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Abstract. We study the class of all prime strongly constructivizable
models of algorithmic dimension 1 in a fixed finite rich signature. It
is proved that the Tarski-Lindenbaum algebra of this class considered
together with a Gödel numbering of the sentences is a Boolean Π0

3-
algebra whose computable ultrafilters form a dense subset in the set
of all ultrafilters; moreover, this algebra is universal with respect to the
class of Boolean Σ0

2-algebras whose computable ultrafilters represent a
dense subset in the set of arbitrary ultrafilters in the algebra. This gives
a characterization to the Tarski-Lindenbaum algebra of the class of all
prime strongly constructivizable models of algorithmic dimension 1 in a
fixed finite rich signature.
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Algorithmic complexity estimates of elementary theories of some semantic classes
of models have been studied in [1], [2], [3], and [4]. Furthermore, in these works, we
initiate investigations on the problem of characterization of the Tarski-Lindenbaum
algebras of some most interesting semantic classes of models. In particular, the
paper [3] establishes algorithmic complexity of the Tarski-Lindenbaum algebra of
the class of all strongly constructive prime models. In this work, we describe the
Tarski-Lindenbaum algebra of the class of all strongly constructive prime models
of algorithmic dimension 1.
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We consider theories in first-order predicate logic with equality and use general
concepts of model theory, algorithm theory, constructive models, and Boolean
algebras found in [5], [6], and [7]. Generally, incomplete theories are considered.
In the work, the signatures are considered only, which admit Gödel’s numberings
of the formulas. Such a signature is called enumerable.

A finite signature is called rich, if it contains at least one n-ary predicate or
function symbol for n>1, or two unary function symbols. The following notations
are used: FL(σ) is the set of all formulas of signature σ, SL(σ) is the set of all
sentences (i.e., closed formulas) of signature σ. In the work, we use a finite rich
signature σ, and consider a fixed Gödel numbering Φi, i ∈ N, of the set SL(σ). A
theory F is called finitely axiomatizable if it is defined by a finite set of axioms, and
its signature is finite. Generally, incomplete theories are considered.

Let T be a theory of signature σ. On the set of sentences SL(σ), an equivalence
relation ∼T is defined by the rule Φ ∼T Ψ ⇔ T ⊢ (Φ ↔ Ψ). The logical
connectives ∨, & , and q generate Boolean operations ∪, ∩, and − on the quotient
set SL(σ)/ ∼T ; One can easily check that, these operations are well-defined on the
∼T -classes. Thereby, we obtain an algebra of the form

L(T ) =
(
SL(σ)/ ∼T ; ∪,∩,−,0,1

)
,

that, in fact, is a Boolean algebra. It is called the Tarski-Lindenbaum algebra of
the theory T . By L(T ), we denote the Tarski-Lindenbaum algebra L(T ) considered
together with a Gödel numbering γ; thereby, the concept of a computable isomorphism
is applicable to such objects. For a class of models M , we write briefly L(M) instead
of L

(
Th(M)

)
.

The set of all finite tuples α of the form α = ⟨α0, α1, . . ., αn⟩, αi ∈ {0, 1}, is
denoted by 2<ω. The empty tuple is denoted by ∅. The canonical (Gödel) index of
a finite tuple of zeros and ones of the form ε = ⟨ε0, ε1, . . . , εn−1⟩, εi ∈ {0, 1}, is the
number Nom(ε) = 2n + ε02

n−1 + ε12
n−2 + . . .+ εn−1 − 1. Obviously, the following

relation is satisfied:

(0.1) Len(ε) < Len(ε′) ⇒ Nom(ε) < Nom(ε′), for all ε, ε′ ∈ 2<ω.

We often write shortly ⟨ε⟩ instead of Nom(ε).
We consider Boolean algebras in the signature σ

BA
= {∪,∩,−,0,1}. Besides,

we consider two following binary relations, which are first-order definable in the
theory of Boolean algebras by formulas a ⊆ b ⇔ (a ∩ b = a), a ⊇ b ⇔ (a ∩ b = b).
Let B be a Boolean algebra, and a ∈ B. By B[a], we denote the restriction of the
Boolean algebra B on the set of all subelements of the element a ∈ B counting that
1 = a and −x is defined as arx in B[a]. If b is an element of a Boolean algebra and
α ∈ {0, 1}, then bα means b for α = 1 and −b for α = 0. Similarly, if Φ is a formula
and α ∈ {0, 1}, then Φα means Φ for α = 1 and qΦ for α = 0. We use the notation
P(A) for the power-set of A, and Card(A) for cardinality of the set A.

