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Abstract. We discuss an algorithm for integrating systems of two
second-order ordinary differential equations (ODE) with a small parameter
that admit approximate Lie algebras with four essential generators. The
algorithm is a modification of the method of consecutive order reduction
and is based on using operators of invariant differentiation. A special
attention is given to the peculiarities of its application in dependence of
the structural properties of Lie algebras of approximate symmetries.
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1. Introduction

Integrating rth-order ordinary differential equations (ODE) with r point symme-
tries is a classical problem in group analysis. It was solved for scalar second-order
ODE (see, e.g., [1]), third-order ODE (see [2]), systems of two second-order ODE
(see, e.g., [3, 4]).

Recently, an approach for integrating systems of p-order ODE of the form

(1) uj,(p) = f j
(
t, u1, . . . , un, u1,(1), . . . , un,(p−1)

)
, j = 1, . . . , n,
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that admit r-dimensional (r = np) Lie algebras Lr of operators

(2) Xα = ξα(t, u
1, . . . , un)

∂

∂t
+

n∑
j=1

ηjα(t, u
1, . . . , un)

∂

∂uj
, α = 1, . . . , r,

was suggested in [5]. This approach is based on using an operator of invariant
differentiation (OID) (see, e.g., [6]) of the admitted Lie algebra Lr. In [7], the first
author introduced the OID for the approximate Lie algebra, proposed an algorithm
for its constructing, and considered the application of this OID to order reduction
of systems of ODE of the form
(3)
uj,(p)(t) = f j(0)(t, u, u

′, . . . , u(p−1)) + εf j(1)(t, u, u
′, . . . , u(p−1)), j = 1, . . . , n, ε≪ 1,

that admit approximate Lie algebras of operators (up to o (ε)1)

Xα0 = Xα0,(0) + εXα0,(1), α0 = 1, . . . , r0,
Xα1 = εXα1,(0), α1 = r0 + 1, . . . , r̃.

In the present article, we study the applicability of the algorithm proposed in [7]
to systems of the form

(4)

{
ẍ = f0 (t, x, y, ẋ, ẏ) + εf1 (t, x, y, ẋ, ẏ) ,

ÿ = g0 (t, x, y, ẋ, ẏ) + εg1 (t, x, y, ẋ, ẏ)

that admit approximate Lie algebras L̃ with four essential operators. The pecu-
liarities of the consecutive order reduction and integration of systems of ODE
in dependence of the structural properties of the admitted approximate Lie algebras
are described; the symmetries of reduced systems of ODE are considered and the
possibilities of their applying are discussed.

2. An Invariant Representation of Systems of Two
Second-Order ODE with a Small arameter

Suppose that system (4) admits four approximate operators

(5) Xα0 = Xα0,(0) + εXα0,(1), α0 = 1, . . . , r0,
Xα1

= εXα1,(0), α1 = r0 + 1, . . . , 4,

where

Xα,(p) = ξα,(p)(t, x, y)
∂

∂t
+η1α,(p)(t, x, y)

∂

∂x
+η2α,(p)(t, x, y)

∂

∂y
, α = 1, . . . , 4, p = 0, 1.

Assume that these operators are essential for some approximate Lie algebra L̃,
i.e., the set of the operators {Xα0 , εXα0 , Xα1} obtained by neglecting the terms
of order o(ε) provides a basis of the approximate Lie algebra L̃. In this case,
the operators Xα,(0), α = 1, . . . , 4, generate an “exact” Lie algebra L4 which is
admitted by corresponding “unperturbed” system of two second-order ODE

(6)

{
ẍ = f0 (t, x, y, ẋ, ẏ) ,

ÿ = g0 (t, x, y, ẋ, ẏ) .

