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TEMPORAL LOGIC WITH OVERLAP TEMPORAL RELATIONS
GENERATED BY TIME STATES THEMSELVES

V.V. RYBAKOV

ABSTRACT. We study a temporal logic with non—standard temporal
accessibility relations. This logic is generated by semantic underground
models, and any such a model has a base formed by a frame with
temporal relations generated by temporal states themselves; potentially,
any state possesses its own temporal accessibility relation, and it is
possible that all of them can be different. We consider this to be the
most plausible modelling, because any time state has, in principle, its
own view on what is past (or future). Time relations may have non—
empty overlaps and they can be totally intransitive. Thus, this approach
may be suitable for analysis of the most general cases of reasoning about
computation, information flows, reliability, and other areas of AI and
CS. The main mathematical question under consideration here is the
existence of algorithms for solving satisfiability problems. Here we solve
this problem and find the required algorithms. In the final part of our
paper we formulate some interesting open problems.

Keywords: temporal logic, non—classical logics, information, knowledge
representation, deciding algorithms, computability, information, satisfia-
bility, decidability.

1. INTRODUCTION

This paper combines the following two issues: (1) is the pure mathematical one;
it consists of construction of mathematical models for time flow and transition of
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information based on Kripke-Hintikka-like relational models and logic syntaxes —
formulas and other syntactical instruments (to analyze the laws and properties
of such models), and (2) which consists of possible applications to information
transfer, correctness proof for reasonings, plausibility, extracting hidden infirmation,
consistency, and reliability of knowledge as well as to other areas of Al and CS. The
concept of knowledge, which at first glance may look like a kind of a stable, correct,
profoundly verified (and supported?) information, is in the centre of studies in CS
and philosophy. This and the related areas use instruments of temporal logic for
representation and development of computational tools.

Probably, the concept of knowledge in terms of symbolic logic, appeared at about
the end of 1950. In 1962 Hintikka has written a book Knowledge and Belief, the
first book-length work to suggest the use of modalities to capture the semantics of
knowledge. This book sets much of the groundwork for the subject, but since that
time a great deal of research has taken place. Temporal logic since then became
a popular area in mathematical symbolic logic and CS; a lot of impressive results
where obtained (for historical outlook see Gabbay, Hodkinson, Reynolds [5, 6],
Goldblat [7], Goranko [8], van Benthem [28], Yde Venema [31]).

Since the invention of the linear temporal logic LTL with operation U — until —
by Amir Pnueli that system was studied from many viewpoints due to interesting
mathematical representations and useful applications to analysis of protocols for
computations and verification of consistency. Automata technique to solve satisfiabi-
lity in this logic was developed by Vardi [29, 30]). Among reasonably modern results
concerning this logic I would mention the solution to the admissibility problem for
LTL in Rybakov [14, 15]; the basis for admissible rules of LTL was obtained by
Babenyshev and Rybakov in [3]|. The unification problem for £TL was solved in [19].
As for applications of logical methods in Al and CS, the tools developed around the
temporal logic work well for analysis in multi-agent environment (see, for example
[16, 17]).

Up to now, the temporal logic was investigated from many viewpoints. In particu-
lar, the extensions of LTL for the case of non—transitive models, were studied in
Rybakov [20, 21, 25] for the case of the interval versions of the logic. Also the
modelling of multi-agent reasoning via temporal models was applied in Rybakov
[18, 22, 24] for some versions of liner logic.

This paper is devoted to the study of an important modification of LTL, a logic
based on non—transitive time with possible time overlaps on temporal accessibility
relations; so it is intransitive by its nature. But the most innovative part here is
that the temporal relations on the generating models are individual for any time
state. This looks as a quite new approach which was not touched upon yet in
literature and as the most plausible one for real simulations of time runs. As it was
already mentioned above, the non—transitive temporal logics generated over linear
time were actively studied. I was trying to resolve the most general case, when the
temporal relations may be unbounded, and in addition, not all of them are placed
into infinite sequences of fixed intervals of time, since this restriction looked to be
a little bit artificial, but my attempt was unsuccessful. Here we found the solution
via a new approach which successfully packs all the restrictions into a single new
one and enables us to resolve the problem. The main mathematical problem we
study is the existence of algorithms for solving the satisfiability problems. We solve
this problem and offer algorithms based on a reduction of the problem to special
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models of computable sizes. At the end of the paper we formulate some interesting
open problems.

