
S e©MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 17, стр. 590–603 (2020) УДК 519.87
DOI 10.33048/semi.2020.17.038 MSC 05C15

THE PERFECT 2-COLORINGS OF INFINITE CIRCULANT
GRAPHS WITH A CONTINUOUS SET OF ODD DISTANCES

O.G. PARSHINA, M.A. LISITSYNA

Abstract. A vertex coloring of a given simple graph G = (V,E)
with k colors (k-coloring) is a map from its vertex set to the set of
integers {1, 2, 3, . . . , k}. A coloring is called perfect if the multiset of
colors appearing on the neighbours of any vertex depends only on the
color of the vertex. We consider perfect colorings of Cayley graphs of the
additive group of integers with generating set {1,−1, 3,−3, 5,−5, . . . , 2n−
1, 1 − 2n} for a positive integer n. We enumerate perfect 2-colorings of
the graphs under consideration and state the conjecture generalizing the
main result to an arbitrary number of colors.

Keywords: perfect coloring, circulant graph, Cayley graph, equitable
partition.

1. Introduction

Let G be a simple graph, k be a positive integer and M = (mij)
k
i,j=1 be a non-

negative integer matrix of order k. A coloring of vertices of G with k colors is a map
ϕ : V → {1, 2, 3, . . . , k}. The value ϕ(v) = s is said to be the color of v. Hereinafter
by coloring of a graph we mean a coloring of its vertex set. A coloring of the graph
G is called perfect with parameter matrix M , if for any integers i, j in range from 1
to k any vertex colored with i has exactly mij neighbors colored with j. In this case
the matrix M is called admissible for the graph G. The corresponding partition of
the vertex set of G is known as equitable.
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The concept of perfect coloring plays an important role in graph theory, algebraic
combinatorics and coding theory. The notion of perfect coloring is closely related to
the notion of perfect code. For example, a distance partition of a distance-regular
graph in accordance to a perfect code is a perfect coloring.

Hereinafter n and k are positive integers. In this paper we aim to classify
perfect colorings of graphs from the family of infinite circulants. The graphs under
consideration are Cayley graphs of the additive group of integers with generating
set {1,−1, 3,−3, 5,−5, . . . , 2n − 1, 1 − 2n}. We call such graphs infinite circulant
graphs with the set of distances {1, 3, 5, . . . , 2n− 1}. Perfect 2-colorings of infinite
circulant graphs with the set of distances {1, 2, 3, . . . , n} are enumerated in [17]. The
conjecture generalizing described result to the case of arbitrary number of colors is
posed in [18]. Partial results on the conjecture one can see in [14].

Closely related to infinite circulant graphs is the n-dimensional rectangular grid
graph G(Zn), which is a covering graph of any infinite circulant with n distances.
Perfect colorings of the infinite rectangular grid graph have been widely studied.
Admissible for the graph G(Z2) parameter matrices of order 3 are enumerated by
S. A. Puzynina [19]. Perfect s-colorings of the graph G(Z2) for s ≤ 9 are listed by
D. S. Krotov [11].

A perfect k-coloring is called distance-regular if its parameter matrix is tridiagonalizable.
In this case colors of the coloring can be arranged in a way that every vertex of
color i ∈ {2, 3, . . . , k − 1} can only be adjacent to vertices of color i − 1, i and
i + 1. Moreover, the set of vertices of color 1 and the set of vertices of color k are
completely regular codes. Parameters of distance-regular colorings of the infinite
rectangular grid graph are enumerated by S. V. Avgustinovich, A. Yu. Vasil’eva
and I. V. Sergeeva [3].

Along with perfect colorings of the infinite rectangular grid graph, perfect colorings
of triangle and hexagonal infinite grid graphs have been studied. S. A. Puzynina
proved that for every perfect coloring of infinite triangle or hexagonal grids there
exists a periodic coloring of the grid with the same parameter matrix [20]. Distance-
regular colorings of the infinite triangle grid graph are enumerated by A. Yu. Vasil’eva [21],
of the hexagonal grid graph are listed by S. V. Avgustinovich, D. S. Krotov and
A. Yu. Vasil’eva [1].

Let G = (V,E) be a simple graph, M = (mij)
k
i,j=1 be a square matrix of order

k, and r ≥ 1. A coloring of the vertex set of the graph G is called perfect of
radius r with parameter matrix M if the element mij stands for the number of
vertices of color j at the distance at most r from any vertex of color i for each
i, j ∈ {1, 2, 3, . . . , k}.