1We use the following notations: the expression f(z, ε)= o(ε) means lim
ε→0

f(z,ε)
ε

= 0; the

expression f ≈ g means f(z, ε)− g(z, ε) = o(ε).
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The operatorsXα0,(0), α0 = 1, . . . , r0, generate a subalgebra Lr0 of the Lie algebra L4

(see [8]). The dimension of the approximate Lie algebra L̃ varies from five (if r0 = 1)
to eight (if r0 = 4). The operators of the formXα0 are called “zeroth-order”operators
(with respect to ε), and operatorsXα1

are “first-order”. The corresponding operators
Xα0,(0) are called stable, and Xα1,(0) are unstable with respect to the perturbation
under consideration.

To represent system (4) in terms of the differential invariants of the admitted
approximate Lie algebra, introduce the matrices ∆

(2)
r0,(0)

, ∆
(2)
r0,(1)

, Λ
(2)
4,(0) consisting

of the extended operators X̂(2)
α0,(0)

, X̂
(2)
α0,(1)

, and X̂(2)
α,(0), α0 = 1, . . . , r0, α = 1, . . . , 4.

For example, the matrix ∆
(2)
r0,(0)

has the form
ξ1,(0) η11,(0) η21,(0) ζ

1,(1)
1,(0) ζ

2,(1)
1,(0) ζ

1,(2)
1,(0) ζ

2,(2)
1,(0)

. . .
ξr0,(0) η1r0,(0) η2r0,(0) ζ

1,(1)
r0,(0)

ζ
2,(1)
r0,(0)

ζ
1,(2)
r0,(0)

ζ
2,(2)
r0,(0)

,
where ζi,(q)α,(p) is the coordinate of the extension of the operatorXα,(p) to the qth-order
derivative of x(q) if i = 1 or y(q) if i = 2 (see, e.g., [6]). In particular,

ζ
1,(q)
α,(p) = D

(q)
t

(
η1α,(p) − ẋξα,(p)

)
+ ξα,(p)x

(q+1).

Constructing differential invariants of the approximate Lie algebra L̃ is reduced to
solving systems of first-order partial differential equations (see [9])

Ω0 : X̂
(2)
α,(0)

(
I(0)
)
= 0, α = 1, . . . , 4,

Ω1 : X̂
(2)
α0,(0)

(
I(1)
)
+ X̂

(2)
α0,(1)

(
I(0)
)
≈ 0, α0 = 1, . . . , r0.

This system defines “zeroth-order” differential invariants (with respect to ε) of the
form Ik = Ik,(0) + εIk,(1), and “first-order” differential invariants (with respect
to ε) of the form Js = εJs,(0). Furthermore, the functions Ik,(0) are invariants
of the Lie algebra L4, the functions Ik,(1) are particular solutions to system Ω1,
and the functions Js,(0) are particular solutions to the corresponding homogeneous
system of equations

X̂
(2)
α0,(0)

(
Js,(0)

)
= 0, α0 = 1, . . . , r0,

and Js,(0) are functionally independent with Ik,(0).
It is shown in [4] that if system (6) that corresponds to system (4) defines

a regular manifold (see [6]) and is representable by differential invariants of L4 then
the conditions rg Λ

(1)
4,(0) = rg Λ

(2)
4,(0) = 4 are fulfiled. In this case, the approximate

Lie algebra L̃ has three “zeroth-order” differential invariants (with respect to ε).
Two of them, I12 = I12,(0) + εI12,(1) and I22 = I22,(0) + εI22,(1), are second-order, and

one of them, I = I(0) + εI(1), is a first-order differential invariant (if rg Λ
(0)
4,(0) = 3)

or an algebraic invariant (if rg Λ
(0)
4,(0) = 2).

If the conditions rg ∆
(1)
r0,(0)

= r0, rg ∆
(2)
r0,(0)

= r0 are also fulfilled then the ap-

proximate Lie algebra L̃ has 4− r0 “first-order” differential invariants (with respect
to ε). Obviously, the number of “first-order” invariants depends on the number of
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stable operators and varies from zero for r0 = 4 to three for r0 = 1. Then, according
to [9], system (4) is representable as

(7)

{
I12 = F0 (I) + εF1

(
I(0), J1,(0), . . . , J4−r0,(0)

)
,

I22 = G0 (I) + εG1

(
I(0), J1,(0), . . . , J4−r0,(0)

)
.

