) and (91). For the proof of (95)-(96), see [16, Lemma 4.7]. Now, for all $t \in (t_i, t_{i+1}]$, $i \in \{0,...,m-1\}$, we have

$$u_0 + \int_0^t \dot{u}_m(r)dr = u_0 + \sum_{j=1}^{i} \int_{t_j-1}^{t_j} \dot{u}_m(r)dr + \int_{t_i}^{t} \dot{u}_m(r)dr \hspace{1cm}$$

$$= u_0 + \sum_{j=1}^{i} h_m \delta u_j^m + \left(\int_{t_i}^{t} dr \right) \delta u_i^{m+1} \hspace{1cm}$$

$$= u_i^m + (t - t_i^m) \delta u_i^{m+1} = u_m(t).$$

Therefore, using (94), we get
\[\| u_m(t) - u_m(s) \|_V \leq \left| \int_s^t \| \tilde{u}_m(r) \|_V \, dr \right| \leq c |t - s|, \]
for all \(t, s \in [0, T] \). Finally, (98) is a direct consequence of (97) and (24). \(\square \)

In the next we need the following result.

Lemma 6. There exists \(c > 0 \), such that for all \(m, n \in \mathbb{N}^* \) with \(m > n \),
\[\| B_m(t) - B_n(t) \|_Q \leq c \int_0^t \| \tilde{u}_m(s) - \tilde{u}_n(s) \|_V \, ds + ch_n, \quad \forall t \in [0, T]. \]

Proof. Let \(m, n \in \mathbb{N}^* \) with \(m > n \). It is obvious that (99) holds for \(t = 0 \). Now, for each \(t \in (0, T] \), there exist two integers \(q \in \{0, \ldots, m - 1\} \) and \(p \in \{0, \ldots, n - 1\} \), such that
\[t \in (t_q^m, t_{q+1}^m) \cap (t_p^n, t_{p+1}^n]. \]

We use (68), (70), (85) and (86) to obtain
\[\bar{\sigma}_m(t) = \mathcal{A} \varepsilon (\bar{u}_m(t)) + h_n B(\sigma_0, \varepsilon (u_0)) + \sigma_0 - \mathcal{A} \varepsilon (u_0), \quad \forall t \in (t_q^m, t_{q+1}^m). \]

On the other hand, let \(t \in (t_q^m, t_{q+1}^m], q \in \{1, \ldots, m - 1\} \). It follows from (68), (85) and (86), that
\[\bar{\sigma}_m(t) = \mathcal{A} \varepsilon (\bar{u}_m(t)) + \sum_{l=0}^q \int_{t_l^m}^{t_{l+1}^m} B(\bar{\sigma}_m(s), \varepsilon (\bar{u}_m(s))) \, ds + h_n B(\sigma_0, \varepsilon (u_0)) + \sigma_0 - \mathcal{A} \varepsilon (u_0), \]
which, with (101), gives
\[\bar{\sigma}_m(t) = \mathcal{A} \varepsilon (\bar{u}_m(t)) + \int_0^t B(\bar{\sigma}_m(s), \varepsilon (\bar{u}_m(s))) \, ds + h_n B(\sigma_0, \varepsilon (u_0)) + \sigma_0 - \mathcal{A} \varepsilon (u_0), \quad \forall t \in (t_q^m, t_{q+1}^m]. \]

Using Lemma 1 in the last inequality, we obtain
\[\| \bar{\sigma}_m(t) - \bar{\sigma}_n(t) \|_Q \leq c \| \bar{u}_m(t) - \bar{u}_n(t) \|_V + c \int_0^t \| \bar{u}_m(s) - \bar{u}_n(s) \|_V \, ds + c h_n, \quad \forall t \in [0, T]. \]

