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CUBATURE FORMULAS ON THE SPHERE THAT ARE

INVARIANT UNDER THE TRANSFORMATIONS

OF THE DIHEDRAL GROUP OF ROTATIONS D4

A.S. POPOV

Abstract. An algorithm for �nding the best cubature formulas (in a
sense) on the sphere that are invariant under the transformations of the
dihedral group of rotations D4 is described. This algorithm is applied for
�nding parameters of all the best cubature formulas of this symmetry
type up to the 35th order of accuracy.

Keywords: numerical integration, invariant cubature formulas, invari-
ant polynomials, dihedral group of rotations.

1. Introduction

Cubature formulas on the sphere invariant under the transformations of various
dihedral groups of symmetries were considered in [1�7]. In particular, in [3], we pro-
posed an algorithm for constructing the best cubatures (in a sense) on the sphere
invariant under the dihedral group of rotations with inversion D6h, in [4] � un-
der the group D4h, in [5] � under the group D2h, in [6] � with respect to the group
D5d, and in [7] � with respect to the group D3d. All cubatures invariant under
these groups have central symmetry and hence are accurate for all odd functions.

In the present article, we describe an analogous algorithm for constructing the best
cubatures invariant under the general dihedral group of rotations D4. We carry out
computations by this algorithm with the purpose of �nding the parameters of all
the best cubatures of this symmetry group up to 35th order of accuracy n. We give
the parameters of new cubatures with 16 signi�cant digits for n = 10, 12.
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2. An Algorithm for Finding the Best

Cubatures of the Group D4

Let S be the unit sphere centered at the origin, i.e., the set of the points (x, y, z) ∈
R3 for which x2 + y2 + z2 = 1. On S, consider the integral

U(f) =
1

4π

∫
S

f(s) ds, (1)

where s ∈ S, ds is the surface element of the sphere, U(1) = 1.
For �nding integral (1), construct a numerical cubature formula invariant un-

der the transformation of the group D4 in the form

V (f) = A0

2∑
j=1

f(a0j) +B0

4∑
j=1

f(b0j) + C0

4∑
j=1

f(c0j) +

M∑
i=1

Ai

8∑
j=1

f(aij), (2)

where the 2 points a0j lie at the poles of the dihedron (bipyramid) inscribed
in the sphere and have coordinates (0, 0,±1); the 4 points b0j lie at the vertices
of the base of the dihedron with coordinates (±1, 0, 0), (0,±1, 0); the 4 points c0j
correspond to the midpoints of the base of the dihedron with coordinates
(±1/

√
2,±1/

√
2, 0); the 8 points aij correspond to points of general position on the la-

teral faces of the dihedron with coordinates (ai, bi, ci), (ai,−bi,−ci), (−ai, bi,−ci),
(−ai,−bi, ci), (bi, ai,−ci), (bi,−ai, ci), (−bi, ai, ci), (−bi,−ai,−ci).

Observe that we associate our dihedron with the right bipyramid inscribed
in the sphere whose poles lie at the axis z and whose common bases, which are
squares, lie in the equator plane z = 0 (see, for example, [8]). Our dihedron is taken
to itself under rotations by an angle that is a multiple of π/2 around the fourth-order
axis z. These rotations constitute a cyclic symmetry group C4. Moreover, the dihe-
dron goes to itself under the rotation by the angle π around any of the second-order
axes lying in the plane z = 0 and joining the origin to the vertices or edges of the di-
hedron [8]. The family of all these transformations forms a symmetry group called
the group D4 [9, Chapter 12]. This group contains 8 elements: 4 rotations around
the fourth order axis z and 4 rotations around the second-order horizontal axes.
In (2), one of the second-order axes coincides with the axis x; therefore, the cubature
is invariant under the change of the point (x, y, z) by (x,−y,−z).

Denote the total number of the nodes in the cubature formula (2) by N .
Let {Zkj(x, y, z); k = 0, 1, . . . , n; j = 1, 2, . . . , 2k+1} be an orthonormal system

of polynomials of degree at most n for which U(ZkjZlm) = δklδjm. Here the in-
dex k enumerates the degrees of the basis polynomials and the index j enumerates
the polynomials at a given k; δkl is the Kronecker symbol.