Note that if the condition rg ∆
(k)
r0,(0)

= r0 does not hold then Ω1 gives additional
equations that should be added to the system Ω0. However, such cases do not appear
for the approximate Lie algebras under consideration.

3. An Operator of Invariant Differentiation
for an Approximate Lie Algebra

An operator of invariant differentiation (OID) λDt for an approximate Lie algebra
L̃ that is admitted by system (16) is introduced by analogy with the case of an exact
Lie algebra. This operator transforms one differential invariant of the Lie algebra
into another one. Assume that the OID is linear with respect to ε.

It is shown in [7] that an OID for an approximate Lie algebra can be obtained
from the condition

(8) [λDt, Xα] ≈ 0.

Furthermore, if the matrix
(
cγαβ

)
composed of the structure constants cγαβ of the

exact Lie algebra L4 (where α, β give the row number and γ is the column number),
satisfies the condition

(9) rg
(
cγαβ

)
< 4

then the factor λ of the OID can be found in the form

(10) λ = (Dt(Φ0 + εΦ1))
−1 ≈ DtΦ0 − εDtΦ1

(DtΦ0)
2 .

The functions Φ0, Φ1 are obtained as particular solutions to the corresponding
systems of inhomogeneous first-order partial differential equations

(11)
Π0 : X̂

(1)
α,(0)Φ0 = Kα,(0), α = 1, . . . , 4,

Π1 : X̂
(1)
α0,(0)

Φ1 + X̂
(1)
α0,(1)

Φ0 = Kα0,(1), α0 = 1, . . . , r0.

These systems are obtained from (8) after splitting with respect to ε and a single
integration. Methods for solving such systems require studying their completeness
and consistency (see, e.g., [10]). Since rgΛ(1)

4,(0) = 4, the subsystem Π0 is consistent
for allKα,(0). The subsystem Π0 is complete if the constantsKα,(0) satisfy the system
of algebraic equations

(12)
4∑

α=1

cαβγKα,(0) = 0, β, γ = 1, . . . , 4,

where cαβγ (α, β, γ = 1, . . . , 4) are the structure constants of the Lie algebra L4.
The subsystem Π1 is consistent at the solutions of Π0 if the rank of Π1 is equal
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to r0 (since rg∆(1)
r0,(0)

= r0) and complete if the constants Kα0,(1) satisfy the system
of inhomogeneous equations

(13)
r0∑

α0=1

cα0

β0γ0
Kα0,(1) = −

r0+r∑
σ=r0+1

cσβ0γ0
Kσ−r0,(0),

where cα0

β0γ0
, cσβ0γ0

, α0, β0, γ0 = 1, . . . , r0, σ = r0 + 1, . . . , r0 + 4, are the structure
constants of the subalgebra Lr0 and the structure constants of the approximate
Lie algebra L̃ (that do not coincide with the structure constants of Lr and Lr0)
respectively.

Consider the sum Φ0 + εΦ1, Φ0 ̸= const of the particular solutions Φ0 and Φ1.
By [7], this sum is an invariant of the approximate Lie algebra with three essential
operators which are linear combinations of operators (5) with the coefficients defined
by (12) and (13).

The obtained OID is further used for constructing an approximate first integral
of system (4) that is representable as (7). The main step of the proposed order
reduction algorithm of a system of ODE with a small parameter is constructing
an auxiliary system of differential relations connecting the differential invariants
of the admitted Lie algebra, their full derivatives, and also the full derivatives of
the constructed functions Φ0 and Φ1. This system can be regarded as a system
of equations in full differentials, i.e. a system of first-order ODE, and its general
solution gives an approximate first integral of the original system.