Using Lemma 1 in the last inequality, we obtain
\[\| \bar{\sigma}_m(t) - \bar{\sigma}_n(t) \|_Q \leq c \| \bar{u}_m(t) - \bar{u}_n(t) \|_V + c \int_0^t \| \bar{u}_m(s) - \bar{u}_n(s) \|_V \, ds + c h_n, \quad \forall t \in [0, T]. \]

To continue, we use (85), (86) and (89) to obtain
\[B_m(t) = \int_0^{t_q^m} B(\bar{\sigma}_m(s), \varepsilon (\bar{u}_m(s))) \, ds + h_n B(\sigma_0, \varepsilon (u_0)), \]
\[B_n(t) = \int_0^{t_q^m} B(\bar{\sigma}_n(s), \varepsilon (\bar{u}_n(s))) \, ds + h_n B(\sigma_0, \varepsilon (u_0)), \]
A VISCOPLASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION 557

for all $t \in \{t^m_q, t^m_{q+1}\} \cap \{t^n_p, t^n_{p+1}\}$, $q \in \{0, \ldots, m-1\}$ and $p \in \{0, \ldots, n-1\}$. It follows from (104), (105) and (26), that

$$
\|B_m(t) - B_n(t)\|_Q \leq c \int_0^t \|\tilde{\sigma}_m(s) - \tilde{\sigma}_n(s)\|_Q ds + c \int_0^t \|\tilde{u}_m(s) - \tilde{u}_n(s)\|_V ds
$$

$$
+ \int_0^t \|B(\tilde{\sigma}_m(s), \varepsilon(\tilde{u}_m(s)))\|_Q ds + \int_0^t \|B(\tilde{\sigma}_n(s), \varepsilon(\tilde{u}_n(s)))\|_Q ds
$$

$$
+ ch_m + ch_n,
$$

and employing (103), (100) and (92), we obtain (99).

Lemma 7. There exists an element $u \in W^{1,2}(0, T; V)$ and two subsequences of \{um\} and \{um\} again denoted by \{um\} and \{um\}, respectively, such that

(106) \quad um \rightharpoonup u \text{ weakly in } L^2(0, T; V).

(107) \quad um \rightarrow u \text{ weakly in } L^2(0, T; V).

(108) \quad \varepsilon(um) \rightharpoonup \varepsilon(u) \text{ weakly in } L^2(0, T; Q).

(109) \quad um \rightarrow u \text{ strongly in } C([0, T]; L^2(\Gamma_3; \mathbb{R}^d)).

(110) \quad um \rightarrow u \text{ strongly in } C([0, T]; V).

(111) \quad um \rightarrow u \text{ strongly in } L^2(0, T; V).

Proof. We notice that $L^2(0, T; V)$ and $L^2(0, T; Q)$ are Hilbert spaces equipped with the respective canonical inner products

$$
(w, v)_{L^2(0, T; V)} = \int_0^T (w(s), v(s))_V \, ds,
$$

and two subsequences of \{um\} again denoted by \{um\}, such that

$$
um \rightharpoonup u \text{ weakly in } L^2(0, T; V) \text{ and } um \rightarrow z \text{ weakly in } L^2(0, T; V).
$$

Now, since $v \mapsto \left(w, \int_0^T v(s) \xi(s) \, ds \right)_V$ and $v \mapsto \left(w, -\int_0^T v(s) \xi(s) \, ds \right)_V$ are linear continuous functionals on $L^2(0, T; V)$, for all $w \in V$ and for all $\xi \in D(0, T)$, we deduce that

$$
\left(w, \int_0^T u(s) \xi(s) \, ds \right)_V = \lim_{m \rightarrow \infty} \left(w, \int_0^T u_m(s) \xi(s) \, ds \right)_V = \lim_{m \rightarrow \infty} \left(w, -\int_0^T \dot{u}_m(s) \xi(s) \, ds \right)_V
$$

