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ASYMPTOTICS OF AN EMPIRICAL BRIDGE OF REGRESSION

ON INDUCED ORDER STATISTICS

A.P. KOVALEVSKII

Abstract. We develop a class of statistical tests for analysis of
multivariate data. These statistical tests verify the hypothesis of a
linear regression model. To solve the question of the applicability of
the regression model, one needs a statistical test to determine whether
the actual multivariate data corresponds to this model. If the data does
not correspond to the model, then the latter should be corrected. The
developed statistical tests are based on an ordering of data array by
some null variable. With this ordering, all observed variables become
concomitants (induced order statistics). Statistical tests are based on
functionals of the process of sequential (under the introduced ordering)
sums of regression residuals. We prove a theorem on weak convergence of
this process to a centered Gaussian process with continuous trajectories.
This theorem is the basis of an algorithm for analysis of multivariate
data for matching a linear regression model. The proposed statistical
tests have several advantages compared to the commonly used statistical
tests based on recursive regression residuals. So, unlike the latter, the
statistics of the new tests are invariant to a change in ordering from
direct to reverse. The proof of the theorem is based on the Central Limit
Theorem for induced order statistics by Davydov and Egorov (2000).
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1. Introduction

Galton (1889) proposed the term regression to describe the dependence of
o�springs' height on parents' height. To convert women's height to men's height, the
author used a coe�cient 1.08 since he had determined that men are on average 1.08
times higher than women (p. 78). After that, Galton calculated the average height
of parents and estimated the coe�cient of dependence of the height of an o�spring
(separately for sons and for daughters) on the average height of parents. For sons,
he estimated the coe�cient as 2/3 (p. 102). Assuming the equal contribution of a
mother and a father to the height of their son, Galton estimated the contribution of
each parent by 1/3. He called this dependence a regression because the coe�cient
2/3 is less than 1. Galton called it `regression to the mean', meaning that parental
height is not inherited completely. The fact that height is not fully inherited also
makes sense in terms of genetics: an individual's height is determined by several
genes; the o�spring's genotype is made up of the genotypes of the parents, but not
all the genes appear in the phenotype. For describing dependence of height of the
descendant Yi (separately for a son and a daughter) on height of the father Xi1 and
that of the mother Xi2, it seems natural to use the following model:

(1) Yi = θ1Xi1 + θ2Xi2 + θ3 + εi, i = 1, . . . , n.

Regression models have been signi�cantly developed over the past 130 years
and are used in many �elds of knowledge. The unknown coe�cients θ1, θ2, θ3
are estimated by the least squares method. Random errors εi are assumed to be
independent and identically distributed with zero mean and �nite nonzero variance.
Standard procedures are used for testing hypotheses on zero regression coe�cients
(see, for example, Draper and Smith (1998), Chapters 5 and 6), as well as on the
absence of correlations of regression errors (Ch. 7 of the same book).

We will discuss the methods for testing the regression hypothesis in general.
These methods are not su�ciently developed yet. The null hypothesis states
the correspondence to the model (1) while the alternative hypothesis proposes
nonlinearity of dependence of the response on one or both regressors. The standard
methods of R2 use the ratio of the explained variance to the total variance.
Unfortunately, these methods do not allow us to test the correspondence: for an one-
parameter model, the Example 1 in Kovalevskii and Shatalin (2015) shows that the
standard statistics R2 can be made arbitrarily close to 1, but at the same time the
model can actually be nonlinear. Moreover, it is remarkable that this nonlinearity is
consistently tested by the empirical bridge method, i.e. the analysis of the process
for self-centered and self-normalized sequential sums of regression residuals.

