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Abstract. In the present paper, a composite structure is considered.
The structure is made of three homogeneous plates: two linear elastic
adherents and a thin adhesive. It is assumed that elastic properties of
the adhesive layer depend on its thickness ε as ε to the power of 3.
Passage to the limit as ε goes to zero is justified and a limit model is
found in which the influence of the thin adhesive layer is replaced by
an interface condition between adherents. As a result, we have analog of
the spring type condition in the plate theory. Moreover, a representation
formula of the solution in the adhesive layer has been obtained.

Keywords: bonded structure, Kirchhoff-Love’s plate, composite material,
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1. Introduction

The characterization of interface conditions between bonded elastic media is a
classical problem in solids mechanics (see, e.g., [1, 2, 3, 4]). This problem arises,
when composite material should be modelled. Due to small thickness of a glue
layer (or, so called, an adhesive) numerical computation of the solution of the
corresponding boundary value problem can be very difficult because it requires
fine meshes. In this situation, instead of the full model the approximate one with
the interface condition between adherents is introduced. Many interface conditions
are currently studied rather well from both mathematical and mechanical point
of view for different models of solids mechanics: linear and nonlinear elasticity,
piezoelectricity, magneto-electro-thermo-elasticity, delamination cracks (see, e.g.,
[5, 6, 7, 8, 9, 10, 11]).
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However, to our best knowledge, the problem of constructing an asymptotic
expansion for bonded Kirchhoff-Love’s plates has not been addressed in the existing
literature.

In the present work, we consider a composite structure consisting of two plates
glued together by a third one (adhesive layer) along some common interfaces. The
structure is in equilibrium under the action of applied forces and equilibrium of each
plates is described by biharmonic equations. The problem (case of pure bending)
is formulated as a variational one. Namely, we consider a minimization problem of
the energy functional over a set of admissible deflections of the composite plate in
the space H2 is considered (see, e.g., [12, 13]).

It is assumed that the elastic properties of the adhesive layer depend on its
thickness ε as ε3. ε is the small parameter of the problem. But the elastic properties
of the glued plates do not depend on ε and remain constants. The main goal of the
present paper is to strictly mathematically justify the passage to the limit when ε
tends to zero.

The result is a model in which the adhesive layer is replaced by conditions on
the interface of two adherent plates. By analogy with elasticity (see, e.g., [4, 5, 14]
we obtain the so-called spring-type condition, which for plates means that the
transverse forces acting on common interface are proportional to the jump of the
deflections of the plates.

2. Statement of the problem

Let Ω± ⊂ R2 be two disjoint domains with boundaries ∂Ω±. Denote by S =
∂Ω− ∩ ∂Ω+ the common part of boundaries of domains Ω± and assume that S
is an interval, laying on x2-axis, i.e., S = {(0, x2) ∈ R2 | x2 ∈ (a, b)}, a < b;
∂Ω± = ΓD± ∪ ΓN±, ΓD± ∩ ΓN± = ∅, and ΓD± ∩ S = ∅.

To put an adhesive rectangular layer of the thickness 2εd between the domains
Ω±, we shift the domains Ω± along the x1-axis by ±εd, respectively, i.e.,

Ωε± = {(y1, y2) ∈ R2 | y1 = x1 ± εd, y2 = x2, (x1, x2) ∈ Ω±}.
Here d is a global characteristic length (for example, diameter of the union Ω−∪

Ω+); ε > 0 is a small dimensionless parameter. Then an adhesive between Ω− and
Ω+ is described by

Ωεm = {(y1, y2) ∈ R2 | y1 ∈ (−εd, εd), y2 ∈ (a, b)}.
Let Sε± denote the common interfaces between the adherents Ωε± and the adhesive
Ωεm, i.e., Sε± = ∂Ωεm ∩ ∂Ωε±, where

Sε± = {(y1, y2) ∈ R2 | y1 = ±εd, y2 ∈ (a, b)}.
Let Ωε = Ωε−∪Ωε+∪Sε−∪Sε+∪Ωεm be a middle surface of the composite structure (a

heterogeneous plate), consisting of middle surfaces Ω± of two homogeneous plates,
which are glued together by the thin plate with a middle surface Ωεm. We assume
that the thickness of all plates is equal to h (see Fig. 1).