$$
= \left(w, -\int_0^T z(s) \xi(s) \, ds \right)_V.
$$

Therefore, z is the weak derivative of u with respect to the time variable. To continue, for each $\xi \in L^2(0, T; Q)$, consider the functional $\phi_\xi : L^2(0, T; V) \rightarrow \mathbb{R}$ defined by

$$
\phi_\xi(v) = \int_0^T (\varepsilon(v(s)), \xi(s))_Q \, ds, \forall v \in L^2(0, T; V).
$$
It is clear that \(\phi \) is a linear continuous functional on \(L^2(0, T; V) \), so it follows from (107) that

\[
\lim_{m \to +\infty} \int_0^T (\varepsilon (\hat{u}_m(s)), \zeta(s))_Q ds = \lim_{m \to +\infty} \phi (\hat{u}_m) = \phi (\hat{u}) = \int_0^T (\varepsilon (\hat{u}(s)), \zeta(s))_Q ds,
\]

for all \(\zeta \in L^2(0, T; Q) \), more precisely, we get the convergence (108). Now, it follows from (98) that \(E = \{ u_m : [0, T] \to L^2(\Gamma_3; \mathbb{R}^d), m \in \mathbb{N}^* \} \), the set of the traces of \(\{ u_m \} \) on \(\Gamma_3 \), is equicontinuous. Furthermore, from the fact that the trace map is compact operator and using (93), we deduce that \(E(t) = \{ u_m(t), u_m \in E \} \) is relatively compact for all \(t \in [0, T] \). Thus, by applying a version of the Arzela-Ascoli theorem see [12], and taking another subsequence if necessary, we obtain (109). To prove (110) we need to show that the subsequence \(\{ u_m \} \), obtained in (106)-(109), is a Cauchy sequence in the Banach space \(C([0, T]; V) \). To this end, using (72), (34), (35), (39), (85), (87), (89) and (90), we conclude that \(\{ B_m \}, \{ \bar{u}_m \}, \{ \bar{\beta}_m \} \) and \(\{ f_m \} \) satisfy the following

\[
\begin{aligned}
&\{ (F \bar{u}_m(t), v - \bar{u}_m(t))_V + (B_m(t), \varepsilon (v - \bar{u}_m(t)))_Q + \\
&+ j_{ad}(\bar{\beta}_m(t), \bar{u}_m(t), v - \bar{u}_m(t)) + \psi(\bar{u}_m(t), v - \bar{u}_m(t)) \\
&\geq (f_m(t), v - \bar{u}_m(t))_V, \\
\end{aligned}
\]

for all \(v \in V \) and for all \(t \in [0, T] \). Now, let \(m, n \in \mathbb{N}^* \), such that \(m > n > T \), by taking \((B_n, \bar{u}_n, \bar{\beta}_n, f_n, \psi) = (B_m, \bar{u}_m, \bar{\beta}_m, f_m, \psi), (B_n, \bar{u}_n, \bar{\beta}_n, f_n, \bar{u}_n) \) and \((f_m(t), \bar{u}_m(t), \bar{u}_m(t) - \bar{u}_n(t))_V, \forall t \in [0, T] \),

which combined with (65), (41), (43), (92) and using the inequality

\[
ab \leq \frac{a^2}{m} + \frac{a^2}{b^2}, \forall a, b \in \mathbb{R},
\]

leads us to

\[
\begin{aligned}
\| \bar{u}_m(t) - \bar{u}_n(t) \|_V^2 &\leq c \| B_m(t) - B_n(t) \|_Q^2 + c \| \bar{u}_m(t) - \bar{u}_n(t) \|_{L^2(\Gamma_3; \mathbb{R}^d)}^2 \\
+ c \| f_m(t) - f(t) \|_V^2 &+ c \| f(t) - f_n(t) \|_V^2,
\end{aligned}
\]

for all \(t \in [0, T] \). Using (95), it is straightforward to show that

\[
\| \bar{u}_m(t) - \bar{u}_n(t) \|_V \leq \| u_m(t) - u_n(t) \|_V + c b_m + c h_n.
\]