2. LoGICAL LANGUAGE AND MODELS WITH OVERLAP RELATIONS

As we have noted above, the most innovative point of the paper is the use of
temporal accessibility relations separately, so to say individually, for any temporal
state. This looks like here we have infinite number of accessibility relations, and
it seems that we will need an infinite set of temporal operations in the logical
language. But, in fact, it is not the case, and we can model this approach in the
usual temporal language.

Our logical language consists of potentially infinite set of propositional letters P,
Boolean logical operations, operation A/ (next), and the operation U (until). The
formation rules for compound formulas are standard: any letter from P is a formula;
the set of all formulas is closed with respect to the applications of Boolean logical
operations, the unary operation AN (next), and the binary operation U (until); here
@ U means that ¢ holds until 1 is true, Ny means that ¢ is true in the next
temporal state.

To model the temporal flow we will use new modified Kripke-Hintikka-like
models based on linear order on the natural numbers.

Definition 1. A linear temporal non-transitive frame is a tuple
F :=(N,{Ry; | x € N}, Nat), such that

forallz € N, R, is a linear order on the interval [x,a,] for some a, > x,a, € N
(R, can also be a linear order on the whole interval [a,o0]), and for all x,y € N
holds x Nzt y & y=x+ 1.

It may happen that R,a., y € (2,a;), and ~(yRyaz). So to say, y is a state
situated earlier than x but y remembers even less than x. Besides, it is clear that all
the relations form together a non—transitive relation: it may happen that xR.a,,
T <y < ag,so (zRy), (yRyay) but =(zRyay).

A model M on any F is defined by introduction a valuation V' on F: for a set
of propositional letters p we let V(p) C N, and V is extended to all the formulas
as follows:

Definition 2. For any a € N we put
(F.a) kv p < peV(p)

(Fra) kv o & (F,a) ¥y ¢;
(Fra)lbv (o A ¢) < ((F,a) kv @) A(F, a), Iy 9);
(Fra)lbv (o VvV ¢¥) & ((F,a)lbv o) V((F,a) kv ¢);
(Fra)lbv (o = ¢) & ((F,a)lkv )V ((F,a) ¥y ¢);

for formulas of kind U, we define the truth values as follows:
(Foolbyv (0 Uy) &
3b € N[(cR:b) A ((F,b) IFy )A
Vylle <y, &y <b) =(F,y) kv ¢l];
(F,a)lry N < [(a Nat b) = (F.,b) kv ¢].
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The notation (F,a) IFyv ¢ means that the formula ¢ is true (valid) at the state
a with respect to the valuation V. We see that the truth of any formula with main
temporal operation U at a state a refers to the unique accessibility relation R, for
a only. Sometimes, we will use notation Nxt(a) = b or Next(a) = b to say that
a Nzt b.

Definition 3. The logic TOV is the set of all formulas which are valid at any state
of any model based on any linear temporal non—transitive frame F.

General illustrations of the ideas why time flow may be considered to be non—
transitive and how such an approach might be used are given in Rybakov [20, 21,
22, 24, 25].

3. A TECHNIQUE VIA REDUCED FORMS

Our aim is to show that the satisfiability problem for the introduced logic is
decidable. The usual technique based on filtration, the usage of temporal degrees
of formulas and dropping points fail to work for this semantics since the relations
are generally are non—transitive and the rules for computation of truth values of
formulas with U differ from the standard ones. We will use a modification of our
old technique for reduction of formulas to rules (which we have already used earlier
many times for different purposes (cf. e. g. [17, 15]) and a transformation of the
latter ones to the so—called reduced forms. We now briefly recall this technique.

A rule is an expression r := ©1(21, ..., &n), ..., Ps(T1,. ., 2n) [/ Y(T1,. .., 20),
where all @i (z1,...,2,) and ¥(x1,...,2,) are formulas constructed from letters
(variables) x1,...,zy.

Formulas o (z1,...,z,) are called premises and ¢ (x1,...,z,) is called the
conclusion. The rule r means that ¢(x1,...,2,) (conclusion) follows (logically
follows) from the assumptions ¢1(z1,...,%5), -.., @s(@1,...,2,). The definition

of the validness of a rule is the same for any relational model. To recall it, assume
that a model M and a rule r are given.