Let E±, Eεm and k±, km be Young’s modulus and Poisson’s ratio corresponding
to Ω±, Ωεm, respectively, such that E±, k±, and km are constant, while Young’s
modulus Eεm depends on ε as follows

Eεm = ε3Em,

where Em = const. It means that we deal with a soft adhesive.
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Fig. 1. Middle surface of the composite structure

We introduce the following notation for the bending stiffness

µ± =
E±h

3

12(1− k2
±)
, µεm = ε3µm

with µm = Emh
3

12(1−k2m) .
Let uε be deflections of Ωε. We prescribe the homogeneous Dirichlet conditions

on ΓεD± ⊂ ∂Ωε, where

ΓεD± = {(y1, y2) ∈ R2 | y1 = x1 ± εd, y2 = x2, (x1, x2) ∈ ΓD±}
. We assume that the composite plate is in equilibrium under acting of an external
force f ∈ L2(Ωε) such that f = 0 a.e. in Ωεm.

Let us denote by µε the bending stiffness and by k the Poisson ratio of the
composite plate, where µε = µ± and k = k± in Ωε±, and µε = µεm and k = km in
Ωεm.

We will formulate the equilibrium problem of the composite plate with the middle
surface Ωε as a variational problem. Let us define a Sobolev space

H2,0(Ωε) = {v ∈ H2(Ωε) | v =
∂v

∂n
= 0 on ΓεD±};

the energy functional

Π(v) =
1

2
Bε(v, v)− l(v)

with

Bε(v, w) =

∫
Ωε

µε(v,11w,11 + v,22w,22 + k(v,11w,22 + v,22w,11) + 2(1− k)v,12w,12) dy,

l(v) =

∫
Ωε

fv dy.

Then the equilibrium problem is as follows: find a function uε ∈ H2,0(Ωε) such
that

(1) Π(uε) = inf
v∈H2,0(Ωε)

Π(v),
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or, equivalently,

(2) Bε(uε, v) = l(v) ∀v ∈ H2,0(Ωε).

3. Decomposition of problem (1)

Let us reformulate problem (1) in an equivalent form. Namely, we decompose
it into three subproblems defined in domains Ωε±, Ωεm and connected along the
common interfaces Sε±. Let us introduce a set

Kε = {(v−, v+, vm) ∈ H2,0(Ωε−)×H2,0(Ωε+)×H2(Ωεm) | v± = vm,

∂v±
∂n

=
∂vm
∂n

on Sε±, }

where
H2,0(Ωε±) = {v± ∈ H2(Ωε±) | v± =

∂v±
∂n

= 0 on ΓεD±};

and define bilinear forms

bε±(v±, u±) = µ±

∫
Ωε

±

(v,11w,11 + v,22w,22 + k±(v,11w,22 + v,22w,11)+

+ 2(1− k±)v,12w,12) dy,

bεm(vm, um) = µm

∫
Ωε

m

(v,11w,11 + v,22w,22 + km(v,11w,22 + v,22w,11)+

+ 2(1− km)v,12w,12) dy.

Then the problem (2) can be reformulate equivalently as follows: find a triplet
(uε−, uε+, vεm) ∈ Kε such that

(3) bε−(uε−, v−) + bε+(uε+, v+) + ε3bεm(uεm, vm) = lε−(v−) + lε+(v+)

∀(v−, v+, vm) ∈ Kε,

where
lε±(v±) =

∫
Ωε

±

fε±v± dy,

and fε± is the restriction of the function f on domains Ωε±, respectively.