Also, from (95) and (24), we deduce that

\[
\| \bar{u}_m(t) - \bar{u}_n(t) \|_{L^2(\Gamma_3; \mathbb{R}^d)} \leq \| u_m(t) - u_n(t) \|_{L^2(\Gamma_3; \mathbb{R}^d)} + c b_m + c h_n.
\]
Now, it follows from (113), (114), (115), (99) and (96), that
\[
\|\tilde{u}_m(t) - \tilde{u}_n(t)\|^2_V \leq c \|u_m(t) - u_n(t)\|_{L^2(\Gamma_3; \mathbb{R}^e)}^2 + c \int_0^t \|u_n(s) - u_m(s)\|^2_V ds + ch_m + ch_n,
\]
which, together with (95), and using the convergence (106), we obtain (110). Finally, the convergence (111) is a consequence of (95) and (110), and using the fact that
\[
\|u_m(t) - u_n(t)\|^2_V \leq c \|u_m(t) - \tilde{u}_m(t)\|^2_V + c \|\tilde{u}_m(t) - \tilde{u}_n(t)\|^2_V + c \|\tilde{u}_n(t) - u_n(t)\|^2_V,
\]
yields
\[
\|u_m(t) - u_n(t)\|^2_V \leq c \|u_m(t) - u_n(t)\|_{L^2(\Gamma_3; \mathbb{R}^e)} + c \int_0^t \|u_n(s) - u_m(s)\|^2_V ds + ch_m + ch_n, \quad \forall t \in [0, T].
\]
Now, we use Lemma 1, in the last inequality, to obtain
\[
\|u_m(t) - u_n(t)\|^2_V \leq c \|u_m(t) - u_n(t)\|_{L^2(\Gamma_3; \mathbb{R}^e)} + c \int_0^t \|u_m(s) - u_n(s)\|_{L^2(\Gamma_3; \mathbb{R}^e)} ds + ch_n, \quad \forall t \in [0, T].
\]
Thus, we get
\[
\|u_m - u_n\|^2_{C([0, T]; V)} \leq c \|u_m - u_n\|_{C([0, T]; L^2(\Gamma_3; \mathbb{R}^e))} + ch_n,
\]
which combined with (109), implies that \(\{u_m\}\) is a Cauchy sequence in \(C([0, T]; V)\), and using the convergence (106), we obtain (110). Finally, the convergence (111) is a consequence of (95) and (110).

In the rest of this paper \(\mathbf{u}\) is the function obtained in Lemma 7 and \(\{u_m\}, \{B_m\}, \{	ilde{u}_m\}, \{\tilde{\beta}_m\}\) and \(\{f_m\}\) represent appropriate subsequences of \(\{u_m\}\), \(\{B_m\}\), \(\{	ilde{u}_m\}\), \(\{\tilde{\beta}_m\}\) and \(\{f_m\}\), respectively, such that the convergences (106)-(111) hold. Let \(\Lambda : C([0, T] ; \mathbb{Q}) \rightarrow C([0, T] ; \mathbb{Q})\) be the operator defined by
\[
\Lambda \zeta(t) = A\varepsilon(u(t)) + \int_0^t B'(\zeta(s), \varepsilon(u(s))) ds + \sigma_0 - A\varepsilon(u_0), \quad \forall t \in [0, T],
\]
for all \(\zeta \in C([0, T] ; \mathbb{Q})\). We have the following result.