We say that the given cubature formula has algebraic accuracy order n (or simply
order n) if it is accurate for all polynomials of degree at most n and is not accurate
at least for one polynomial of degree n + 1. Refer as the error of the cubature
formula (2) at the polynomials of degree k to the quantity (see [10])

Ek =

2k+1∑
j=1

(U(Zkj)− V (Zkj))
2

1/2

.

For a cubature formula of order n, all the quantities Ek = 0 for k ≤ n and
En+1 > 0. The quantity En+1 characterizes the degree of proximity of this cubature
of order n to the cubature of order n+ 1.
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In the present article, we attempt at constructing all the best cubature formulas
of the form (2) on the sphere for n ≤ 35. Moreover, as the best among all cuba-
ture formulas of this form having a given order n, we regard cubatures satisfying
the following four conditions (see [10]): (1) the nodes belong to the integration
domain; (2) the weights are positive; (3) the number of the nodes is minimal; (4)
the quantity En+1 is minimal.

In application to our case, Theorem 1 in [11] sounds as follows:

Theorem 1. For cubature (2) to have order n, it is necessary and su�cient that
it be accurate for all polynomials of degree at most n invariant under the group D4.

It is known (see, for instance, [11]) that every polynomial invariant under the cyclic
group Ck is representable on the unit sphere as a polynomial of the basis invari-
ant forms z = cos θ, p = sink θ cos kϕ, and q = sink θ sin kϕ, where θ and ϕ are
the angular coordinates of the spherical coordinate system.

In the case of the dihedral groupDk, to the invariant transformations of the group
Ck, the requirement of invariance under the replacement of the point (x, y, z)
by the point (x,−y,−z). Obviously, after such replacement, the basis form p does
not change, and the basis forms z and q change sign. Consequently, z2, p, and zq
are invariant forms for Dk.

Thus, every polynomial invariant under D4 is representable on the unit sphere
as a polynomial of the basis invariant forms

u = sin2 θ = x2 + y2, v = sin4 θ cos 4ϕ = (x4 − 6x2y2 + y4),

w = cos θ sin4 θ sin 4ϕ = 4(x2 − y2)xyz,
which are polynomials of degrees 2, 4, and 5 respectively. Here x = sin θ cosϕ,
y = sin θ sinϕ, z = cos θ.

Note that u = v = w = 0 at the nodes a0j ; u = v = 1, w = 0 at the nodes b0j ;
u = 1, v = −1, w = 0 at the nodes c0j .

Write down all the polynomials constituting the basis in the space of polynomials
invariant under D4 up to degree 12:

1, u, u2, v, w, u3, uv, uw, u4, u2v, v2, u2w, vw, u5, u3v, uv2, u3w, uvw, u6, u4v, u2v2, v3.

Since w2 = (1 − u)(u4 − v2), the polynomials w occur in the basis at most
in degree 1.

The parameters of cubature (2) are the weights A0, B0, C0, Ai and the coordi-
nates of the nodes aij . With account taken of the constraint equations a2i +b

2
i +c

2
i =

1, it is easy to see that the nodes a0j , b0j , and c0j have one free parameter each
(their weights A0, B0, and C0), and the nodes aij � three free parameters each.
As a result, for one free parameter, we have: 2 nodes a0j , 4 nodes b0j or c0j , 8/3
nodes aij .

Denote the total number of basis polynomials of degree at most n by m. Since
the total number of free parameters in a cubature of order n must be m, for ob-
taining a formula with the minimal number of nodes N for given n, it is the most
economic to use �rst the nodes a0j , then aij , and only in the last place, the nodes b0j
and c0j .

Three cases are possible:
(1) m = 3M , put A0 = B0 = C0 = 0 in (2);
(2) m = 3M + 1, put B0 = C0 = 0;
(3) m = 3M + 2, put C0 = 0.
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In considering these cases, we departured from the conjecture that such para-
metrizations lead to solvable systems of nonlinear equations and, as a result, give
cubatures with positive weights and nodes lying on the sphere. Our experience
of practical computations speaks in favor of this conjecture (see the next section).