The most common method for analyzing data on the correspondence to
regression in general is a method of recursive regression residuals. Brown, Durbin,
Ewans (1975) proposed the process of recursive regression residuals. In order to
apply this method, the data must be ordered (for example, nondecreasing in
one of the regressors). After that, recursive regression residuals are constructed
sequentially: the estimates of the regression parameters are constructed from the
previous observations, and based on those, the residuals are calculated for the
following observations. After the appropriate normalization, recursive residuals
become independent and identically distributed normal random variables with zero
expectation. However, this is only true for normal distribution of regression errors
and nonrandom regressors. Aside from these limitations, another disadvantage of
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this method is a lack of symmetry: for the same regressor, if one orders the data
in descending order instead of the ascending one, he will get a di�erent set of
recursive regression residuals and another p-value. Zeileis et al. (2002) implemented
the process in R package, calling it empirical �uctuation process.

On the other hand, there are methods of time series analysis. MacNeill (1978)
studied the linear regression for time series. He obtained limit processes for
sequences of partial sums of regression residuals. Later, Bischo� (1998) showed
that MacNeill's theorem also holds in a more general setting.

Aue et al. (2008) introduced a new test for polynomial regression functions which
is analogous to the classical likelihood test. This approach was developed in Aue et
al. (2013, 2018).

Stute (1997) proposed a class of tests for one-parametric case.
Our approach is employed speci�cally for the regression on induced order

statistics (concomitants). This model arises in applications, see Kovalevskii (2013).
Partial results are proposed by Kovalevskii and Shatalin (2015, 2016). In reference
to the example (1), our method is to order the data by one of the regressors (height
of a father or a mother) and to study the process of sequential sums of regression
residuals. We use a self-standardized version of the method called empirical bridge.
One can base a test on statistics of omega-squared type, that is, the integral of the
square of the empirical bridge. The distribution of this statistics can be found by
using the methods proposed by Martynov (1978), Deheuvels and Martynov (1996).
Our proof uses the Central Limit Theorem for induced order statistics by Davydov
and Egorov (2000).

The concept of induced order statistics is a development of the idea of order
statistics. Gastwirth (1971) proposed a general de�nition for the Lorentz curve,
which is a general inverse empiric function. Goldie (1977) proved fundamental
asymptotic results for the general Lorentz curve. David (1973) and Bhattacharya
(1974) introduced the induced order statistics (concomitants) simultaneously. David
(1973) initially focused on obtaining precise results, while Bhattacharya (1974)
proved the �rst asymptotic theorems. There are numerous papers on the precise
theory of concomitants. David, O'Connell and Yang (1977), Yang (1977) proposed
the small sample theory of distribution and the expected value for the rank of
the induced order statistics. Davydov and Egorov (2000) proved the Central Limit
Theorem and the Law of Iterated Logarithm for the induced order statistics.

For speci�c classes of multivariate distributions, the interest in developing
explicit formulas for the distributions of concomitants from generalized order
statistics is not decreasing. Among modern works, we should mention EryIlmaz
and Bairamov (2003), Shahbaz et al. (2010), Domma and Giordano (2016). The
asymptotic theory of induced order statistics has been developed by many authors
in a number of di�erent directions. Bhattacharya (1976) proposed a statistical test
for a known regression function. Sen (1976) proved fundamental theorems on the
invariance principle. Egorov and Nevzorov (1983) studied the distribution of the
induced order statistics obtained by ordering the values of a function f and got an
approximation by a mixture of normal distributions. Egorov and Nevzorov (1984)
studied the distribution of two-sided truncated sums of the induced vector order
statistics and established their rate of convergence to the multivariate normal law.
Zamanzade and Vock (2015) proposed a new statistical application of concomitants,
while Stepanov, Berred and Nevzorov (2016) studied the concomitants of records.
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Good reviews of precise and asymptotic results on the induced order statistics
with applications can be found in Bhattacharya (1984), Shorack and Wellner
(1986), Balakrishnan and Cohen (1991, Chapter 9), David and Nagaraja (1998,
2003 (section 11.7)), Davydov and Zitikis (2004).

Strong convergence to a corresponding Gaussian process can be proved by
developing the methods of Shorack and Wellner (1986), Einmah and Mason (1988),
Koul (2002), Sakhanenko and Sukhovershina (2015).