Admissible parameter matrices of perfect 2-colorings of radius 1 of the graph
G(Z2) are enumerated by M. Axenovich [4]. In the same paper the author states
several necessary conditions on a parameter matrix to be admissible for G(Z2) in
the case r ≥ 2. Parameters and properties of perfect colorings of G(Z2) have been
studied by S. A. Puzynina in her PhD thesis [19]. In particular, she showed that
all perfect colorings of radius r > 1 of this graph are periodic. Several results on
perfect 2-colorings of circulant graphs were obtained by D. B. Khoroshilova [9, 10].

Let us mention several results on perfect colorings of graphs with similar to
circulants and infinite grid graphs local structure.

Perfect 2-colorings of the hypercube graph have been studied by D. G. Fon-Der-
Flaass. He obtained necessary conditions on parameters of perfect 2-colorings of
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this graph and presented an infinite series of such colorings [6]. Later he obtained a
bound on correlation immunity of non-constant unbalanced Boolean functions that
allows to obtain a necessary condition for a perfect coloring with given parameters
to exist in the hypercube graph [5]. Fon-Der-Flaass constructed perfect colorings
of the 12-dimensional hypercube graph that attain this bound [7]. Another method
to construct perfect 2-colorings via parameter matrices was provided by D. G. Fon-
Der-Flaass and K. V. Vorobev [22]. A new necessary condition on parameters of
perfect 2-colorings of the hypercube graph was obtained in the recent joint work of
D. S. Krotov and K. V. Vorobev [12]. Let us note that the set of parameter matrices
admissible for this graph has not been described yet even for the case of two colors.

A Johnson graph J(n, ω) is the graph with the set of boolean vectors of weight
ω as set of vertices; two vertices are adjacent in J(n, ω), if they differ in exactly two
coordinates. W. J. Martin showed that the coloring of J(n, ω) obtained by coloring
vertices of blocks of (ω−1)−(n, ω, λ)-scheme with color 1 and all the other vertices
of J(n, ω) with the color 2 is perfect [15].

A systematic study of perfect 2-colorings in Johnson graphs is performed in the
thesis of I. Yu. Mogilnykh [16]. He constructed several series of perfect 2-colorings
of Johnson graphs and provided several necessary conditions for such colorings to
exist. These results were used in enumeration of parameters of perfect 2-colorings of
Johnson graphs J(n, ω), where n ≤ 8. In [8] one can find the complete description
of admissible parameter matrices of order 2 for the graph J(n, 3), where n is odd.
The problem of perfect colorings of Johnson graphs classification is not solved even
in the case of two colors.

Perfect 2-colorings of transitive cubic graphs with the set of vertices of cardinality
up to 18 are enumerated by S. V. Avgustinovich and M. A. Lisitsyna in [2]. In the
later work the authors listed perfect colorings of the infinite prism graph with
arbitrary number of colors [13].

2. Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. For a given
vertex v ∈ V , we denote the set of vertices adjacent to v by N(v) and call it the
neighborhood of v.

We are interested in graphs defined as follows. Let us consider a set D =
{d1, d2, . . . , dn} of positive integers enumerated in ascending order. We say that
the graph Ci∞(D) = (Z, E), where E = {(i, i ± d)|i ∈ Z, d ∈ D}, is the infinite
circulant graph with the set of distances D. This graph can be regarded as Cayley
graph of the additive group of Z with the generating set {±dj}nj=1. Along with
infinite circulant graphs we consider finite ones. Let t be a positive integer. A finite
circulant graph with the set of distances D is the graph Cit(D) with the set Zt as
the vertex set and the multiset {(i, i+d mod t) | i ∈ Zt, d ∈ D} as the edge set. Such
graphs can have multiedges and loops, namely they are pseudographs. A coloring
of a pseudograph is called perfect if for two vertices of the same color the multisets
of colors of their neighborhoods coincide. By the multiset of colors of a vertex v
neighborhood we mean the multiset where the number of occurrences of a color i
is equal to the number of edges between the vertex v and vertices of color i.

Let G1 = (V1, E1) and G2 = (V2, E2) be two pseudographs. A surjection f :
V1 → V2 is a covering map from G1 to G2 if for each vertex v ∈ V1, the restriction
of f to the neighbourhood of v is a bijection onto the neighbourhood of f(v) in G2.
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In other words, f maps edges incident to v one-to-one onto edges incident to f(v).
If there exists a covering map from G1 to G2, then G1 is a covering graph of G2.

Proposition 1. Let G1 and G2 be pseudographs. If there exists a covering map
from G1 to G2, then every perfect coloring of G2 induces a perfect coloring of G1

with the same parameter matrix.