Remark. In the case of an unperturbed system of ODE, such an auxiliary system
consists only of one first-order ODE. Such an equation is constructed for system (6)
with four symmetries (see [4]) and for a system of rth-order ODE admitting an r-
dimensional Lie algebra (see [5]).

Let us now construct a system of first-order ODE connected with system (4).
All nonsolvable four-dimensional Lie algebras are decomposable, i.e. they are

representable as the direct sum of a three-dimensional simple Lie algebra and a
one-dimensional subalgebra (see [11]). Moreover, condition (9) holds. Hence, for
an approximate Lie algebra with four essential operators, there is always at least
one OID with coefficient (10). Consider the result of the action of this OID at the
invariants I, J1, . . . , J4−r0 of (7).

Applying the OID to I, we obtain the differential relation

(14)
DtΦ0 − εDtΦ1

(DtΦ0)
2 Dt

(
I(0) + εI(1)

)∣∣∣∣∣
(7)

= H0

(
I(0)
)
+ εH ′

0

(
I(0)
)
I(1) + εH1

(
I(0), J1,(0), . . . , J4−r0,(0)

)
.

Rewrite it in the form
DtI(0)

DtΦ0
−H0

(
I(0)
)

+ε

(
DtI(1)

DtΦ0
−
DtΦ1DtI(0)

(DtΦ0)
2 −H ′

0

(
I(0)
)
I(1) −H1

(
I(0), J1,(0), . . . , J4−r0,(0)

))
= 0.

One can show that this equation admits all the approximate operators Xα, α =
1, . . . , r. The proof of this assertion follows from the systems Ω0, Ω1, Π0, Π1, and
the identities (see [6])

Dt (XF )−X (DtF ) = DtξDtF.
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Applying the OID to Jk, we obtain

DtΦ0 − εDtΦ1

(DtΦ0)
2 Dt

(
εJk,(0)

)∣∣∣∣∣
(7)

≈ εQk

(
I(0), J1,(0), . . . , J4−r0,(0)

)
, k = 1, . . . , 4− r0.

These approximate equalities are equivalent to the system of differential relations

(15)
DtJk,(0)

DtΦ0

∣∣∣∣
(7)

= Qk

(
I(0), J1,(0), . . . , J4−r0,(0)

)
, k = 1, . . . , 4− r0.

It is easy to see that system (15) admits the operators Xα0,(0) generating the
subalgebra Lr0 .

In the next section, we will consider the solutions to the obtained system of the dif-
ferential relations (14) and (15) and the symmetries of these solutions.

4. Order Reduction for Systems of Two
Second-Order ODE with a Small Parameter

The general algorithm of order reduction for systems of ODE with a small
parameter is described in [7] and consists of the following steps:

(1) calculating the approximate symmetries admitted by the system of ODE;
(2) representing the system of ODE in terms of the differential invariants of an

admitted approximate Lie algebra;
(3) constructing an OID of the special form (Dt(Φ0 + εΦ1))

−1
Dt;

(4) applying the obtained OID to the invariants of the lower orders and getting
a system of first-order ODE;

(5) solving the obtained equations and constructing an approximate first integral
of the initial system;

(6) adding the so-obtained relation to the equations of the initial system and
excluding its differential consequences;

(7) repeating steps 3 – 6.
The fulillment of step 5 depends on the structure of the approximate Lie algebra of
the initial system, and passage from step 7 to steps 3-6 requires an additional study
of the symmetry properties of the reduced system. Let us examine the applicability
of this algorithm to second-order systems of ODE with a small parameter depending
on the structure of an admitted approximate Lie algebra L̃, i.e., on the structure
of the corresponding exact Lie algebra L4 and the dimension and structure of the
subalgebra Lr0 .