By analogy with [2�7], in implementing practical computations with the purpose
of �nding the parameters of concrete cubatures, it is more convenient to use not
the parameters ai, bi, ci but the parameters ui, vi, wi, which are equal to the value
of the functions u, v, w at the nodes aij respectively. The equations

w2
i = (1− ui)(u4i − v2i ),

of te constraints imposed on the parameters of each of the M groups of points aij
will not be solved explicitly but added to the initial system ofm equations that arise
after substituting all the basic functions for f in (2). Thus, in total, we will have
m+M equations de�ning the parameters of our cubature. Solving this system, we
obtainM sets of parameters ui, vi, wi. For �nding the parameters ai, bi, ci through
the found quantities ui, vi, wi, we can use the following algorithm:

1. Let xi ≥ yi ≥ 0 be the roots of the quadratic equation

x2 − uix+ (u2i − vi)/8 = 0.

2. If wi ≥ 0 then we put ai =
√
xi, bi =

√
yi; otherwise, ai =

√
yi, bi =

√
xi.

3. Put ci =
√
1− ui.

Since the group D4 is a subgroup of the previously studied dihedral group
of rotations D4h [4] and also a subgroup in the octahedral group of rotations O
[10] and the octahedral group of rotations with inversion Oh [12], we infer that,
for some n, the best cubatures of the group D4 may coincide with the best cuba-
tures of the groups D4h, O, or Oh.

3. Construction of Concrete Cubatures of the Group D4

Applying the above-described algorithm to searching for the best cubatures
of di�erent accuracy orders n ≤ 35, we �nd that, for all odd n ≥ 3 and also
for even n = 6k + 2 (k = 1, 2, . . . ), the best cubatures of the group D4 either coin-
cide with the best cubatures of the groups D4h, O, or Oh, or have the same number
of nodes with them but lesser En+1. And for all even n = 6k, 6k − 2, the best
cubatures of D4 contain less nodes compared to the best cubatures of the above-
mentioned groups of greater symmetry.

Let us give parameters of these cubatures for n = 4, 6, 10, 12.
The cubature n = 4, N = 10, M = 1, A0 = 1/12, B0 = C0 = 0, A1 = 5/48,

a21 = (2 +
√
2)/5, b21 = (2−

√
2)/5, c21 = 1/5.

This formula has symmetry of the group D4d (see [9]) and was �rst obtained
in [13].

The cubature n = 6, N = 18, M = 2, A0 = 2/45, B0 = C0 = 0,

A1 = (410−
√
30)/7200, A2 = (410 +

√
30)/7200,

a21 = (2 +
√
2)(18 +

√
30)/98, a22 = (2−

√
2)(18−

√
30)/98,

b21 = (2−
√
2)(18 +

√
30)/98, b22 = (2 +

√
2)(18−

√
30)/98,

c21 = (13− 2
√
30)/49, c22 = (13 + 2

√
30)/49.

This formula also has symmetry of the group D4d and was �rst obtained in [2].
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The calculation of the parameters of the best cubatures for n ≥ 10 was car-
ried out with the use of high-precision arithmetic (more than 30 decimal digits
in the mantisse) on the computers of the Siberian Supercomputer Center. The sys-
tems of nonlinear algebraic equations were solved by a Newton-type numerical
method similar to [7].

The cubature n = 10, N = 42, M = 5, B0 = C0 = 0,

A0 = 0.1707368048833795E − 1,

A1 = 0.2208270226198964E − 1, a1 = 0.9635859193619932E + 0,

A2 = 0.2366264992934368E − 1, a2 = 0.4190127133746219E + 0,

A3 = 0.2432888483971895E − 1, a3 = 0.7249667564133890E + 0,

A4 = 0.2528591841740224E − 1, a4 = 0.1947604331832231E + 0,

A5 = 0.2537142442946100E − 1, a5 = 0.4943310656026484E + 0,

b1 = 0.7710698688737620E − 1, c1 = 0.2560404041952213E + 0,

b2 = 0.2205903040844950E + 0, c2 = 0.8807770795010205E + 0,

b3 = 0.4797191177902702E + 0, c3 = 0.4942598204608329E + 0,

b4 = 0.7213078384591524E + 0, c4 = 0.6646678688214653E + 0,

b5 = 0.8583324505779122E + 0, c5 = 0.1374852787212724E + 0.