The proof of this statement follows immediately from the definitions of covering
map and perfect coloring.

Proposition 1 provides us a method of constructing perfect colorings of a given
graph using perfect colorings of other graphs, which are usually chosen to have more
convenient for this purpose structure. We will use a covering map from Ci∞(D) to
a finite pseudograph Cit(D) in enumeration of perfect colorings of the graph under
consideration.

Let t be a positive integer. A coloring ϕ of the circulant graph Ci∞(D) is periodic
with the length of period t, if ϕ(i) = ϕ(i + t) for every i ∈ Z. We will write
[ϕ(i+ 1)ϕ(i+ 2) · · ·ϕ(i+ t)] to depict the period of ϕ.

Hereinafter Dn stands for the set of distances {1, 3, 5, . . . , 2n− 1}. In the paper
we consider finite and infinite circulants with the set of distances Dn. In finite case
we are interested in circulants with even number of vertices.

Let us call graphs Ci∞(Dn) and Cit(Dn), t ∈ 2N, infinite and finite circulant
graphs with a continuous set of odd distances respectively. These graphs are regular
of degree 2n and bipartite. For a given graph Cil(Dn), where l ∈ 2N ∪ {∞}, we
denote by Ve the set of its vertices with even indices, and by Vo the set of vertices
with odd indices.

We will write ve or vo when it is necessary to indicate that a vertex belongs to
even or to odd part of the graph respectively.

Proposition 2. Every perfect coloring of the graph Ci∞(Dn), n ∈ N, is periodic.

Proof. Let ϕ be a perfect coloring of Ci∞(Dn) with parameter matrix M . Let
us take an arbitrary integer i and consider a vertex vi with its neighborhood
N(vi) = vi−2n+1vi−2n−1vi−2n−3 · · · vi−3vi−1vi+1vi+3 · · · vi+2n−1 perfectly colored
with ϕ. Let us consider the vertex vi+2n+1. Since it is the only vertex from the set
N(vi+2)\N(vi), its color is uniquely determined by the color of the vertex vi+2 and
the parameter matrixM . The same holds for the vertex vi−2n+3 by symmetry. This
property induces the periodicity of the coloring ϕ. �

We say that a coloring ϕ of a bipartite graph is bipartite if sets of colors of the
even and odd parts of the graph are disjoint.

Remark 1. Let ϕ be a periodic perfect coloring of a bipartite graph. Then either
ϕ is bipartite, or the even and the odd parts of the graph contain the same number
of vertices of every color.

This remark gives the necessary condition for a perfect coloring to exist in the
graphs under consideration.

The following proposition concerns perfect colorings of the infinite path graph,
which is, in our terms, the infinite circulant graph Ci∞({1}).
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Proposition 3. Let k be a positive integer. The list of perfect k-colorings of the
graph Ci∞({1}) is exhausted by colorings with the following four periods:

(1) [123 · · · (k − 1)k];
(2) [k(k − 1)(k − 2) · · · 212 · · · (k − 2)(k − 1)];
(3) [k(k − 1)(k − 2) · · · 212 · · · (k − 2)(k − 1)k];
(4) [k(k − 1)(k − 2) · · · 2112 · · · (k − 2)(k − 1)k].

The proof of this statement can be found, for example, in [13] (Lemma 2). Let
us note that these colorings are perfect for every infinite circulant graph under
consideration.

We state the following conjecture.

Conjecture 1. Let k and n be positive integers. The set of perfect k-colorings of
the graph Ci∞(Dn) consists of perfect colorings induced from perfect colorings of
the infinite path graph and of graphs Cit(Dn) for t = 4n− 2, 4n, 4n+ 2.

In this paper we prove the conjecture for k = 2. In this case the set of perfect
colorings of the infinite path graph consists of three equivalence classes of colorings
with periods [12], [212] and [2112].

2.1. Perfect colorings of finite bipartite circulants. In this section we consider
perfect colorings of graphs Cit(Dn) for t ∈ {4n, 4n− 2, 4n+ 2}, n ∈ N.

2.1.1. The case t = 4n. The graph Ci4n(Dn) is the complete bipartite graphK2n,2n.
A coloring of this graph is perfect if it is bipartite or if odd and even parts of the
graph contain the same number of vertices of each color (see Remark 1).

To construct a bipartite perfect coloring of this graph, we should split the set
of colors into two disjoint subsets Ce and Co, and then color vertices of the even
(odd) part of the graph with colors from Ce (Co) in arbitrary order. It is easy to
see that every coloring obtained this way is perfect for K2n,2n.