A model N is said to be strongly constructivizable if it has at least one strong
constructivization. The model N has algorithmic dimension 1, symbolically

dims.c.(N) = 1,

if N is strongly constructivizable and any two strong constructivizations ν1 and ν2
of N are equivalent; i.e, the numerated models (N, ν1) and (N, ν2) are constructively
isomorphic, written: (N, ν1) ∼= (N, ν2). The model N has algorithmic dimension ω,



TARSKI-LINDENBAUM ALGEBRA 915

symbolically dims.c.(N) = ω, if there is an infinite sequence of strong constructivi-
zations of this model νi, i < ω, such that any two models in the sequence (N, νi),
i < ω, are not constructively isomorphic. In [8], it is shown that the case of any
finite dimension dims.c.(N) = n, 1 < n < ω, is impossible.

Definition of the concept of a compact binary tree can be found in the work
[1, Sec, 2.1]. In the work, we use a more specialized term compact binary trees for
them. An element n of a compact binary tree D such that L(n) ̸∈ D is called a
dead end of the tree D. The set of all dead-end elements of a tree D is denoted by
Dend(D). A tree is called atomic if above each of its elements, there is at least one
dead-end element. If D is a compact binary tree, we denote by Π(D) the set of all
maximal chains, while Πfin(D) denotes the set of all maximal finite chains in the
tree D. A notation ’rank’ stands for ranks of separate chains in a tree, while ’Rank’
means rank of the tree itself, i.e., supremum of ranks of its maximal chains.

Following Rogers, [6], we use the notation Wn for nth computably enumerable
set in Post’s numbering of the family of all c.e. sets. Moreover, we denote by W t

n

a finite part of the set Wn that can be computed in t steps. By Dn, we denote
the closure of the set Wn up to a compact binary tree; and DX

n is the closure
of the set WX

n up to a compact binary tree, where Wn denotes the computably
enumerable set with c.e. index n, while WX

n denotes the computably enumerable
set with c.e. index n relative to computability with an oracle X ⊆ N, cf. [6]. It can
be easily checked that the tree Dn is computably enumerable, while the tree DX

n is
computably enumerable with oracle X; moreover, each c.e. tree is presented in the
sequence Dn, n ∈ N, and each c.e. tree in computation with oracle X is presented
in the sequence DX

n , n ∈ N. The number n is considered as a c.e. index for the tree
Dn, and n is considered as a c.e. index for the tree DX

n considered in computability
with an oracle X.

We denote by Pi a table condition with the Gödel number n, n ∈ N; A |= Pi,
means that the table condition is satisfied in the set A, A ⊆ N. The set

Ω(m) = {A ⊆ N | (∀i ∈ Wm)A |= Pi},

is called the parametric Stone space with an index m;
Main statement on the canonical construction of finitely axiomatizable theories

can be found in [1,Th. 3.1.1]. Its part involved in construction of this work states
the following:

Statement 0.1. Effectively in a pair of integers (m, s) and a finite rich signature σ,
it is possible to construct a finitely axiomatizable theory F = FC(m, s, σ) of signature
σ together with an effective sequence θn, n ∈ N, of sentences of the signature σ such
that the family of extensions of F defined by

(0.2) F [A] = F ∪ {θi|i ∈ A} ∪ {q θj |j ∈ NrA}, A ⊆ N,

satisfies the following properties:

(A) for any A ⊆ N, the theory F [A] is either complete or contradictory;
(B) the theory F [A], A ⊆ N, is consistent if and only if A ∈ Ω(m);
(C) for an arbitrary A ∈ Ω(m), the following statements are satisfied :

(a) theory F [A] has a prime model if and only if the tree DA
s is atomic,

(b) a prime model of the theory F [A], if it exists, is strongly constructivizable
if and only if the set A is computable and the family of chains Πfin(DA

s ) is
computable,
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(c) a prime model of the theory F [A], if it exists and is strongly constructivizable,
has algorithmic dimension 1 if and only if the tree DA

s is computable; otherwise,
the model has algorithmic dimension ω.

Finally, we formulate a technical statement.