4.1. Case 1. Suppose that system (4) admits an approximate Lie algebra L̃ with
four essential operators, and that the operators Xα,(0), α = 1, . . . , 4, are stable with
respect to the perturbation under consideration. Then the invariant representation (7)
of system (4) does not contain “first-order” invariants, i.e., system (4) is representable
as

(16)

{
I12 = F0 (I) + εF1

(
I(0)
)
,

I22 = G0 (I) + εG1

(
I(0)
)
,

where I is a first-order differential invariant if rgΛ(0)
4 = 3 or an algebraic invariant

if rgΛ(0)
4 = 2.
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If the admitted approximate Lie algebra has an OID with factor (10) then an
auxiliary system consists of one first-order ODE

dI

(H0(I) + εH1(I))
≈ d (Φ0 + εΦ1) .

The general solution to this equation is a first integral of the initial system. Adding it
to the initial system of ODE and excluding its differential consequences, we obtain
a third-order system admitting an approximate Lie algebra with three essential
operators which are the “zeroth-order” with respect to ε.

If the exact Lie algebra L4 is nonsolvable then the reduced third-order system
admits an approximate Lie algebra with three essential operators, where L3 is
a simple Lie algebra, i.e., it does not contain any ideals except trivial ones. The above-
described procedure does not apply to this system, and no further reduction is
possible.

If the exact Lie algebra L4 is solvable then L3 is its solvable ideal, and we
can apply the above-described algorithm to the reduced system of equations and
obtain a second-order system with two stable essential symmetries. After repeating
the order reduction procedure, we obtain a first-order system with one stable
symmetry. Repeating the procedure once again, we obtain an approximate solution
to the initial system of ODE with a small parameter.

4.2. Case 2. Suppose that part of the essential operators of the approximate
Lie algebra L̃ admitted by (4) are “first-order” with respect to ε. 7 In this case,
of importance is the representability of exact Lie algebra L4 as a sequence of
embedded subalgebras

(17) Lr ⊃ Lr−1 ⊃ . . . ⊃ Lr0 , dim Lr−s/Lr−s−1 = 1,

In [15], the authors described all subalgebras for each four-dimensional Lie algebras.
An analysis of these results showed that, for any solvable Lie algebra L4 and any
its subalgebra Lr0 , one can construct a sequence (17) containing the subalgebra
Lr0 . For nonsolvable Lie algebras L4 such sequences do not always exist. In the
present work, we consider only systems of ODE where the exact Lie algebra L4

corresponding to the admitted approximate Lie algebra L̃ is solvable, and we use
the results of [15] for them.

Then system (4) is represented by differential invariants as (7), where J1,(0) is
the invariant of Lr0 . We can choose any other invariant Js,(0) as an invariant of
corresponding subalgebra Lr0+s−1 from (17).

Then system (15) can be reduced to the “triangular” form

(18)
DtJs,(0)

DtΦ0

∣∣∣∣
(7)

= Qk

(
I(0), J1,(0), . . . , Js,(0)

)
, s = 1, . . . , 4− r0,

which is invariant with respect to subalgebra Lr0+s−1.
For order reduction of system (4), study the relationship between the derived

algebra L′
4 and its subalgebras from (17). If an ideal N3 containing L′

4 coincides
with the subalgebra L3 in sequence (17) then reduced system of ODE also has r0
stable symmetries. If the idealN3 does not coincide with L3 in (17) then the reduced
system of ODE has r0 − 1 stable symmetries. Then the procedure is repeated, the
derived algebra L′

3 is considered. Thus, the algorithm enables us to reduce the
order of the original system r0 times or more provided that the derived algebra (or
the ideal containing it) is included in the sequence (17).
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In the present article, as an example, we consider the case where system (4)
admits an approximate Lie algebra with four essential operators, where three of
the four essential operators operators of the corresponding exact Lie algebra L4 are
stable and one is unstable, and L4. The remaining cases are examined similarly.

In this case, system (4) has the invariant representation{
I12 ≈ F(0) (I) + εF(1)

(
I(0), J1,(0)

)
,

I22 ≈ G(0) (I) + εG(1)

(
I(0), J1,(0)

)
.