For any perfect and non-bipartite k-coloring of this graph, the neighborhood of
every vertex has the same coloring structure regardless its own color, thus column
elements in the parameter matrix of any such coloring are equal. In other words,
for every index j ∈ {1, 2, . . . , k}, mij = mkj := mj ∀i, k ∈ {1, 2, . . . , k}.

In this case the number of vertices of each color j in each part of the graph must
be equal to mj , and we can color each part of graph independently, putting colors
in arbitrary order. For a given parameter matrix there exist 2 k

m1!m2!···mk!
different

non-bipartite k-colorings of Ci4n(Dn).
Figure 1 shows the graph Ci8({1, 3}) perfectly colored with three colors.
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Fig. 1. Perfect 3-coloring of the graph Ci8({1, 3}).
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2.1.2. The case t = 4n+ 2. Let us remind that a perfect matching of a graph is an
independent edge set in which every vertex of the graph is incident to exactly one
edge of the matching.

We may say that the graph Ci4n+2(Dn) = (Ve ∪ Vo, E) is the complete bipartite
graph K2n+1,2n+1 without the perfect matching P2n+1 = {(i, i + 2n + 1)|i =
0, 1, 2, . . . , 2n}. In other words, every vertex i of one part of the graph is adjacent
to all vertices of another part except for the vertex j such that (i, j) ∈ P2n+1.

Let ϕ be a perfect coloring of Ci4n+2(Dn). Let us consider an edge (i, j) from
P2n+1, its endpoints i and j are colored with (not necessary distinct) colors ϕ(i)
and ϕ(j). It is easy to see that in this case any edge from P2n+1 having one endpoint
colored with ϕ(i) must have another endpoint colored with ϕ(j), and vice versa.
This condition directly follows from the definition of perfect coloring and means,
in particular, that the set of colors of a bipartite perfect coloring must be of even
cardinality. We will use this necessary condition to construct perfect colorings, let
us refer to it as the condition (?).

To construct a perfect bipartite coloring ϕ of Ci4n+2(Dn), we split the set of
colors C into two disjoint subsets of the same cardinality C = Ce ∪ Co; then we
arrange colors in pairs (ci, cj), where i, j ∈ {1, 2, . . . , |Ce|}, and ci ∈ Ce, cj ∈ Co;
we color every edge (ve, vo) of P2n+1 with one of the assigned pairs of colors such
that ϕ(ve) ∈ Ce, ϕ(vo) ∈ Co.

Let us construct a non-bipartite perfect coloring. By the definition of perfect
coloring, each part of the graph must have the same number of vertices of each
color. This, together with the condition (?), give us the following method. Let φ
denote the coloring we are going to construct.

Endpoints of every edge can be colored with the same color or differently. From
the conditions above it follows, that if there is an edge (ve, vo) with φ(ve) = x
and φ(vo) = y, x 6= y, then there must be an edge (ue, uo) with φ(ue) = y and
φ(uo) = x, otherwise the coloring φ cannot be perfect.

Let us split the set of colors into two disjoint subsets, C = C1 ∪ C2, where |C2|
is even. Along with that we split the edges of the perfect matching P2n+1 into two
disjoint subsets P1 and P2, where |P2| is even. We color the endpoints of edges from
the set P1 with colors from the set C1 in a way that endpoints of every edge get
the same color.

We arrange colors of C2 and edges from P2 in pairs. We color each pair of edges
(ve, vo), (ue, uo) of the set P2 in a way that endpoints of every edge get different
colors, but φ(ve) = φ(uo), and φ(vo) = φ(ue).

If the set C2 is empty, then each edge has endpoints colored with the same color.
The set C1 can be empty only if the edge set is of even cardinality, then all edges
belong to P2 and colored in a way described above. It is easy to verify that in both
cases colorings will be perfect.

It should be noted that this construction follows only from the necessary conditions
on a coloring of the bipartite graph to be perfect and non-bipartite, and every
perfect coloring of such graph can be obtained using this procedure.

An example of a perfect non-bipartite coloring is shown in Figure 2. The absent
perfect matching is P10 = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)} = P1 ∪ P2, where P1 =
{(0, 5), (1, 6), (3, 8)} and P2 = {(2, 7), (4, 9)}.
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Fig. 2. Perfect 4-coloring of the graph Ci10({1, 3}).

2.1.3. The case t = 4n− 2. Let us consider the perfect matching on 4n− 2 vertices
P2n−1 = {(i, i+2n− 1)|i = 0, 1, 2, . . . , 2n− 2}. Every vertex i ∈ Ve of the bipartite
pseudograph Ci4n−2(Dn) = (Ve ∪ Vo, E) is adjacent to all vertices of Vo and has an
extra edge to the vertex j such that (i, j) ∈ P2n−1. The same holds for every vertex
of Vo. Informally speaking, Ci4n−2(Dn) is the complete bipartite graph K2n−1,2n−1
with extra perfect matching P2n−1.