4. Rescaling and asymptotic expansions

We change coordinates in each domains Ωε± and Ωεm to obtain domains which are
independent of ε. Namely, we consider the following coordinate transformations:

(4) x1 = y1 ∓ εd, x2 = y2, (x1, x2) ∈ Ω±, (y1, y2) ∈ Ωε±,

(5) z1 =
y1

ε
, z2 = y2, (z1, z2) ∈ Ωm, (y1, y2) ∈ Ωεm,

where
Ωm = {(z1, z2) ∈ R2 | z1 ∈ (−d, d), z2 ∈ (a, b)}.

Denote by
S±m = {(z1, z2) ∈ R2 | z1 = ±d, z2 ∈ (a, b)},
Sam = {(z1, z2) ∈ R2 | z1 ∈ (−d, d) z2 = a},
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Sbm = {(z1, z2) ∈ R2 | z1 ∈ (−d, d) z2 = b}
parts of ∂Ωm of the domain Ωm, i.e., ∂Ωm = S− ∪ S+ ∪ Sam ∪ Sbm.

The advantage of decomposing the problem is that we have after coordinate
transformations domains which are independent of ε unlike, for example, [4], where
adherents was shifted from the adhesive by the distance εd.

Note that the coordinate transformations (4) and (5) are smooth and one-to-one
for all ε > 0. It implies one-to-one correspondence between H2,0(Ωε±), H2(Ωεm) and
H2,0(Ω±), H2(Ωm), respectively. Moreover, the set of admissible deflections Kε is
one-to-one transformed into a set Kε, where

Kε = {(v−, v+, vm) ∈ H2,0(Ω−)×H2,0(Ω+)×H2(Ωm) | v±|S = vm|S±
m
,

v±,1|S =
1

ε
vm,1|S±

m
}.

Hereinafter, we assume that for any functions v±(x), x ∈ Ω±, and vm(z), z ∈ Ωm,
equality v±|S = vm|S±

m
means that

v±(0, x2) = vm(±d, z2), x2 = z2 ∈ (a, b).

Apply coordinate transformations to integrals in (3). As a result we have that a
triple Uε = (uε−, u

ε
+, u

ε
m) ∈ Kε is a solution of the following variational equality

(6) b−(uε−, v−) + b+(uε+, v+) +Bεm(umε , vm) = l−(v−) + l+(v+)

∀V = (v−, v+, vm) ∈ Kε

where
uε±(x1, x2) = uε±(x1 ± εd, x2), uεm(z1, z2) = uεm(εz1, z2),

Bεm(v, w) = µm

∫
Ωm

(
v,11w,11 + ε4v,22w,22 + ε2km(v,11w,22 + v,22w,11) +

+2(1− km)ε2v,12w,12

)
dz,

l±(v±) =

∫
Ω±

fε±v± dx, fε±(x1, x2) = f±(x1 ± εd, x2).

We will need several auxiliary statements.

Lemma 1. For any function vm ∈ H1(Ωm) the following inequalities

(7) ‖vm‖2L2(Ωm) ≤ C
(
‖vm,1‖2L2(Ωm) + ‖vm‖2L2(S±

m)

)
hold, where a constant C does not depend on vm.

Proof. This results from some direct integrations along x1-axis in the domain Ωm.
�

Corollary 1. For any function vm ∈ H2(Ωm) the followings inequalities

(8) ‖vm,1‖2L2(Ωm) ≤ C
(
‖vm,11‖2L2(Ωm) + ‖vm,1‖2L2(S±

m)

)
,

(9) ‖vm‖2L2(Ωm) ≤ C
(
‖vm,11‖2L2(Ωm) + ‖vm,1‖2L2(S±

m)
+ ‖vm‖2L2(S±

m)

)
hold, where a constant C does not depend on vm.
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Proof. Inequality (8) results from inequality (7) for function vm,1 ∈ H1(Ωm). In
turn, (9) follows from (7) and (8). �

Corollary 2. For any function V = (v−, v+, vm) ∈ Kε and ε ∈ (0, 1) the followings
inequalities

(10) ‖vm,1‖2L2(Ωm) + ‖vm‖2L2(Ωm) ≤ C
(
‖vm,11‖2L2(Ωm) + ‖v±‖2H2,0(Ω±)

)
hold, where a constant C does not depend on V and ε > 0.