Lemma 0.2. Given a set X ⊆ N that is considered as an oracle. For an arbitrary
numerated Boolean ΣX

1 -algebra (B, ν), there is a numeration υ of B such that (B, υ)
is a Boolean ΣX

1 -algebra whose computable ultrafilters form a dense set in the set
of all ultrafilters of the algebra (B, υ).

Proof. See Lemma 2 in [4]. �

1. Main Claim

Hereafter, we fix a finite rich signature σ. We denote by P (σ) the class of
all prime models of signature σ, and by P 1

s.c(σ), the class of all prime strongly
constructivizable models of algorithmic dimension 1 signature σ.

Theorem 1.1. The following assertions hold :
(a) L(P 1

s.c(σ)) is a Boolean Π0
3-algebra with respect to its Gödel numbering,

(b) computable ultrafilters of L(P 1
s.c(σ)) represent a dense set among arbitrary

ultrafilters in the algebra,
(c) there is a numbering υ such that (L(P 1

s.c(σ)), υ) is a Boolean Σ0
2-algebra,

(d) for an arbitrary Boolean Σ0
2-algebra (B, ν) whose computable ultrafilters represent

a dense set in the set of all ultrafilters, there is a sentence Φ of signature σ, such
that (B, ν) ∼=

(
L
(
Th(Mod(Φ) ∩ P 1

s.c(σ))
)
, γ

)
, where γ is a Gödel numbering of the

sentences of signature σ,
(e) for an arbitrary Boolean Σ0

2-algebra (B, ν), there is a sentence Φ of signature
σ, such that (B, ν) ∼=

(
L
(
Th(Mod(Φ)∩P 1

s.c(σ))
)
, γ

)
, where γ is a Gödel numbering

of the sentences of signature σ.

Proof. Due to Goncharov and Harrington, [9], [10], we have that a prime model
N of a complete decidable theory T is strongly constructivizable if and only if the
family of principal types realized in N is computable. Moreover, the prime model
N has algorithmic dimension 1 if and only if there is a computably enumerable
set A presenting the family A of formulas generating principal types in N (by
construction, complement of A is a c.e. set, thus, the set A itself turns out to be
computable).

From this, we obtain that, a sentence Ψ of signature σ has a strongly constructivizable
prime model of algorithmic dimension 1 if and only if there exist integers m, n, p,
satisfying the following properties:

1. Wm ∩Wn = ∅ & Wm ∪Wn = N, ∀ & ∀∃
2. T = {Φi | i ∈ Wm} is a complete theory, ∀∃
3. Ψ ∈ T , ∃
4. (∀ i ∈ Wp) φi(x̄) is a consistent in T formula, ∀∃
5. (∀ i ∈ Wp) φi(x̄) is an atomic in T formula, ∀∃
6. (∀ j)

(
T ⊢ q (∃x̄)φj(x̄) or (∃ i ∈ Wp) [T ⊢ φi(x̄) → φj(x̄) ]

)
. ∀∃
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Thus, we obtain a prefix ∃∀∃ for this condition. Finally, sentences Φ and Ψ are
equivalent on the class P 1

s.c if and only if (Φ& qΨ)∨ (Ψ & qΦ) does not have a model
in this class. This gives the required prefix ∀∃∀ for (a).

Let T be an arbitrary complete theory extending Th(P 1
s.c), and Ψ be a sentence

provable in T . Obviously, Ψ has a model N ∈ P 1
s.c. From this, we have that complete

decidable theory T ′ = Th(N) presenting a computable ultrafilter in St(Th(P 1
s.c)) is

found in the neighborhood Ψ in the given arbitrary ultrafilter T of the Stone space.
This gives the required density property posed in (b).

Part (c) is a corollary of (a) due to [11, Sec.2, Th.1, Th.2].
Consider a numerated Boolean Σ0

2-algebra (B, ν). By Lemma 0.2, there is a
numeration ν′ of B such that (B, ν′) is a Boolean Σ0

2-algebra whose computable
ultrafilters represent a dense set within the set of all ultrafilters in the algebra. This
establishes implication (d)⇒(e).

Proof of Part (d) is considered in Sections 2-3.

2. A technical statement

By K, we denote a fixed c.e. set, which is not computable. In further consideration,
we use the following set

(2.1) A2 = {n | Wn is infinite },

which is Π0
2-complete, cf. [6, Ch.13, Th.VIII].

In a parallel way, we also use its complement E2 = NrA2, which is a Σ0
2-complete

set.