The coloring procedure for this graph is the same as the coloring procedure for
the graph Ci4n−2(Dn). One should split the set of colors into two disjoint subsets
and then color endpoints of edges of the perfect matching P2n−1 in the same way
as we colored edges of P2n+1 from the previous case.

Two examples of perfect 2-colorings of Ci6({1, 3}) are shown in figure 3. In the
first case the set of colors C = {blue, red} coincides with the set C1, while sets C2

and P2 are empty. In the second picture the bipartite coloring is shown.
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1. Coloring ϕ with 2. Bipartite 2-coloring.
C1 = {blue, red}, C2 = ∅.

Fig. 3. Perfect 2-colorings of the graph Ci6({1, 3}).

Remark 2. If for t = 4n ± 2 the set of colors is C = {0, 1}, there are only two
possibilities:

(1) C1 = C = {0, 1}, C2 = ∅. Endpoints of every edge of the perfect matching
are either both colored with 0, or both colored with 1.

(2) C1 = ∅, C2 = {0, 1}. The only possible perfect 2-coloring in this case is the
bipartite one.

3. Main result

In this section we consider perfect 2-colorings of the graph Ci∞(Dn). As a matter
of convenience we will name colors of 2-colorings black (•) and white (◦). The
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parameter matrix of a perfect 2-coloring has the following form:
(
a b
c d

)
. Since

the graph under consideration is regular of degree 2n, the parameters a and d can
be represented as 2n− b and 2n− c respectively. Sometimes instead of considering
the parameter matrix of a coloring we will take into account parameters b and c,
which are called outer degrees of black and white color respectively. A pair (b, c)
is called admissible for the graph Ci∞(Dn) if there exists a perfect 2-coloring of

Ci∞(Dn) with parameter matrix
(

2n− b b
c 2n− c

)
.

Theorem 1. Let n be a positive integer, and Ci∞(Dn) be the infinite circulant graph
with a continuous set of odd distances. The set of perfect 2-colorings of Ci∞(Dn)
consists of perfect colorings induced by perfect colorings of the infinite path graph
and of graphs Cit(Dn) for t = 4n− 2, 4n, 4n+ 2.

Let us state and prove several preliminary lemmas.

Lemma 1. Let n be a positive integer. A pair of positive integers (b, c) is admissible
for the graph Ci∞(Dn) if and only if b+ c ∈ {4n, 2n, 2n+ 1, 2n− 1}.

Proof. The parameter matrix of the bipartite coloring of Ci∞(Dn) is
(

0 2n
2n 0

)
,

and b+ c = 4n. The period of this coloring is [•◦].
Let ϕ be a perfect coloring of Ci∞(Dn) with period length longer than 2. That

means there exists a positive integer i such that ϕ(vi) 6= ϕ(vi+2). Without loss of
generality let ϕ(vi) = •. The neighborhoodsN(vi) andN(vi+2) share 2n−2 vertices,
and the following holds: N(vi)\N(vi+2) = {vi−2n+1}, N(vi+2)\N(vi) = {vi+2n+1}.
Let us consider the pair of vertices (vi−2n+1, vi+2n+1) and their possible colors.

(1) If ϕ(vi−2n+1) = ϕ(vi+2n+1), neighborhoods N(vi) and N(vi+2) have the
same number of black and white vertices. That means every vertex is
adjacent to the same number of black and white vertices regardless of its

own color. In this case the parameter matrix of the coloring is
(
c b
c b

)
,

and b + c = 2n. Moreover, vertices vi−2n+1 and vi+2n+1 are of the same
color for every i ∈ Z, what means the coloring ϕ is periodic with the period
length 4n.

(2) Let (ϕ(vi−2n+1), ϕ(vi+2n+1)) = (◦, •). In this case every black vertex has
one more white vertex in its neighborhood than the white one. The parameter

matrix of the coloring is
(
c− 1 b
c b− 1

)
, and b+ c = 2n+ 1.

(3) Let (ϕ(vi−2n+1), ϕ(vi+2n+1)) = (•, ◦). In this case every black vertex has
one more black vertex in its neighborhood than the white one. The parameter

matrix of the coloring is
(
c+ 1 b
c b+ 1

)
, which means b+ c = 2n− 1.