Proof. Adding (8) and (9) and taking into account the continuity of the trace
operator, we obtain (10) for all ε ∈ (0, 1). �

Now we introduce a set

K = {(v−, v+, vm) ∈ H2,0(Ω−)×H2,0(Ω+)×H2(Ωm) | vm,1|S±
m

= 0, vm|S±
m

= v±|S}
and prove the following lemma.

Lemma 2. For any function V = (v−, v+, vm) ∈ K there exists V ε = (vε−, v
ε
+, v

ε
m) ∈

Kε such that

(11) V ε → V strongly in H2,0(Ω−)×H2,0(Ω+)×H2(Ωm).

Proof. Let us construct an extension of functions defined on S±m in the nonsmooth
domain Ωm. Take any bounded domain Ω̃m with a smooth boundary ∂Ω̃m such
that Ωm ⊂ Ω̃m and ∂Ω̃m \ ∂(Ω̃m \ Ωm) = S−m ∪ S+

m.
Take a function v± ∈ H2,0(Ω±) and fix ε > 0. Further we extend restrictions

of functions ±v±,1 ∈ H1/2(S±m) on whole the boundary ∂Ω̃m (for instance, solving
the mixed boundary value problem for the Laplace operator with the Dirichlet
conditions ±v±,1 on S±m and homogeneous Neumann conditions on ∂Ω̃\(S−m∪S+

m)).
Denote this extension by q ∈ H1/2(∂Ω̃m).

Next, in the smooth domain Ω̃m we consider рассмотрим the following mixed
boundary value problem for bilaplacian:

∆2p = 0 in Ω̃m,

p = 0 on ∂Ω̃m,

∂p

∂n
= q on ∂Ω̃m,

where n is a unit normal vector to ∂Ω̃m. Due to the definition q note that
∂p

∂n
= ±p,1 = ±v±,1 on S±m.

At last, denote by ϕm ∈ H2(Ωm) a restriction of p to the domain Ωm. Note that
the function ϕm satisfies the following conditions:

(12) ϕm = 0 a.e. on S±m,

(13) ϕm,1 = v±,1 a.e. on S±m.

Finally, for the function V ∈ K we put

V ε = (v−, v+, vm + εϕm).

It is obviously that due to (12), (13) the function V ε belongs to the set Kε and
convergence (11) holds. �
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Lemma 3. Assume that for some i, j = 1, 2 the following convergences
uεm → um weakly in L2(Ωm),

uεm,i → pi weakly in L2(Ωm),

uεm,ij → qij weakly in L2(Ωm)

hold as ε→ 0 . Then pi = um,i, qij = um,ij a.e. in Ωm.

Proof. Let us consider a relation∫
Ωm

uεmϕ,ij dz =

∫
Ωm

uεm,ijϕdz

which is valid for all ϕ ∈ C∞0 (Ωm). Passing to the limit in this relation as ε → 0
we have the following one∫

Ωm

umϕ,ij dz =

∫
Ωm

qijϕdz ∀ϕ ∈ C∞0 (Ωm).

It implies that qij = um,ij a.e. in Ωm. Using similar reasoning, we can show that
pi = um,i a.e. in Ωm. �

Lemma 4. Assume that for α > 0, β > 0, and for i, j = 1, 2 the following
convergences

uεm → um weakly in L2(Ωm),

εαuεm,i → pi weakly in L2(Ωm),

εβuεm,ij → qij weakly in L2(Ωm)

hold as ε→ 0 . Then pi = 0, qij = 0 a.e. in Ωm.

Proof. Again let us consider the relation∫
Ωm

uεmϕ,ij dz =

∫
Ωm

uεm,ijϕdz

which is valid for all ϕ ∈ C∞0 (Ωm). Multiplying this relation by εβ and passing to
the limit as ε→ 0 we have the following relation

0 =

∫
Ωm

qϕ dz ∀ϕ ∈ C∞0 (Ωm).