Definition 4. A rule r := @1(x1,...,Zpn)y. -, @s(@1, .. 20) [ V(X1,. ., 20), is
valid in the model M based at a frame F iff

Vo ((Fa) by Aicicowi) | = Va((F,a) by 9)].
If Va ((]-', a) Fv Ajcics goi) but Ja ((F,a) Wy 1), then we say that r is refuted in
F by V and we denote this fact as F ¥y r.

Definition 5. A rule r is valid (or true) on a frame F iff v is true (valid) in any
model based on F.

Definition 6. A formula o is satisfiable iff there is a frame F and a valuation V
on F such that ¢ is true w.r.t. V at some state from F.

Lemma 1. For a formula ¢, ¢ is satisfiable iff the rule x — x/—¢ may be refuted
in some model M.

The follows immediately from the definitions. Thus we have

Lemma 2. If there is an algorithm verifying for any given rule r if this rule is
valid in all models M then there exists an algorithm verifying if any given formula
is satisfiable.
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Now we need the rules in some uniform simple form, in particular, without nested
temporal operations.

Definition 7. A rule r is said to be in reduced normal form if r = £/x1 where

e = \/ { /\ xz(j’i’o)/\ /\ (in)t(j’i’l)/\

1<j<m 1<iln 1<i<n
(4,1,k,2)
A /\ (x; Uzy) )
1<i,k<n

t(4,1,0), t(4,i,1), t(j, i, k,2) € {0,1} and, for any formula o, a° := a, ol := —a.

Definition 8. For any given rule r, a rule rag in the reduced normal form is said
to be a reduced normal form of r iff

for any frame F, the rule r is valid in F if and only if the rule ryf
is valid in F.

Theorem 1. There exists an algorithm running in (single) exponential time which
given any rule r constructs some its reduced form ryg.

Proof. The proofs of similar statements for various relative relational models and
rules was suggested by us quite a while ago since 1984 (for instance, see Lemma 5
in [3] or the proofs of similar statements in [14]).

The reduced normal forms of rules constructed by the algorithm from the proof
of this theorem are uniquely defined.

Thus, if we are interested in the study of the problem of refutation for rules, we
may restrict ourselves with consideration of rules in reduced form only.

4. MAIN PrROOFS, RESULTS

Firstly we will need some special auxiliary models. Recall that a linear temporal
non—transitive frame F is a tuple F := (N,{R, | € N}, Nzt) such that for any
x € N, R, is a linear order on the interval [z, a,], for some a, chosen for each z.
It might be also that R, is a linear order on the whole interval [z, 00). A model M
based on F is obtained by introduction of some valuation V' in F of a set of letters.

Definition 9. Any M 1, model has the following structure. For m,m > 1,n > m,
My, =([0,n], <,Next, V), where Next(n) := m + 1.

Relations R, in such models are defined as follows: any R, is a linear order on
[,a;] where (1) x < m and ay <n, or (2) x >m and ax < n or (3) as in (2) but
in addition R, is extended by the linear order on [m+1,b], b < n, and all elements
from the second interval [m + 1,b] considered to be strictly bigger than the states of
the first one (so we do a loop). Here V is just a valuation as above.

The rules for computation of the truth values of formulas in such models with
respect to any given valuation V' are defined exactly as it was described earlier for
the usual models; simply for states « bigger than m, the orders R, within <, in a
sense, are replaced by possible sequences by Next and they use these new R, for
the existence of a solution for ‘until’.

Theorem 2. If a rule r in normal reduced form is refuted in a model M by a
valuation V, then there exists a finite model of kind M, disproving r by its own
valuation V' (the size of such model is yet not specified).
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Proof. Let M := (N,{R, | # € N}, Nzt,V), and the rule in reduced normal form
isr=¢/x1, where e = \/, ., 0; and

0; = /\ xz(j’i’o)/\ /\ (N xi)t(j’i’l)/\ /\ (inxk)t(j’i’k’Q)];

1<i<n 1<i<n 1<i,k<n

let r be refuted in a M by a valuation V: =(M “_VT’). That is, all the formulas
from the premise of r are true at all states, but the conclusion fails to be true at
some s. Clearly, we may assume that s = 0.