Since all possibilities are listed, then b+ c ∈ {4n, 2n, 2n+ 1, 2n− 1}. �

Lemma 2. Let n, b, c be positive integers, and the pair (b, c) be admissible for the
graph Ci∞(Dn). Let ϕ be a perfect 2-coloring of this graph with b and c being outer
degrees of black and white colors respectively. Then for every i ∈ Z the following
holds:

(1) If ϕ(i) = ϕ(i+ 2), then ϕ(i− 2n+ 1) = ϕ(i+ 2n+ 1);
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(2) If ϕ(i) 6= ϕ(i + 2) and b + c = 2n + 1, then ϕ(i − 2n + 1) = ϕ(i + 2), and
ϕ(i+ 2n+ 1) = ϕ(i);

(3) If ϕ(i) 6= ϕ(i + 2) and b + c = 2n − 1, then ϕ(i − 2n + 1) = ϕ(i) and
ϕ(i+ 2n+ 1) = ϕ(i+ 2).

Proof. The proof of the lemma follows directly from the definition of perfect coloring
and the proof of Lemma 1. �

The coloring patterns provided by Lemma 2 are depicted at the Figure 4.
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i + 2

i − 2n + 3

y

i − 2n + 1

y

i + 2n + 1i + 2n − 1

1) Lemma 2, Item 1: x, y ∈ {0, 1}

x

i

x

i + 2

i − 2n + 3

x

i − 2n + 1

x

i + 2n + 1i + 2n − 1

2) Lemma 2, Item 2: b+ c = 2n+ 1, x ∈ {0, 1}

x

i

x

i + 2

i − 2n + 3

x

i − 2n + 1

x

i + 2n + 1i + 2n − 1

3)Lemma 2, Item 3: b+ c = 2n− 1, x ∈ {0, 1}

Fig. 4. Coloring patterns of the graph Ci∞(Dn) provided by Lemma 2.

Let G be an infinite circulant graph, ϕ be its 2-coloring, and s be a positive
integer. The sequence of vertices {i+ js}j∈Z of G for an integer i is called s-chain.
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If the inequality ϕ(i+ js) 6= ϕ(i+ (j + 1)s) holds for every j, then the sequence
{i+ js}j∈Z is called an alternating s-chain.

Lemma 3. Let n, b and c be positive integers. Let the pair (b, c) be admissible for
the graph Ci∞(Dn). If b+ c = 2n+1, then every perfect non-bipartite 2-coloring ϕ
corresponding to the pair (b, c) has the period length 2n+ 1.

Proof. Let us suppose that b+c = 2n+1 and that there is a vertex i of Ci∞(Dn) such
that ϕ(i) 6= ϕ(i+2n+1). Let ϕ(i) = x ∈ {0, 1}, then ϕ(i+2n+1) = 1−x = x. Let
us consider the vertex i+2. It cannot be colored with x, since that would contradict
item 2 of Lemma 2. Thus ϕ(i+2) = x. According to item 1 of Lemma 2 the vertex
(i − 2n + 1) is colored with x. Following the same logic we obtain that the vertex
(i+ 2n− 1) is colored with x, and the vertex (i+ 4n) is colored with x. Applying
item 2 and item 1 of Lemma 2 to vertices (i+2n−1), (i+4n), we obtain equalities
ϕ(i+ 4n− 2) = x and ϕ(i+ 6n− 1) = x.

Alternatively applying item 2 and item 1 of Lemma 2 to pairs of vertices (i +
(2n−1)j, i+2n+1+(2n−1)j)j∈N and (i+2−(2n+1)j, i−2n−1−(2n+1)j)j∈N, we
obtain two alternating (2n−1)-chains {i+(2n−1)j}j∈Z and {i+2+(2n−1)j}j∈Z.
Two alternating (2n − 1)-chains in Ci∞(Dn) built in described way are shown in
Figure 5. The edges colored with gray do not exist in the graph, they are shown by
illustrative reasons and connect pair of vertices (l, l + 2n+ 1)l∈Z.

x

i − 4n + 2

x
i − 4n + 4

x

i

x

i + 2

x

i + 4
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i + 2n + 1

x

i + 2n + 3

x

i + 2n − 1

x

i − 4n + 6

Fig. 5. Alternating (2n− 1)-chains in Ci∞(Dn).

In view of two alternating chains shown in Figure 5 let us consider vertices (i+4)
and (i+ 2n+ 3).