Lemma 2.1. There is a total computable operator Θ : N → N satisfying the
following properties:

(a) D = Θ(X) is an atomic tree, for all X ⊆ N.
(b) D = Θ(X) is a computably enumerable tree, if the set X ⊆ N is computable.
(c) For any computable X ⊆ N, the family Πfin(D), D = Θ(X), is computable.
(d) For any computable X ⊆ N, the tree D = Θ(X) is computable if and only if

(∀k)[k ∈ X ⇒ Wn is infinite ] .

Proof. Consider a tree D∗ of Rank 3 depicted in Fig. 1. The tree includes the most-
right chain {Ri(0) | i < ω} having rank 2 together with a sequence of infinite chains
π∗
m = {Ri(0) | 0 6 i < m} ∪ {RmLj(0) | j < ω} each having rank 1. The other

chains in the tree D∗ are finite; i.e., they have rank 0.
The tree D∗ has a series of families of dead-end elements

(2.2) Bn = {RLi+1Rn(0) | 1 6 i < ω}, n = 0, 1, 2, ... ,

playing an important role in our construction.
We define a tree Θ(X) depending on an input parameter X ⊆ N as follows:

(2.3) Θ(X) = D∗ ∪
∪
n<ω

{L(a), R(a) | a = RLi+1Rn(0), i ∈ Hn},

where

(2.4) Hn =

{
∅, if n ̸∈ X,

K ∪ {k | (∃t < ω)[k < Card(W t
n)]}, if n ∈ X.
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Obviously, the set Hn is computably enumerable uniformly in n, whenever X is
a fixed computable set. The following properties are satisfied:

(2.5) (a) if n ̸∈ X, then Hn = ∅,

(b) if n ∈ X &n ∈ A2, then Hn = N,
(c) if n ∈ X &n ̸∈ A2, then Hn = K ∪ {0, 1, ..., t}, for some t < ω,

Indeed, in the case n ̸∈ X, we have Hn = ∅ by definition. In the case n ∈ X
and n ∈ A2, the set Wn is infinite ensuring that Card(W t

n) gets arbitrarily large
values whenever t → ∞. Thus, we have Hn = N in this case. In the case n ∈ X and
n ̸∈ A2, the set Wn is finite ensuring that Card(W t

n) is limited whenever t → ∞.
Thus, we have in this case Hn = K∪Z, where Z is a finite set of the form {0, 1, ..., t}
for some t < ω.

Fig. 1. The tree D∗, a standard tree of Rank 3

Main aim of the construction is to map each set Hn, cf. (2.4), onto successive
elements of family Bn in the tree D∗. In the case when an element a ∈ Hn is mapped
on a dead-end element a ∈ Bn, we add to the tree a pair of new elements L(a) and
R(a), cf. Fig. 2.

We are going to check requirements of Lemma 2.1.
(a) The tree D plays the role of a framework in our construction. For some

dead-end elements a in D∗, we add their successors L(a) and R(a) to the tree. This
ensures that the target tree Θ(X) is atomic.

(b) Immediately, from construction.
(c) The set of elements under the mapping represents a computably enumerable

family of dead-end elements a of the framework tree D∗. By construction, we add
successors L(a) and R(a), to these elements a, cf. Fig. 2. From this, we obtain that
the family Πfin(D) is computable.

Fig. 2. Addition of a branching to a dead-end element in Hn

(d) Suppose that the set X is computable. In the case when all elements in X are
c.e. indices of infinite sets, properties (2.5)(a,b) provide that the set of dead-ends
in the tree Θ(X) is computable, thus, the tree D = Θ(X) itself is computable. Now
we consider the other case when X contains at least one index n0 of a finite set. By
virtue of (2.5)(c), in this case, set Hn0 differs from K just on a finite interval of N,
thus, we obtain reducibility

i ∈ Kr{0, 1, ..., t} ⇔ R2Li+1Rn0(0) ∈ Dend(Θ(X))
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for some finite t. Since K is not computable, we obtain that the set of dead-end
elements Dend(Θ(X)) cannot be computable. Therefore, the tree D = Θ(X) itself
is not computable. �

3. Proof to Part (d) of Theorem 1.1

Given a numerated Boolean Σ0
2-algebra (B, ν) satisfying

(3.1) computable ultrafilters of (B, ν) form a dense set in St(B).
We assume, that B is a nontrivial algebra. By definition, signature operations

∪, ∩ and − in B are presentable by computable functions on ν-numbers, and the
equality relation is a Σ0

2-relation in numeration ν:

ν(x)=ν(y) ⇔ H(x, y), H ∈ Σ0
2.