2. Main result and corollaries

Let (ξi, ηi) = (ξi1, . . . , ξim, ηi) be independent and identically distributed random
vector rows, i = 1, . . . , n. The rows (ξi, ηi) form the matrix (ξ, η).

We assume the linear regression hypothesis H0:

ηi = ξiθ + ei =

m∑
j=1

ξijθj + ei,

{ei}ni=1 and {ξi}ni=1 are independent, E e1 = 0, Var e1 = σ2 > 0.
The vector θ = (θ1, . . . , θm)T and the constant σ2 are unknown. We consider the

orderings of the rows of the matrix (ξ, η). We study a class of orderings, such that
their results coincide in distribution with the ordering in increasing order of the
extended strings (δi, ξi, ηi) of the random variables δi, i = 1, . . . , n . The random
variables δi are introduced arti�cially so that (δi, ξi, ηi) = (δi, ξi1, . . . , ξim, ηi)
are independent and identically distributed random vector rows, δi has uniform
distribution on [0, 1], i = 1, . . . , n, δi and ei are independent. The result of the
ordering is a matrix (U,X, Y ) with rows (Ui,Xi, Yi) = (Ui, Xi1, . . . , Xim, Yi). So
U1 < . . . < Un a.s., U1, . . . , Un are the order statistics from uniform distribution on
[0, 1]. Elements of the matrix (X,Y ) are concomitants (induced order statistics).

The examples on the introduction of {δi}ni=1 corresponding to the required order
are presented below.
Example 1. We do not order the rows (ξi, ηi). Suppose that δi and (ξi, ηi) are

independent. Then we have a random permutation of rows, that is, the rows (Xi, Yi)
are independent and identically distributed with (ξi, ηi). Thus, (X,Y ) = (ξ, η) in
distribution.
Example 2.We order the rows (ξi, ηi) by the �rst component in ascending order.

For instance, we can use a bubble sorting algorithm (Wirth, 1986, pp. 81�82) as
follows. We start with ξ11 and ξ12. If the �rst element is greater than the second
one, we swap the rows (ξ1, η1) and (ξ2, η2). We continue doing this for each pair of
adjacent elements to the end of the �rst column. Then we start over from the �rst
two elements of the �rst column, repeating until no swaps have occurred during the
last pass.

For Example 2, let F1(x) = P(ξi1 ≤ x) be a cdf of the �rst component, and
F−1
1 (p) = sup{x : F1(x) < p} be its quantile function. We suppose that

(2) ξi1 = F−1
1 (δi).

Then the ordering of δis corresponds to the ordering of ξi1s.
Example 3. We reason similarly to Example 2, using the descending order this

time. We designate ξi1 = F−1
1 (1− δi).

Example 4. We do the same as in Example 2 but in ascending order of some
measurable function g of the �rst three components. We insert a new �rst column
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with random variables g(ξi1, ξi2, ξi3) and act similarly to (2) with the new �rst
column.
Example 5. We order the rows (ξi, ηi) by the second component in ascending

order, and then by the �rst discrete component in ascending order (note that if we
ordered the rows by a component with a continuous distribution, we would forget
a.s. all previous orderings). The result is the ascending order in the �rst column,
and for the equal values in the �rst column, variables in the second column are in
ascending order.

For Example 5, suppose that ξi1 takes values a1 < a2 < . . . with probabilities
p1, p2, . . .. Let

F2,aj (x) = P(ξi2 ≤ x, ξi1 = aj),

F−1
2,aj

(p) = sup{x : F2,aj (x) < p}, 0 < p < pj .

We put ξi1 as in (2), and

ξi2 = F−1
2,aj

(
δi −

∑
k<j

pk

)
on the event {F−1

1 (δi) = aj}.

We have the required order.

Let θ̂ be LSE:

θ̂ = (XTX)−1XTY = (ξT ξ)−1ξT η.