Lemma 8. The operator \(\Lambda\) has a unique fixed point \(\sigma \in C([0, T] ; \mathbb{Q})\). Moreover, we have
\[
\|B_m - \tilde{B}\|_{L^2(0, T; \mathbb{Q})} \leq c \|\tilde{u}_m - \mathbf{u}\|_{L^2(0, T; V)} + ch_m,
\]
where
\[
\tilde{B}(t) = \int_0^t B(\sigma(s), \varepsilon(u(s))) ds, \quad \forall t \in [0, T].
\]

Proof. Let \(\zeta_1, \zeta_2 \in C([0, T] ; \mathbb{Q})\) and let \(t \in [0, T]\). Using (26) and (116), one has
\[
\|\Lambda \zeta_1(t) - \Lambda \zeta_2(t)\|^2_{\mathbb{Q}} \leq c \int_0^t \|\zeta_1(s) - \zeta_2(s)\|^2_{\mathbb{Q}} ds,
\]
Reiterating the last inequality \(n\) times, we infer that
\[
\|\Lambda^n \zeta_1 - \Lambda^n \zeta_2\|_{C([0, T]; \mathbb{Q})} \leq \frac{(cT)^n}{n!} \|\zeta_1 - \zeta_2\|_{C([0, T]; \mathbb{Q})}.
\]
Thus, for \(n \) sufficiently large, a power \(\Lambda^n \) of \(\Lambda \) is a contraction in the Banach space \(C([0,T]; Q) \). Which implies that the operator \(\Lambda \) has a unique fixed point \(\sigma \in C([0,T]; Q) \). Now, let \(\sigma \) be the fixed point of \(\Lambda \), it follows from (116), (102), (25), (26) and (92), that

\[
\|\bar{\sigma}_m(t) - \sigma(t)\|_Q \leq c\|\bar{u}_m(t) - u(t)\|_V + c \int_0^t \|\bar{\sigma}_m(s) - \sigma(s)\|_Q \, ds \\
+ c \int_0^t \|\bar{u}_m(s) - u(s)\|_V \, ds + ch_m, \quad \forall t \in [0,T].
\]

Using Lemma 1, in the last inequality, one has

\[
\|\bar{\sigma}_m(t) - \sigma(t)\|_Q \leq c\|\bar{u}_m(t) - u(t)\|_V + c \int_0^t \|\bar{u}_m(s) - u(s)\|_V \, ds + ch_m,
\]

which together with (104) and (118), gives

\[
\|B_m(t) - B(t)\|_Q \leq c \int_0^t \|\bar{\sigma}_m(s) - \sigma(s)\|_Q \, ds + c \int_0^t \|\bar{u}_m(s) - u(s)\|_V \, ds + ch_m,
\]

and inequality (117) follows. \(\square\)

Now, consider the following problem.

Problem 5. Find a function \(\beta : [0, T] \rightarrow L^\infty(\Gamma_3) \), such that

\[
(119) \quad \dot{\beta}(t) = H_{ad}(\beta(t), \theta_\beta(t), R_\nu(u_\nu(t))), \text{ a.e. } t \in (0, T),
\]

\[
(120) \quad \beta(0) = \beta_0,
\]

where

\[
(121) \quad \theta_\beta(t) = \int_0^t \beta(s) \, ds, \quad \forall t \in [0, T].
\]

Lemma 9. Problem (119)-(121) has a unique solution which satisfies

\(\frac{1}{i} \beta \in W^{1,\infty}(0, T; L^\infty(\Gamma_3)), \)

\[
(i) \quad 0 \leq \beta(t) \leq 1, \forall t \in [0, T], \text{ a.e. } x \in \Gamma_3.
\]

Moreover, we have

\[
(123) \quad \|\dot{\beta}_m - \beta\|_{L^2(0, T; L^2(\Gamma_3))} \leq c\|\bar{u}_m - u\|_{L^2(0, T; V)} + ch_m.
\]

Proof. The proof of the existence and uniqueness of a solution to Problem (119)-(121) such that (122) holds, may be obtained by arguments similar to those used in the proof of [17, Lemma 11]. It follows from (87), (69), (70) that

\[
(124) \quad \dot{\beta}_m(t) = h_m H_{ad}(\beta_0, h_m \beta_0, R_\nu(u_\nu)) + \beta_0, \quad \forall t \in (t_{i-1}^m, t_i^m).
\]