Consequently, there exists a unary Π0
2-relation H∗ such that for any finite tuple of

zeros and ones α=⟨α0, α1, . . . , αn⟩, we have

ν(0)α0∩ ν(1)α1∩ . . . ∩ ν(n)αn=0 ⇔ ⟨α0,α1, . . .,αn⟩ ̸∈ H∗,

or, equivalently,

(3.2) ν(0)α0∩ ν(1)α1∩ . . . ∩ ν(n)αn ̸=0 ⇔ ⟨α0,α1, . . .,αn⟩ ∈ H∗, H∗ ∈ Π0
2.

Since any Π0
2-set is m-reducible to A2, there is a general computable function

f(x) such that for an arbitrary tuple α ∈ 2<ω, α = ⟨α0, ..., αn⟩, we have

(3.3) ν(0)α0∩ ν(1)α1∩ . . . ∩ ν(n)αn ̸=0 ⇔ Wf(α) is infinite.

Now, our goal is to choose a pair (m, s) of integer parameters.
Choice of m. We choose m such that Ω(m) = P(N) (cf. preliminaries). For this,

it is enough to fix any m satisfying Wm = ∅.
Choice of s. For this purpose, we first describe a computable functional Ψ from

P(N) to P(N) yielding compact binary trees.
Given a set A ⊆ N. Let α = ⟨α0, α1, ..., αk, ...⟩ be the characteristic sequence for

A; that is, a sequence of zeros and ones such that the following is satisfied:

(3.4) αk =

{
1, if k ∈ A,

0, if k ̸∈ A.

Taking A as an input parameter, let us construct the following set

(3.5) QA = {f(∅), f(⟨α0⟩), . . . , f(⟨α0, ..., αn⟩), . . .}.
By virtue of (0.1), the set QA is computable whenever A is computable. Use the set
QA as an input parameter X for the construction X 7→ Θ(X) described in Lemma
2.1. As a result, we obtain a subset D of N, which actually is a tree by Lemma
2.1(a). Thereby, the transformation A 7→ Ψ(A) is presented by the following rule:

(3.6) A 7→ QA 7→ Θ(QA) = D = Ψ(A).

End of description of the operator Ψ .
Transformation A 7→ Ψ(A) can be considered as a computation by an algorithm

M working with an oracle A. Let s be a Gödel number of the algorithm M. In
accordance with the basic definitions of algorithm theory (cf. preliminaries), we
obtain the following form of the operator Ψ :

(3.7) Ψ(A) = DA
s , A ⊆ N.
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Choice of the pair of parameters (m, s) is finished.
Now, we study main properties of the transformation Ψ : A 7→ DA

s .

Lemma 3.1. The following assertions hold:
(a) For any A ⊆ N, DA

s is an atomic tree,
(b) For any computable A ⊆ N, DA

s is a computably enumerable tree.
(c) For any computable A ⊆ N, Πfin(DA

s ) is computable.

Proof. Statement of Part (a) is provided by Lemma 2.1(a), Part (b) is provided by
Lemma 2.1(b), while Part (c) is followed from Lemma 2.1(c). �

Now we immediately pass to the proof of Part (d) of Theorem 1.1.
First of all, we have to point out a sentence Φ of the given finite rich signature

σ in accordance with requirements in Part (d) of Theorem 1.1. For this, we use the
canonical construction, cf. Statement 0.1. Apply this construction to the pair (m, s)
specifying also the signature σ. As a result, we obtain a finitely axiomatizable theory
F = FC(m, s, σ) of signature σ. As Φ, we get a conjunction of axioms of the theory
F . After that, our principal aim is to show that sentence Φ satisfies all requirements
listed in Theorem 1.1(d).

Consider an arbitrary finite tuple of zeros and ones α = ⟨α0, ..., αk⟩. Construct
an elementary intersection of elements in B by the rule

(3.8) bα = ν(0)α0 ∩ ν(1)α1 ∩ ... ∩ ν(k)αk ,

and, concurrently, an elementary conjunction of corresponding sentences θi involved
in Statement 0.1 by the rule

(3.9) βα = θα0
0 & θα1

1 & ...& θαk

k .