If ϕ(i + 4) = x 6= ϕ(i + 2), then, according to item 2 of Lemma 2, the equality
ϕ(i + 2n + 3) = ϕ(i + 2) holds. Let us note that there is no contradiction with
inequality ϕ(i+2) 6= ϕ(i− 2n+3) obtained at the earlier steps of the construction
process. Applying the same item to pairs of vertices (i+2+(4n− 2)j, i+4+(4n−
2)j)j∈Z) and (i+2n+1+(4n−2)j, i+2n+3+(4n−2)j)j∈Z we obtain an alternative
(2n− 1)-chain {i+ 4 + (2n− 1)j}j∈Z.

Let us suppose that ϕ(i + 4) = x = ϕ(i + 2). In this case item 1 of Lemma 2
gives the equality ϕ(i + 2n + 3) = ϕ(i − 2n + 3) = x. Applying the same item
of Lemma 2 to pairs of vertices (i + 2 + (4n − 2)j, i + 4 + (4n − 2)j)j∈Z) and
(i+2n+1+(4n− 2)j, i+2n+3+(4n− 2)j)j∈Z we obtain an alternative (2n− 1)-
chain {i+ 4 + (2n− 1)j}j∈Z.

If the color of the vertex i+6 is x = ϕ(i+4), then by item 1 of Lemma 2 the vertex
i+2n+5 is colored with ϕ(i−2n+5) = x. Applying this item to the pairs of vertices
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(i+4+(4n−2)j, i+6+(4n−2)j)j∈Z and (i+2n+3+(4n−2)j, i+2n+5+(4n−2)j)j∈Z
we obtain an alternative (2n − 1)-chain {i + 6 + (2n − 1)j}j∈Z. If the color of the
vertex i + 6 is x 6= ϕ(i + 4), then in accordance with item 2 of Lemma 2 the
color of i + 2n + 5 is ϕ(i + 4) = x, the color of i − 2n + 7 is ϕ(i − 4n + 6) = x,
ϕ(i−4n+8) = ϕ(i−6n+7) = x, proceeding the same way we obtain an alternating
(2n− 1)-chain.

Finally, the whole graph is colored with alternating (2n − 1)-chains; the period
length of the obtained coloring is 4n−2, and the number of black and white vertices
in the period is the same, meaning there are 2n − 1 edges with endpoints colored
differently. If the obtained coloring is not bipartite, then this condition contradicts
the Remark 1. Thus every perfect non-bipartite coloring corresponding to the case
b+ c = 2n+ 1 is periodic with the period length 2n+ 1.

�

Lemma 4. Let n, b and c be positive integers. Let the pair (b, c) be admissible for
the graph Ci∞(Dn). If b+ c = 2n− 1, then every perfect non-bipartite 2-coloring ϕ
corresponding to the pair (b, c) has the period length 2n− 1.

Proof. The proof of this lemma is similar to the previous one. First we suppose that
there is a vertex i such that ϕ(i) 6= ϕ(i+ 2n− 1). According to item 3 of Lemma 2
the vertex i − 2 cannot be colored with x, thus ϕ(i − 2) = x and ϕ(i − 2n − 1) =
ϕ(i + 2n − 1) = x. With the same logic ϕ(i + 2n + 1) = ϕ(i + 2n − 1) = x and
ϕ(i−4n) = ϕ(i) = x; ϕ(i−2n−3) = ϕ(i−2n−1) = x and ϕ(i−4n−2) = ϕ(i−2) = x.
Proceeding the same way we will obtain two alternative (2n + 1)-chains, one is
{i+ (2n+ 1)j}j∈Z, another is {i− 2 + (2n+ 1)j}j∈Z.

The corresponding picture is shown in Figure 6. Edges colored with gray represent
parts of chains.

Let us consider the vertex i+ 2 and suppose that ϕ(i+ 2) = x.
The vertex i+2n+3 cannot be colored with x, because, provided with inequality

ϕ(i + 2n + 1) = x 6= ϕ(i + 2) it would contradict item 3 of Lemma 2, thus ϕ(i +
2n+3) = ϕ(i+2n+1). With the same logic ϕ(i+2+(2n+1)j) = ϕ(i+(2n+1)j)
for every j ∈ Z, and finally we obtain an alternating chain {i+ 2 + (2n+ 1)j}j∈Z.
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Fig. 6. Alternating (2n+ 1)-chains in Ci∞(Dn).

In the case ϕ(i + 2) = x we use item 3 of Lemma 2 to color i − 2n + 1 with x.
Considering the equalities ϕ(i + 2n + 1) = ϕ(i + 2) = x and ϕ(i + 4n + 2) = x
we color i + 2n + 3 with x in accordance with the the same pattern of item 3.
Proceeding acting the same way with vertices i+2+ (2n+1)j for j ∈ Z we obtain
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an alternating (2n + 1)-chain. We can proceed the same way and color the graph
with alternating (2n+ 1)-chains.