(19)

Applying the OID to the invariants I and J1 and expanding the results in a series
in ε, we obtain the system

(20)



DtI(0)

DtΦ0
= H0

(
I(0)
)
,

DtI(1)

DtΦ0
−
DtI(0)

DtΦ0

DtΦ1

DtΦ0
= H ′

0

(
I(0)
)
I(1) +H1

(
I(0), J1,(0)

)
,

DtJ1,(0)

DtΦ0
= Q

(
I(0), J1,(0)

)
.

Here I(0) is a differential invariant of L4, J1,(0) is a differential invariant of the subal-
gebra L3 generated by stable operators, and Φ0 is a differential invariant of a three-
dimensional ideal N3 of L4.

Consider two cases separately: N3 coincides with L3 and it does not.

4.2.1. The Unstable Operator Is Not in L′
4. In this case N3, coincides with L3.

Then we can construct an OID such that J1,(0) = ψ(Φ0). Then system (20) has the
form 

dI(0)

dΦ0
= H0

(
I(0)
)
,

dS

dΦ0
= H ′

0

(
I(0)
)
S +H1

(
I(0), ψ(Φ0)

)
, S = I(1) −H0

(
I(0)
)
Φ1,

J1,(0) = ψ(Φ0).

The solution to this system of differential relations

W (I(0) + εI(1),Φ0 + εΦ1) = C1

is a first integral of the initial system, and C1 = C1,(0) + εC1,(1).
Adding the obtained first integral to the equations of the initial system of ODE

and excluding its differential consequences, we obtain a third-order system. It
admits the operators Xα,(0) + εXα,(1), α = 1, 2, 3, or their linear combinations. In
other words, the third-order system admits a Lie algebra with three stable essential
operators, and the corresponding exact Lie algebra L3 is solvable.

The described algorithm can be applied to the reduced system of equations to
obtain a second-order system with two stable essential symmetries

After repeating the order reduction procedure, we obtain a first-order system
with one stable symmetry.

Repeating the procedure once again, we obtain an approximate solution to the
original system of ODE with a small parameter.



612 A.A. GAINETDINOVA, R.K. GAZIZOV

4.2.2. The Unstable Operator Is in L′
4. In this case, system (20) has the form

dI(0)

dΦ0
= H0

(
I(0)
)
,

dS

dΦ0
= H ′

0

(
I(0)
)
S +H1

(
I(0), J1,(0)

)
, S = I(1) −H0

(
I(0)
)
Φ1,

dJ1,(0)

dI(0)
=
Q
(
I(0), J1,(0)

)
H0

(
I(0)
) .

The last equation of this system admits the operator

K1,(0)X1,(0) +K2,(0)X2,(0) +K3,(0)X3,(0),

and hence it can be integrated by quadratures. After that, we insert the solution
in the second equation and reduce this system to a system of two equations. The
solution to the resulting system of equations gives a first integral of the initial
system. Adding it to the equations of the system and removing the differential
consequences of this approximate first integral, we obtain the third-order system of
the form

(21)
{
I(0) + εI(1) = φ0(Φ0 +Φ1) + εφ1(Φ0),
I2,(0) + εI2,(1) = ψ0(Φ0 +Φ1) + εψ1(Φ0).

This system admits two “zeroth-order” operators Y1,(0)+εY1,(1), Y2,(0)+εY2,(1) and
one “first-order” operator εY3,(0). The operators Y1,(0), Y2,(0) Y3,(0) constitute a basis
in the ideal N3.

Repeating the above arguments, consider a two-dimensional ideal N2 containing
the derived algebra of the Lie algebra N3.

If N2 = ⟨Y1,(0), Y2,(0)⟩, as a result of applying the algorithm, we obtain a
second-order system with two stable essential symmetries. After repeating the order
reduction procedure, we obtain a first-order system with one stable symmetry. The
next application of the procedure gives an approximate solution to the initial system
of ODE with a small parameter.