The key idea of the construction is to establish the following relation:

Lemma 3.2. For any tuple α ∈ 2<ω, we have bα ̸= 0 if and only if Φ&βα has a
strongly constructivizable prime model of algorithmic dimension 1.

Proof. First, we assume that bα ̸= 0. By (3.1), computable ultrafilters form a dense
set among arbitrary ultrafilters in the Boolean algebra (B, ν). From this we obtain
that there is an infinite sequence α∗ = ⟨αi | i < ω⟩ extending α such that the set A
linked with α∗ by rule (3.4) is computable, and

(3.10) ν(0)α0 ∩ ... ∩ ν(i)αi ̸= 0, for all i ∈ N.
By virtue of (3.3), we obtain that Wf(⟨α0,...,αi⟩) is infinite for each i ∈ N; thereby, the
set (3.5) consists of indices of infinite sets. By Lemma 2.1(a,b,c), the tree Ψ(A) = DA

s

defined in (3.6) and (3.7) is an atomic computable tree with a computable family
Πfin(DA

s ). By Statement 0.1(A,B,C), theory F [A] is consistent, complete, and has a
prime model N, which is strongly constructivizable and has algorithmic dimension
1. This ensures that formula Φ&βα is satisfied in the model N ∈ P 1

s.c(σ) since the
formula is provable in theory F [A].

Now, we assume that sentence Φ&βα has a strongly constructivizable prime
model N of algorithmic dimension 1. Consider the set

(3.11) A = {θi | N |= θi},
which is obviously computable. Build an infinite sequence α∗ = ⟨αi | i < ω⟩ that is
linked with A via the rule (3.4). Since A ∈ Ω(m), by Statement 0.1(A,B), theory
F [A] is consistent and complete. Moreover, this theory is decidable by Janiczak
Theorem since it is computably axiomatizable. By (3.11), all axioms of F [A] are
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satisfied in the model N. Thereby, we have that A is computable and F [A] has
a strongly constructivizable prime model of algorithmic dimension 1. By applying
Statement 0.1(C), we conclude that tree DA

s is atomic and computable, and its
family Πfin(DA

s ) is computable. In accordance with rules (3.6) and (3.7), we have
DA

s = Θ(QA), where QA is defined by rule (3.5). By Lemma 2.1(d), QA consists of
indices of infinite sets. By applying (3.3), we finally obtain bα ̸= 0.

Lemma 3.2 is proved. �
Let us map elements ν(i), i ∈ N, of Boolean algebra B onto sentences θi, i ∈ N,

of signature σ by the rule:

(3.12) λ∗(ν(k)) = θk, k ∈ N.

Now, we will extend the partial mapping (3.12) up to a computable isomorphism
of the algebras under consideration. Namely, we define a mapping

λ : B → L
(
Th

(
Mod(Φ) ∩ P 1

s.c(σ)
))

by the rule: for an arbitrary finite sequence of tuples α0, α1, . . . αn ∈ 2<ω, we put

(3.13) λ(bα0 ∪ bα1 ∪ ... ∪ bαn) = βα0 ∪ βα1 ∪ ... ∪ βαn .

The mapping λ is total on the algebra B since the set of expressions involved in
(3.13) concerns all elements of this algebra. Moreover, the relation stated in Lemma
3.2 allows us to omit zero terms. Therefore, µ is a one-to-one correspondence.
Boolean operations are produced by the same rules with respect to the unions of
elements bα of the form (3.8) and disjunctions of elementary conjunctions βα of the
form (3.9) Therefore, λ is an isomorphism between the Boolean algebras. Obviously,
it is a computable isomorphism with respect to numerations ν and γ ensuring finally
the required computable isomorphism

λ : (B, ν) →
(
L
(
Th(Mod(Φ) ∩ P 1

s.c(σ))
)
, γ

)
.

Thereby, Part (d) of Theorem 1.1 is completely proved. �

4. Final Remarks

Theorem 1.1 gives an answer to Question 10 in [2, p.237]. The Tarski-Lindenbaum
algebra L(P 1

s.c) is characterized in terms of second and third levels of arithmetic
hierarchy. It has less algorithmic complexity in comparison with other results in this
direction; for instance, cf. [3] and [4]. A common scheme of the proof in this work
may be useful in solving similar problems with respect to other semantic classes of
sentences.
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