The obtained coloring has the period length 4n+ 2 with equal number of black
and white vertices in the period, i.e. 2n+1 edges having differently colored endpoints.
This contradicts the necessary condition for the non-bipartite coloring to be perfect
(Remark 1), thus the only possible period length for this case is 2n− 1.

�

Proof of Theorem 1. According to Lemma 1, the sum b+ c can be equal to 4n, 2n,
2n+ 1 or 2n− 1.

The only possible perfect coloring corresponding to the admissible pair (b, c) with
b+ c = 4n is bipartite, and its minimal period is [12].

Let us consider the other possible values of the sum b+ c.
(1) Let b + c = 2n. By Lemma 1, every perfect coloring corresponding to

the pair (b, c) is periodic with the period length 4n and the parameter

matrix M0 =

(
2n− b b
2n− b b

)
. The form of the matrix implies that the

color composition of each vertex is independent of its own color. In this
case any coloring with b white and 2n− b black vertices provided with the
condition from Remark 1 is perfect.

Let us consider the graph Ci4n(Dn) = (V,E) with V = {0, 1, 2, . . . , 4n−
1}. It is the complete bipartite graph K2n,2n, and thus for any its perfect
2-coloring every vertex is adjacent to the same number of white and black
vertices regardless of its own color. The parameter matrix of any such
coloring is necessary of the form M0 for the suitable parameter b.

Provided with Proposition 1 and the written above one can construct
a surjective map from the set of perfect colorings of a finite circulant to
the set of perfect colorings of an infinite one that maps a coloring φ to the
coloring of Ci∞(Dn) with period [φ(0)φ(1)φ(2) · · ·φ(4n − 1)]. It is easy to
see that every coloring of infinite circulant can be considered as the one
induced from the coloring of the finite graph. Let us note that different
colorings of the finite circulant can induce the same coloring of the infinite
circulant.

(2) Let b+c = 2n+1. According to Lemma 3, every perfect 2-coloring corresponding
to the pair has the period length 2n+ 1 and the parameter matrix M+1 =(

2n− b b
2n− b+ 1 b− 1

)
.

Let us consider the graph Ci4n+2(Dn). The set of its perfect colorings
is described in Subsection 2.1.2. In the case of two colors the non-bipartite
construction requires each edge of the perfect matching P2n+1 being monochrome.
Let φ be a perfect 2-coloring of the graph Ci4n+2(Dn). It has parameter
matrix M+1 . Using the Remark 1 and Proposition 1 we can deduce that
every perfect 2-coloring of the infinite circulant is induced from a perfect
coloring of Ci∞(Dn). The induced coloring of the infinite graph has the
period [φ(0)φ(1)φ(2) · · ·φ(4n+ 1)].

(3) Let b + c = 2n − 1. By Lemma 4 every perfect 2-coloring corresponding
to the pair (b, c) has the period length 2n − 1 and the parameter matrix

M−1 =

(
2n− b b

2n− b− 1 b+ 1

)
.
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Let us consider the graph Ci4n−2(Dn). The set of its perfect colorings is
described in Subsection 2.1.3. In the case of two colors and non-bipartite
coloring every edge of the perfect matching P2n−1 must be monochrome.
Thus, such a coloring has the period length 2n−1 and the parameter matrix
of such a coloring is M−1. We can construct a surjective map from the set
of perfect colorings of a finite circulant to the set of perfect colorings of an
infinite one that maps a coloring φ to the coloring of Ci∞(Dn) with period
[φ(0)φ(1)φ(2) · · ·φ(4n− 3)]. It is easy to see that every coloring of infinite
circulant can be considered as the one induced from the coloring of the
finite graph.

�

The main result of the paper confirms Conjecture 1 in the case of two colors. Let
us note, that in this case the set of perfect colorings of the infinite path graph is a
subset of perfect colorings induced from the colorings of the finite circulants Cit(Dn)
for t = 4n − 2, 4n, 4n + 2, and does not play a role in the colorings enumeration.
Nevertheless, it will not be the case for a greater number of colors. For example,
the coloring with the period [1234567] is perfect for Ci∞(D2), but is not perfect for
any finite circulant Cit(D2), t = 6, 8, 10.

We described how to construct perfect colorings of finite circulants from the
conjecture, but the general question remains open. The main obstacle on the way
of further classification of perfect colorings of infinite circulants is a large number
of cases to study. The techniques of case reduction and examination of perfect
colorings of such graphs are yet to be described.
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