Using (87), (69), (85) and (88), we deduce that

\[
\dot{\beta}_m(t) = \sum_{j=1}^{i} \int_{t_{j-1}^m}^{t_j^m} H_{ad}(\dot{\beta}_m(s), \theta_{\beta}(s), R_\nu(\bar{u}_\nu(s))) \, ds \\
+ h_m H_{ad}(\beta_0, h_m \beta_0, R_\nu(u_\nu)) + \beta_0, \quad \forall t \in (t_{i-1}^m, t_i^m], \quad i \in \{1, \ldots, m-1\},
\]
which, with (124), leads us to

\[
\begin{aligned}
\beta_m(t) &= \int_0^t H_{\text{ad}} \left(\hat{\beta}_m(s), \hat{\theta}_m(s), R_v(u_{m\nu}(s)) \right) \, ds \\
&+ \int_t^m H_{\text{ad}} \left(\hat{\beta}_m(s), \hat{\theta}_m(s), R_v(u_{m\nu}(s)) \right) \, ds \\
&\quad + h_m H_{\text{ad}}(\beta_0, h_m\beta_0, R_v(u_{0\nu})) + \beta_0,
\end{aligned}
\]

for all \(t \in (t_{m-1}^n, t_m^n] \), \(i \in \{0, \ldots, m-1\} \). On the other hand, from (88), we get

\[
\hat{\theta}_m(t) = \sum_{k=1}^{i+1} \int_{t_{k-1}^n}^{t_k^n} \hat{\beta}_m(s) \, ds + h_m\beta_0 = \int_0^t \hat{\beta}_m(s) \, ds + \int_t^m \hat{\beta}_m(s) \, ds + h_m\beta_0,
\]

for all \(t \in (t_{m-1}^n, t_m^n] \), \(i \in \{0, \ldots, m-1\} \). We use (121) and (126) to obtain

\[
\left\| \beta_m(t) - \beta(t) \right\|_{L^2(\Gamma_3)} \leq c \int_0^t \left\| \beta_m(s) - \beta(s) \right\|_{L^2(\Gamma_3)} \, ds + c \int_0^t \left\| \beta_m(s) - \beta(s) \right\|_{L^2(\Gamma_3)} \, ds \\
+ c \int_0^t \left\| \hat{u}_m(s) - u(s) \right\|_V \, ds + c h_m,
\]

which combined with (119)-(120), (28), (24), (125) and (92), implies that

\[
\left\| \beta_m(t) - \beta(t) \right\|_{L^2(\Gamma_3)} \leq c \int_0^t \left\| \beta_m(s) - \beta(s) \right\|_{L^2(\Gamma_3)} \, ds + c \int_0^t \left\| \hat{u}_m(s) - u(s) \right\|_V \, ds + c h_m,
\]

for all \(t \in [0, T] \). Using Lemma 1, in the last inequality, one has

\[
\left\| \beta_m(t) - \beta(t) \right\|_{L^2(\Gamma_3)} \leq c \int_0^t \left\| \hat{u}_m(s) - u(s) \right\|_V \, ds + c h_m, \quad \forall \ t \in [0, T],
\]

which gives inequality (123). \(\square \)

We have the following convergence results.

Lemma 10. For all \(v \in L^2(0, T; V) \), we have

\[
(127) \quad \lim_{m \to +\infty} \int_0^T (F\hat{u}_m(s), v(s) - \hat{u}_m(s))_V \, ds = \int_0^T (Fv(s), v(s) - \hat{u}(s))_V \, ds,
\]

\[
(128) \quad \lim_{m \to +\infty} \int_0^T (f_m(s), v(s) - \hat{u}_m(s))_V \, ds = \int_0^T (fv(s), v(s) - \hat{u}(s))_V \, ds,
\]

\[
(129) \quad \lim_{m \to +\infty} \int_0^T \left(\mathcal{B}_m(s), \varepsilon(v(s) - \hat{u}_m(s)) \right)_Q \, ds = \int_0^T \left(\mathcal{B}(s), \varepsilon(v(s) - \hat{u}(s)) \right)_Q \, ds.
\]