It implies that q = 0 a.e. in Ωm. Using similar reasoning, we can show that p = 0
a.e. in Ωm. �

5. Limit problem

Now we are ready to justify the passage to the limit as ε→ 0. Let us substitute
Uε = (uε−, u

ε
+, u

ε
m) in (6) as test functions. As a result, we get the following estimate:

(14) ‖uε−‖2H2,0(Ω−) + ‖uε+‖2H2,0(Ω+) + ‖uεm,11‖2L2(Ωm)+

+ ‖εuεm,12‖2L2(Ωm) + ‖ε2uεm,22‖2L2(Ωm) ≤ C,
where by C we denote, as usual, a positive constant which is independent of ε.
Moreover, due to (14) and Corollary 1 we have

(15) ‖uεm‖2L2(Ωm) + ‖uεm,1‖2L2(Ωm) ≤ C.
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The inequalities (14), (15), and Corollary 2 imply that there exists subsequences
and functions u±, um, p, q such that

uε± → u± weakly in H2,0(Ω±),

uεm → um weakly in L2(Ωm),

uεm,1 → um,1 weakly in L2(Ωm),

uεm,11 → um,11 weakly in L2(Ωm),

εuεm,12 → p weakly in L2(Ωm),

ε2uεm,22 → q weakly in L2(Ωm).

(16)

Note that from definition of the set Kε it follows

(17) um,1 = 0 a.e. on S±m,

(18) um|S±
m

= u±|S .

Theorem 1. Let U = (u−, u+, um) be the limit function from (16). Then

um,11(z1, z2) = −3(u+(0, z2)− u−(0, z2))

2d3
z1 a.e. in Ωm.

Proof. Take ϕ ∈ C∞0 (Ωm) and substitute (0, 0, ϕ) ∈ Kε in (6) as a test function.
As a result, we have ∫

Ωm

um,11ϕ,11dz = 0 ∀ϕ ∈ C∞0 (Ωm).

It means that there exist two function α(z2) and β(z2) such that

(19) um,11(z1, z2) = α(z2)z1 + β(z2) a.e. in Ωm.

Find functions α and β. On the one hand, due to (17) we have
d∫
−d

um,11(z1, z2) dz1 = 0 a.e. on (a, b).

On the other hand, from (19) we get
d∫
−d

(α(z2)z1 + β(z2)) dz1 = 2dβ(z2) a.e. on (a, b).

Thus, we get
β(z2) = 0 a.e. on (a, b).

In virtue of (17) we have
d∫
−d

u2
m,11(z1, z2) dz1 =

d∫
−d

α(z2)z1um,11(z1, z2) dz1 = −α(z2)(um(d, z2)−um(−d, z2))

a.e. on (a, b). In the same time
d∫
−d

u2
m,11(z1, z2) dz1 =

d∫
−d

(α(z2)z1)2 dz1 =
2

3
α2(z2)d3
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a.e. on (a, b).
Thus, the following relation

2

3
α2(z2)d3 = −α(z2)(um(d, z2)− um(−d, z2))

holds.
Let us assume that for some point z̄2 ∈ (a, b) the function α(z̄2) is not equal to

zero; then due to (18)

α(z̄2) = −3(u+(0, z̄2)− u−(0, z̄2))

2d3

Now suppose that there exists a set Z2 ⊂ (a, b) of nonzero measure such that
α(z2) = 0 for all z2 ∈ Z2. Then um,11(z1, z2) = 0 a.e. in (−d, d)×Z2. It means that
there exist functions γ(z2) and δ(z2) such that um(z1, z2) = γ(z2)z1 + δ(z2) a.e. in
(−d, d) × Z2. Due to (17), γ(z2) = 0 a.e. in Z2. In virtue of (18), 0 = um(d, z2) −
um(−d, z2) = u+(0, x2) − u−(0, x2). Thus, we have the following condition: if
α(z2) = 0 then u+(0, x2)− u−(0, x2) = 0. �

Introduce a space K0, where

K0 = {V = (v−, v+, vm) ∈ H2,0(Ω−)×H2,0(Ω+)× L2(Ωm) |
vm,1 ∈ L2(Ωm), vm,11 ∈ L2(Ωm), vm,1 = 0 a.e. on S±m, vm|S±

m
= v±|S},

endowed with a norm

‖V ‖2K0
= ‖v−‖2H2,0(Ω−)+‖v+‖2H2,0(Ω+)+‖vm‖

2
L2(Ωm)+‖vm,1‖

2
L2(Ωm)+‖vm,11‖2L2(Ωm).

Note that in virtue of Corollary 2 the norm ‖ · ‖K0
is equivalent to | · |K0

, where

|V |2K0
= ‖v−‖2H2,0(Ω−) + ‖v+‖2H2,0(Ω+) + ‖vm,11‖2L2(Ωm).

Theorem 2. Let Uε = (uε−, u
ε
+, u

ε
m) be the solution of (6). Let U = (u−, u+, um) ∈

K0 be a solution the following variational equality:

(20) b−(u−, v−) + b+(u+, v+) + µm

∫
Ωm

um,11vm,11 dz =

∫
Ω−

f−v− dz +

∫
Ω+

f+v+ dz

for all V ∈ K0. Then

Uε → U weakly in K0.

Proof. Let V ∈ K be an arbitrary function. Due to the Lemma 2 for ε > 0 there
exists V ε ∈ Kε strongly convergences to V in H2,0(Ω−) × H2,0(Ω+) × H2(Ωm).
Substitute V ε in the variational equality (6) and pass to the limit as ε→ 0. Taking
into account (16) and the fact that K is dense in K0, we get (20). �

Now we reformulate problem (20) in an equivalent form, which does not contain
the function um and find the representation formula for um. Namely, the following
theorem holds.
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Theorem 3. Let U = (u−, u+, um) be a solution of (20). Then (u−, u+) is a
solution to the following variational problem:

(21) b−(u−, v−) + b+(u+, v+) +
3µm
2d3

∫
S

(u+ − u−)(v+ − v−) ds =

=

∫
Ω−

f−v− dz +

∫
Ω+

f+v+ dz

for all (u−, u+) ∈ H2,0(Ω−)×H2,0(Ω+). Moreover, the following formula

(22) um(z1, z2) = −u+(0, z2)− u−(0, z2)

4d3
z3

1 +
3(u+(0, z2)− u−(0, z2))

4d
z1+

+
u+(0, z2) + u−(0, z2)

2
a.e. in Ωm

holds.

Proof. Since U ∈ K0, due to the Theorem 1 for any v ∈ K0 we have∫
Ωm

um,11vm,11 dz =
3

2d3

∫
S

(u+(0, z2)− u−(0, z2))(v+(0, z2)− v−(0, z2)) dz2.

The formula (22) it follows from Theorem 1 and properties (17) and (18). �

Assuming that the solution (u−, u+) of (21) has additional regularity, by applying
the generalized Green formula, we are about to deduce the following differential
equations and boundary conditions for the functions u− and u+:

µ±∆2u± = f± in Ω±,

u± =
∂u±
∂n

= 0 on ΓD±,

m(u±) = t(u±) = 0 on ΓN±,

m(u±) = 0, t(u±) +
3µm
2d3

(u+ − u−) = 0 on S,

(23)

where

m(u±) = µ±

(
k±∆u±+(1−k±)

∂2u±
∂ν2

)
and t(u±) = µ±

∂

∂ν

(
∆u±+(1−k±)

∂2u±
∂τ2

)
.

are bending moment and transverse force, respectively.
Note that the last condition in (23) is an analog of spring type interface condition

which is widely used in elasticity and means that the transverse forces on the
common interface of adherents are proportional to the jump of deflections. This
explains the choice of the dependence of the elastic properties of the adhesive layer
on ε as ε3.
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