Thus, for any a € F there is exactly one unique 6; which is true at a with
respect to V. Denote this 6; by 6(a). Now we need to define some special sets. For
any b € F and any formula ¢ := x; Uxz; from the premise of the rule such that

(M, b) IFva; Uz;, we let

Ev(p,b) :=min{k | b < k,bRpk, (M, k) IFva;,Ve(b < c < k)(M,e) v}
So, Ev(p,b) is the minimal evidence state saying that z; Uxz; is true at b. And vice
versa, for any b € M such that (M, b) Wy z; Uz, we let

Disp(p,b) :=min{k | b < k, bRk, [(M, k) |Fvaz;=3c(b < ¢ < k)(M,c) ¢ vai]}.

That is, Disp(p) is the minimal element disproving the formula ¢.

Let Dm be the set of all disjunctive members of the premise of the rule r. Due
to the infinity of N, there is a number m and a subset Dmy of Dm such that for
any number mj > m there is exactly one § € Dmy which is true with respect to V'
at my and for any 6 from Dm, there are infinitely many numbers bigger than m
at which 6 is true with respect to V. In other worlds, the following conditions hold

(1) VYmq > mdl € Dmy [(M,ml) ”_VH&
[Vﬁl S Dml(M,ml) ”_Val = 0= 91]}7

(2) VYmy > mV0 € Dmy [(M,mq) b=
dmo > (m1 +m + ||Dm||) (M,mg) ”—ve]

Now consider a smallest a where a > m and a > b, where

(3) b= maz{n +1l|ne U{Disp(go, m)} U U{Ev(g&, m)}}

and (m + 1) = 6(a).
Now we modify our model. Let M 1, be a model obtained form M as follows:
My = ([0,m]U[m,a]),

where Next(a) := m + 1 and the model is defined as earlier for models of kind
M 1, and, in addition, it has the following structure concerning the accessibility
relations R,,x € N:

For all x > m,z € N, if [z, a,] is located inside [0, a] we do not

change R, , otherwise
(4) ag :=b.

‘We show now that the truth values for formulas from Dm in the modified model
are the same as earlier.
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Lemma 3. For any x € [0,a] and 0(x) defined in the model M holds
(M7x) -y H(a:) A (M-FLP)x) I 9(33)

Proof goes by induction on the structure of formula 6(x). For components of
such formulas not containing operations U, the similar statement are shown by
straightforward simple induction of the length of formulas. For formulas ¢ :=
x; Uz, the equivalence

(M,.T) Iy < (M+Lp,93) I x; USCj

follows from our definition (3) above:
b=maz{n+1|n e J(Disp(p,m)} U {Evlp,m)}},
¢ @

because due to the presence of all evidence states and of all disproving states for
operation U, they are all included into the modified model and this is sufficient to
keep truth values of formulas of kind x; Uz; the same. Lemma is complete.

This concludes the proof of our theorem.

Now we need to find (compute) upper bounds for the sizes of finite models
refuting the rules.

Theorem 3. If a rule r in a normal reduced form is refuted in a model M, then
it is refuted in some such model of a polynomial size computable from the length of
r.

Proof. Let M4, := ([0,m] U [m,a], <,Next, V'), where Next(a) :=m + 1,
r = ¢/x1, in which

P \/ /\ xt(gzo)/\ /\ t(]zl A /\ (mika)t(j’i’k’z) 7

1<j<m |1<i<n 1<i<n 1<i,k<n

and Dm(r) is the set of all disjunctive members of the premise of the rule r, and
for any x € [0,a], 8(x) is the member of Dm/(r) which is true on z.

Now, as in the previous lemma, consider the following definitions in this new
model. Consider the chosen branching state m € My,; for any formula ¢ :=

z; Uz from the premise of the rule if (M yr,, m) |Fya; Ux;, we set
Ev(p,m) := min{k | mRpyk, k<a, (Mirp, k)lFvz;,
Ve(m < e < k)(M,e) lFva;}.
So, Ev(p,m) is the minimal evidence state saying that z; Uz; is true at m. Vice
versa, if (M rp, m) W va; Uz, then we define

Disp(p,m) = min{k | m <k <a,mRpk,[(Mirp, k) IFva; =
Je(m < ¢ < k) (Myrp, c) Wvai]}.

That is, Disp(y) is the minimal element disproving the formula .

Let {a1,...,a,} be the increasing sequence of all elements from all sets Disp(p, m)
and all Ev(p,m). Now we are ready to start the rarefication procedure in order to
reduce the size of the model M, 1, to a computable one (from the size of ).