Proof. Obviously, (66) and (111) imply that

\[
F\hat{u}_m \to Fu \text{ strongly in } L^2(0, T; V),
\]

which together with (107) gives (127). Using (96), yields

\[
f_m \to f \text{ strongly in } L^2(0, T; V),
\]
and having in mind (107), we get (128). Now, from (111) and (117), we conclude that
\[\mathcal{B}_m \to \tilde{\mathcal{B}} \text{ strongly in } L^2(0,T;\mathbb{Q}), \]
which combined with (108), leads to (129).

Lemma 11. For all \(\varphi \in L^2(0,T;V) \), we have
\[
\lim_{m \to +\infty} \int_0^T \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), v(s)) ds = \int_0^T \varphi(\beta(s), u(s), v(s)) ds.
\]
\[
\lim_{m \to +\infty} \int_0^T \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), \tilde{v}_m(s)) - \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), v(s)) ds = 0.
\]
\[
\liminf_{m \to +\infty} \int_0^T \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), \tilde{v}_m(s)) ds \geq \int_0^T \varphi(\beta(s), u(s), \tilde{v}_m(s)) ds.
\]

Proof. Using the properties of the functional \(\varphi \) defined by (35), (24), (92) and (122), we deduce the following
\[
\left\{ \begin{array}{l}
\left| \int_0^T \left[\varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), v(s)) - \varphi(\beta(s), u(s), v(s)) \right] ds \right| \\
\leq c \left(\| \tilde{\beta}_m - \beta \|_{L^2(0,T;L^2(\Omega))} + \| \tilde{u}_m - u \|_{L^2(0,T;V)} \right) \| v \|_{L^2(0,T;V)}.
\end{array} \right.
\]

For all \(\varphi \in L^2(0,T;V) \). Therefore, the convergences (130)-(131) follow from (111), (123), (133) and (94). To continue, let \(\Phi : L^2(0,T;V) \to \mathbb{R} \) be the functional defined by
\[
\Phi(\varphi) = \int_0^T \varphi(\beta(s), u(s), v(s)) ds, \quad \forall \varphi \in L^2(0,T;V).
\]
where \(\beta \) is the unique solution of Problem (119)-(121). Using (35), (40), (45) and (134), we find that \(\Phi \) is convex and continuous. Thus, we deduce that \(\Phi \) is weakly lower semicontinuous function on \(L^2(0,T;V) \), see [3], which with (107) gives
\[
\liminf_{m \to +\infty} \Phi(\tilde{u}_m) \geq \Phi(\hat{u}).
\]

On the other hand, one has
\[
\left\{ \begin{array}{l}
\int_0^T \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), \tilde{v}_m(s)) ds = \Phi(\tilde{u}_m) \\
\int_0^T \varphi(\tilde{\beta}_m(s), \tilde{u}_m(s), \tilde{v}_m(s)) - \varphi(\beta(s), u(s), \tilde{v}_m(s)) ds.
\end{array} \right.
\]

Therefore, taking into account (131) and (135) when passing to the limit as \(m \to +\infty \) in (136), we obtain (132).

Fourth step. We have now all the ingredients to prove Theorem 1.