It does not depend on the order of the rows.

Suppose that h(x) = E{ξ1|δ1 = x} is a conditional expectation, L(x) =
x∫
0

h(s) ds

is the induced theoretical generalised Lorentz curve (see Davydov and Zitikis (2004)),

b2(x) = E
(
(ξ1 − h(x))T (ξ1 − h(x)) | δ1 = x

)
is a matrix of conditional covariances.

If gij = Eξ1iξ1j , G = (gij)
m
i,j=1, then G =

∫ 1

0
(b2(x) + hT (x)h(x)) dx.

Suppose that ε̂i = Yi −Xiθ̂, ∆̂k =
k∑
i=1

ε̂i, ∆̂0 = 0.

Let Zn = {Zn(t), 0 ≤ t ≤ 1} be a piecewise linear random function with the
nodes (

k

n
,

∆̂k

σ
√
n

)
.

We designate the weak convergence in C(0, 1) with uniform metrics by =⇒.
Theorem 1. If Eξ21j < ∞ for all 1 ≤ j ≤ m and detG 6= 0, then Zn =⇒ Z.

Here Z is a centered Gaussian process with covariance function

K(s, t) = min(s, t)− L(s)G−1LT (t), s, t ∈ [0, 1].

Suppose that Z0
n is an empirical bridge (see [28], [29], [30]):

Z0
n(t) =

σ

σ̂
(Zn(t)− tZn(1)), 0 ≤ t ≤ 1,

with σ̂2 =
∑n
i=1 ε̂

2
i /n. Let L

0(t) = L(t)− tL(1).
Let Ln,j be an empirical induced generalised Lorentz curve:

Ln,j(t) =
1

n

[nt]∑
i=1

Xij ,
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Ln = (Ln,1, . . . , Ln,m), L0
n(t) = Ln(t)− tLn(1).

Corollary 1. Suppose that the assumptions of Theorem 1 hold.
1) Then Z0

n =⇒ Z0, a centered Gaussian process with covariation function

K0(s, t) = min{s, t} − st− L0(s)G−1(L0(t))T , s, t ∈ [0, 1].

2) Let d ≥ 1 be an integer,

q = (Z0
n(1/(d+ 1)), . . . , Z0

n(d/(d+ 1))),

ĝij = XiXj = 1
n

∑n
k=1XkiXkj , Ĝ = (ĝij)

m
i,j=1,

K̂0(s, t) = min(s, t)− st− L0
n(s))T Ĝ−1(L0

n(t))T ,

Q = (K̂0(i/(d+1), j/(d+1)))di,j=1. Then qQ−1qT converges weakly to a chi-squared
distribution with d degrees of freedom.

If we order by ξi1, i = 1, . . . , n, then h1(x) = F−1
ξ11

(x) (see Example 2). In this

case, L1(t) =
∫ t
0
F−1
ξ11

(x) dx.

The next corollary was proved by Kovalevskii and Shatalin (2015).
Corollary 2. Suppose that Yi = θ1Xi1 +εi, i = 1, . . . , n, θ1 ∈ R, (X11, . . . , Xn1)

are order statistics of i.i.d. (ξ11, . . . , ξn1), random variables (ε1, . . . , εn) are i.i.d.
and independent of them, 0 < E ξ211 < ∞, E ε1 = 0, 0 < Var ε1 = σ2 < ∞. Then
Zn ⇒ Z, a centered Gaussian process with covariance function

min(s, t)− L1(s)L1(t)/E ξ211.

The next corollary is a special case of Theorem 1 in Kovalevskii and Shatalin
(2016).
Corollary 3. Suppose that Yi = θ1Xi1 + θ2 + εi, i = 1, . . . , n, θ1, θ2 ∈

R, (X11, . . . , Xn1) are order statistics of i.i.d. (ξ11, . . . , ξn1), random variables
(ε1, . . . , εn) are i.i.d. and independent of them, 0 < Var ξ11 < ∞, E ε1 = 0,
0 < Var ε1 = σ2 <∞. Then Zn ⇒ Z, a centered Gaussian process with covariance
function

min(s, t)− st− L0
1(s)L0

1(t)/Var ξ11.