STEP 1. If a,, = a — 1 then we do nothing. Otherwise consider #(a — 1) and any
minimal b € [ay, + 1,a — 1], where §(a — 1) = 0(b), if exists. And now we delete all
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the elements situated strictly between a — 1 and b — 1 and redefine relations R, as
follows: if a, does not exceed b — 1 or if a, > a; then we let R, intact. Otherwise

R, :=[z,b—1]U[a—1,a,—1]
Let M7 be the model modified as above.
Lemma 4. For all x € My and §(x) defined for M, holds

Myrp,2) IFvl(z) & (My,z) IFvo(x).

Proof follows from a straightforward computation using 6(a — 1) = 6(b) valid in
M 1p. Lemma is complete.

Now we consider some ¢ with the property Next(c) = a —1 instead of b as above
and execute a similar transformation for it doing proper rarefication. After this,
we continue doing such transformations until we delete all the states x with the
same 0(x) moving to a,. So, such a transformation will be completed in at most
[IDm(r)|| steps and the resulting model My by Lemma 4 will disprove 7.

Now we will reduce the size of My by executing a rarefication procedure within
[m, a,]. To do this, we separately consider all the intervals [a;, a; + 1] while moving
down from [a,, — 1,a,] to [m,a1].

We do this for [a, — 1,a,] as we did for [b,a — 1] above and so on. After we
complete this procedure, we will have a computable upper bound for the number of
states situated between a,, and m it does not exceed n x k x ||[Dm(r)|| + || Dm(r)]|l,
where k is the number of all formulas of kind x; Uz; in the rule r. Denote the so
obtained model by Mj3. Again, it will disprove r.

STEP 2. Now we will apply the same rarefication technique to the model M3 while
moving downwards from m to 0; that is, we rarefy the interval [0, m] exactly by the
same procedure as we used for the interval [b,a — 1] above. Inasmuch as we do not
need disproving (and proving) states since already we do not have a loop by Next,
we need to consider only this interval itself in only one run. So, after the completion
of this procedure, we will have a model My which will still disprove r and will have
the size at most n x k x ||Dm(r)||+ ||[Dm(r)||+k x ||Dm(r)||. Theorem is complete.

Theorem 4. If a rule r in normal form is refuted in a model M 1, then it can be
refuted in some usual model M.

Proof. We need to apply a simple modification of the standard unraveling technique
only. Let M 1, be based at the set [0, m]U[m, a], where Next(a) := m+1,r =¢/z;.
In fact, now it is sufficient only to roll towards the future the cyclic part [m,a]
starting from the first occurrence of m in the model.

Using Lemmas 1, 2 and Theorems 1, 2, 3, and 4, we immediately obtain:

Theorem 5. The satisfiability problem for TOV is decidable. The logic TOV itself
is decidable.

Notice that we may consider the reduced version of this logic 7¢?, namely, the
logic without the logical operation N -next. Since we did never use this
operation in our proofs, the following theorem holds.

Theorem 6. The satisfiability problem for TE”_Next 1s decidable. The logic TLO”_N"‘”
itself is decidable.

Ov—Next
TL



TEMPORAL LOGIC WITH OVERLAP TEMPORAL RELATIONS 931

Now we would like to present several open problems we think to be of interest.
(1) To extend the obtained results to branching time logic whose linear parts by
operation Next look as frames of this paper. A similar question is answered by
Rybakov in [25] for frames which are still within the old paradigm of a kind of
interval logic. (2) To study a problem of unification for logics studied in our paper.
The logical unification problem is important for applications in Al and CS and it
may be considered as algebraic problem of finding solutions for equations in free
algebras. This problem was actively studied earlier (see Baader [1, 2|, Ghilardi
[9, 10], Rybakov [19]), and finding its solution for the logic we have introduced here
seems to be interesting. (3) To study the admissibly problem for it. After the paper
of H. Fridman [4], which contained a list of open logical problems, the problem of
admissibility was investigated for many logics (see [26, 27, 14, 11, 12]). As for the
nontransitive temporal linear logic, the most progress was achieved only for a logic
with uniform limitations on time intervals with transitivity in a paper by Rybakov
[23]. (4) To consider a question of axiomatization for our logic. (5) To embed the
agents’ logic components into this temporal logic.
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