Proof. Let \(t \in (0,T) \), let \(r > 0 \), such that \(t + r \in (0,T) \), for each \(w \in V \), we define a function \(v \in L^2(0,T;V) \) by
\[
v(s) = \begin{cases}
w & \text{for } s \in (t, t + r), \\
\hat{u}(s) & \text{elsewhere}.
\end{cases}
\]
We use (67), (85), (87), (89), (90), (91), to obtain the following system
\[
\begin{align*}
\int_0^T (\mathcal{F} \bar{u}_m(s), v(s) - \bar{u}_m(s))_V ds &+ \int_0^T (\mathcal{B}_m(s), \varepsilon (v(s) - \bar{u}_m(s)))_Q ds + \\
\int_0^T \varphi(\beta_m(s), \bar{u}_m(s), v(s))ds &- \int_0^T \varphi(\beta_m(s), \bar{u}_m(s), \bar{u}_m(s))ds \\
&\geq \int_0^T (f_m(s), v(s) - \bar{u}_m(s))_V ds.
\end{align*}
\]
(137)

Passing to the lim sup as \(m \to +\infty \) in (137), by applying Lemma 10 and Lemma 11, we obtain
\[
\begin{align*}
\frac{1}{r} \int_t^{t+r} (\mathcal{F} \bar{u}(s), w - \bar{u}(s))_V ds &+ \frac{1}{r} \int_t^{t+r} (\mathcal{B}(s), \varepsilon (w - \bar{u}(s)))_Q ds + \\
\frac{1}{r} \int_t^{t+r} (\varphi(\beta(s), u(s), w) - \varphi(\beta(s), u(s), \bar{u}(s))) ds &- \frac{1}{r} \int_t^{t+r} (f(s), w - \bar{u}(s))_V ds, \text{ for all } w \in V.
\end{align*}
\]
(138)

Since \(u_m(t) \to u(t) \) strongly in \(V, \forall t \in [0, T] \), it follows from (84) that \(u(0) = u_0 \).

Let \(\sigma \) be the fixed point of \(\Lambda \) defined by (116), let \(\beta \) be the unique solution of Problem (119)-(121). Now, letting \(r \to 0 \) in (138) and keeping in mind (64) and (118), we conclude that \(\{u, \sigma, \beta\} \) is a solution of Problem (55)-(58). On the other hand, from (97), we have
\[
\|u(t) - u(s)\|_V \leq \|u(t) - u_m(t)\|_V + \|u_m(t) - u_m(s)\|_V + \|u_m(s) - u(s)\|_V.
\]
Passing to the limit as \(m \to +\infty \), in the last inequality and using the convergence (110), we get
\[
\|u(t) - u(s)\|_V \leq c |t - s|, \quad \forall t, s \in [0, T].
\]
Therefore, \(u \) satisfies the regularity (61). Also, from (55), we have
\[
\|
\sigma(t) - \sigma(s)\|_Q \leq c \|u(t) - u(s)\|_V + c \int_s^t (\|u(r)\|_V + \|
\sigma(r)\|_Q + 1) dr
\leq c |t - s|, \quad \forall t, s \in [0, T],
\]
which gives
\[
\sigma \in W^{1,\infty}(0, T; Q).
\]
(139)

Furthermore, taking \(w = \bar{u}(t) \pm z \) where \(z \in [D(\Omega)]^d \) in (56), we deduce that
\[
\text{Div}(\sigma) = -f_0(t) \text{ in } \Omega,
\]
(140)

for all \(t \in [0, T] \). Now, the regularity (62) is a consequence of (139), (140) and (30 (i)). Finally, (63) follows from Lemma 9, which concludes the proof. \(\square \)
6. Conclusion

In this paper, we have studied an adhesive quasistatic contact problem with normal compliance condition associated to a version of Coulomb's law of dry friction, for viscoplastic materials. We have shown the existence of a weak solution, under a smallness assumption depending only on the normal compliance functions, the elasticity operator and on the geometry of the problem. The uniqueness of the solution remains, as far as we know, an open question.

References

Abderrezak Kasri
Département de Mathématiques,
Faculté des sciences,
Université 20 Août 1955 - Skikda,
B.P.26 Route El-Hadaiek Skikda-Algérie.
E-mail address: kariabdezak@gmail.com