3. Proof of Theorem 1

Let εi = Yi −Xiθ, ~ε = (ε1, . . . , εn)T . Note that εi are i.i.d. and have the same
distribution as e1. Sequences {εi}ni=1 and {(Ui, Xi)}ni=1 are independent.

Observe that

∆̂k =

k∑
i=1

(Yi −Xiθ̂) =

k∑
i=1

(Xi(θ − θ̂) + εi)

=

k∑
i=1

(Xi(θ − (XTX)−1XTY ) + εi)

=

k∑
i=1

(Xi(θ − (XTX)−1XT (Xθ + ~ε)) + εi)

=

k∑
i=1

(εi −Xi(X
TX)−1XT~ε).

Note that X[nt]/n → L(t) a.s. uniformely on compact sets, and XTX/n → G
a.s.
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So we study the process
[nt]∑
i=1

(εi − L(t)G−1XT~ε), t ∈ [0, 1]

 .

This process is a bounded linear functional of an (m+ 1)-dimensional process
[nt]∑
i=1

(Xiεi, εi), t ∈ [0, 1]

 .

We use the functional central limit theorem for induced order statistics by
Davydov and Egorov (2000).

We assume that ηi = ξiθ + ei, {ei}ni=1 and {ξi}ni=1 are independent, {ei}ni=1 are
i.i.d., E e1 = 0, Var e1 = σ2 > 0.

Consider the rows (δi, ξiei, ei) = (δi, ξi1ei, . . . , ξimei, ei). We have

E(ξ1e1 | δ1 = x) = 0, E(e1 | δ1 = x) = 0, x ∈ [0, 1].

The conditional covariance matrix of the vector (ξ1e1, e1) is

b̃2(x) = E
(
(ξ1e1, e1)T (ξ1e1, e1) | δ1 = x

)
= σ2

(
b2(x) + hT (x)h(x) hT (x)

h(x) 1

)
.

Let b̃(x) be an upper triangular matrix such that b̃(x)b̃(x)T = b̃2(x). Then

b̃(x) = σ

(
b(x) hT (x)
0 1

)
.

Here b(x) is an upper triangular matrix such that b(x)b(x)T = b2(x). By Theorem
1 of Davydov and Egorov (2000) the process 1√

n

 [nt]∑
i=1

Xiεi,

[nt]∑
i=1

εi

T

, t ∈ [0, 1]


converges weakly in the uniform metrics to the Gaussian process{∫ t

0

b̃(x) dWm+1(x), t ∈ [0, 1]

}
.

Here Wm+1 = (W1, . . . ,Wm+1)T is an (m + 1)-dimensional standard Wiener
process.

So the process  1

σ
√
n

[nt]∑
i=1

(εi − L(t)G−1XT~ε)T , t ∈ [0, 1]


converges weakly in the uniform metrics to the Gaussian process Z = {Z(t), t ∈
[0, 1]},

Z(t) = Wm+1(t)− L(t)G−1

(∫ 1

0

b(x) dWm(x) +

∫ 1

0

hT (x) dWm+1(x)

)T
,

Wm = (W1, . . . ,Wm)T .
By the noted convergencies X[nt]/n → L(t) a.s. uniformely on compact sets,

XTX/n→ G a.s., the process Zn has the same weak limit Z.
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The covariance function of the limiting Gaussian process Z is

K(s, t) = EZ(s)Z(t)

= min(s, t)− L(s)G−1

∫ t

0

hT (x) dx− L(t)G−1

∫ s

0

hT (x) dx

+L(s)G−1

∫ 1

0

(b2(x) + hT (x)h(x)) dxG−1LT (t)

= min(s, t)− L(s)G−1LT (t).

The proof is complete.
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