The cuubature n = 12, N = 58, M = 7, B0 = C0 = 0,

A0 = 0.1080668094738448E − 1,

A1 = 0.1534631500768976E − 1, a1 = 0.9752107546726020E + 0,

A2 = 0.1647228010740910E − 1, a2 = 0.2013757821457838E + 0,

A3 = 0.1768832068955872E − 1, a3 = 0.8091166365336792E + 0,

A4 = 0.1795325045042185E − 1, a4 = 0.4297100226541010E + 0,

A5 = 0.1808174912167061E − 1, a5 = 0.1062559919703926E + 0,

A6 = 0.1816125836101417E − 1, a6 = 0.5718669807444403E + 0,

A7 = 0.1859515602538967E − 1, a7 = 0.6340476258553069E + 0,

b1 = 0.2151032513600321E + 0, c1 = 0.5190929806149267E − 1,

b2 = 0.3342269401944399E + 0, c2 = 0.9207280525830828E + 0,

b3 = 0.4314221777519450E + 0, c3 = 0.3990052293243727E + 0,

b4 = 0.6283022507470571E + 0, c4 = 0.6485256958184419E + 0,

b5 = 0.8990890828883328E + 0, c5 = 0.4246745638738026E + 0,

b6 = 0.8010558027685969E + 0, c6 = 0.1768551870457772E + 0,

b7 = 0.1383990010901307E + 0, c7 = 0.7608083363400422E + 0.

Let us now give a summary table containing the main characteristics of the best
cubatures of the group D4 to date up to the 35th accuracy order.
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n N η En+1 G L n N η En+1 G L
1 2 0.6667 2.2361 D∝h [14] 19 134 0.9950 1.1542 O [17]
3 6 0.8889 2.2913 Oh [14] 20 150 0.9800 0.5903 O [18]
4 10 0.8333 1.7550 D4d [13] 21 162 0.9959 0.9850 D4

5 14 0.8571 1.8696 Oh [15] 22 178 0.9906 0.8271 D4

6 18 0.9074 1.8033 D4d [2] 23 192 1.0000 1.2936 O [17]
7 22 0.9697 2.1197 D4h [13] 24 210 0.9921 0.9418 D4

8 30 0.9000 1.7299 O [16] 25 226 0.9971 1.0524 D4

9 34 0.9804 2.0546 D4h [4] 26 246 0.9878 0.6234 O [10]
10 42 0.9603 1.7392 D4 27 262 0.9975 0.8524 D4

11 48 1.0000 1.6928 O [17] 28 282 0.9941 0.7105 D4

12 58 0.9713 1.7165 D4 29 302 0.9934 0.7301 D4

13 66 0.9899 1.9098 D4h [4] 30 322 0.9948 0.6672 D4

14 78 0.9615 1.6954 O [18] 31 342 0.9981 0.4297 O [10]
15 86 0.9922 1.7104 Oh [19] 32 366 0.9918 0.3121 O [10]
16 98 0.9830 1.6605 D4 33 386 0.9983 0.5511 D4

17 110 0.9818 1.4290 D4 34 410 0.9959 0.4788 D4

18 122 0.9863 1.2664 D4 35 432 1.0000 0.7666 O [10]

Here η = (n + 1)2/(3N) is the so called e�ectivity coe�cient (see, for example,
[16, 19]), G is the symmetry group of the cubature, L is a reference to the original
source.

The table shows that, for all n, the best cubatures of the groupD4 have η ≤ 1 and
η = 1 for n = 12k − 1, k = 1, 2, . . . . It also demonstrates that, in principle, η → 1
as n grows. We can also notice that, in principle, as n grows, the quantity En+1

weakly decreases for the best cubatures while remaining a quantity of order 1.
The analogous situation also holds for other symmetry groups (see, for example,
[6, 7]).

Note that the cubatures for n = 1, 3, 4, 6, 10, 11, 12, 16, 18, 22, 24, 28, 30, 34
given in this table are the best to date not only for the group D4 but also for all
the symmetry groups.

4. Conclusion

We have presented an algorithm for �nding the best cubature formulas for
the sphere invariant under the general dihedral group of rotations D4. Compu-
tations by this algorithm are carried out with the aim to �nd the parameters of all
the best cubatures of the given symmetry kind up to the 35th accuracy order n.
The parameters of new cubatures for n = 10, 12 are given with 16 signi�cant
digits. The numerical method used in the article does not guarantee that all pos-
sible solutions have been found to the system of nonlinear equations from which
the parameters of the cubature are determined. Therefore, it is not impossible that
the results obtained in the article can be improved for some n.
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