If N2 = ⟨Y1,(0), Y3,(0)⟩, as a result of applying the algorithm we obtain a second-
order system that admits one stable operator Z1,(0) + εZ1,(1) and one unstable
operator εZ2,(0). If the derived algebra of the Lie algebra N2 contains no unstable
operator, then, after the order reduction procedure, we obtain a first-order system.
This system has one stable symmetry and hence, after repeating the procedure, we
can obtain an approximate solution to the original system of ODE with a small
parameter. If the derived algebra of N2 contains an unstable operator then the
first-order system obtained after the order reduction procedure has one unstable
symmetry. In this case, it is possible to obtain the solution only for the unperturbed
part of the equation.

Example. Consider the system of equations

(22)


ẍ =

ẋ2ẏ

x
+ ε

(
ẋ2(tẏ − y)

x
+ ẋ2ẏ − 2

ẋ

)
,

ÿ =
ẋ

x
eẏ − εẋ

x

(
teẏ − (tẏ − y)eẏ − ẏ

x

)
.
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This system admits the operators

X1 = (1 + εt)
∂

∂t
, X2 = εx

∂

∂x
, X3 = (1 + εt)

∂

∂y
,

X4 = (t+ εt2)
∂

∂t
+ (y + εty)

∂

∂y
.

These operators are essential for a six-dimensional approximate Lie algebra.
For the corresponding exact Lie algebra L4, there is a sequence of embedded

subalgebras:

L4 ⊃<X1,(0), X3,(0), X4,(0)>⊃<X1,(0), X3,(0)>⊃<X1,(0)> .

For an invariant representation of system (22), we use the invariants

I1 = ẏ + ε(tẏ − y), I12 =
xẍ+ 2εxẋ

ẋ2
, I22 =

xÿ + εtxÿ

ẋ
, I0 = εx.

Rewrite system (22) by means of an admitted approximate Lie algebra:
I12 ≈ I1 + εI1,(0)I0,(0),

I22 ≈ eI1 + ε
I1,(0)

I0,(0)
.

The function Φ for constructing an OID is obtained from the system

Φ0t = 0,
xΦ0x + ẋΦ0ẋ = K2,
Φ0y = 0,
tΦ0t + yΦ0y − ẋΦ0ẋ = K4,
Φ1t = 0,
Φ1y = 0,
tΦ1t + yΦ1y − ẋΦ1ẋ + t2Φ0t + tyΦ0y − 2tẋΦ0ẋ + (y + tẏ)Φ0ẏ = 1.

Let, for example, Φ0 = lnx, Φ1 = ln t. Note that Φ0 = ln I0,(0).

Applying the operator
x(tẋ− εx)

tẋ2
Dt to the invariant I1, we obtain

Dt(ẏ)

Dt lnx
= eẏ,

Dt(tẏ − y)

Dt lnx
= eẏ(tẏ − y) + ẏe− lnx.

Adding the solution to this system to the equations of the initial system (22) and
excluding its differential consequences, we obtain the reduced system I1 ≈ − ln (C1 − Φ0)− εH(Φ0), H(Φ0) =

1

C1 − Φ0

∫
(C1 − Φ0)e−Φ0 ln (C1 − Φ0)dΦ0,

I12 ≈ I1 − εe−Φ0 ln (C1 − Φ0),

which admits the operators X1, X3, and X4. This procedure can be repeated and
a solution to the initial system of ODE can be obtained. �
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5. Conclusion

In this article, we have shown that the application of the order reduction algorithm
to systems of two second-order ODE with a small parameter that admit approximate
Lie algebras with four essential operators gives an approximate solution to these
systems in the case when the corresponding exact four-dimensional Lie algebra is
solvable.

Applying the algorithm to higher-order systems requires an additional investigation
of the structure of an admitted approximate Lie algebra of operator L̃, i.e., of the struc-
ture of the corresponding exact Lie algebra L4 and also the dimension and structure
of the subalgebra Lr0 .
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