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PROOF SEARCH ALGORITHM IN PURE LOGICAL

FRAMEWORK

D.YU. VLASOV

Abstract. A pure logical framework is a logical framework which
does not rely on any particular formal calculus. For example, Metamath
(http://metamath.org) is an instance of a pure logical framework. Another
example is the Russell system (https://github.com/dmitry-vlasov/russell-
�ow), which may be considered a high-level language based on Metamath.
In this paper, we describe the proof search algorithm used in Russell. The
algorithm is proved to be sound and complete, i.e. it gives only valid
proofs and any valid proof can be found (up to a substitution) by the
proposed algorithm.
Keywords: automated deduction, logical framework.

1. Introduction

Historically, there are several approaches to automated reasoning for logical
frameworks. The most popular is LCF [5], where the proofs are generated by
programs (tactics), and a user is responsible for programming these tactics and
using them in the process of proving a statement [6] - such systems as HOL, Isabelle,
etc. use this approach. The other approach was invented and was explored by S.
Maslov [7] - so called inverse method. The �rst applications of the Maslov' method
for program veri�cation were attempted 50 years ago [2].

The algorithm, which will be discussed in this paper has nothing in common
with LCF methodology, but it shares speci�c features with the inverse method.
Although, strictly speaking, this algorithm is of bottom-up kind (see classi�cation of
algorithms in [6], p.172), it has a top-down component, which, in turn, shares some
common features with the inverse method. Another method, which has something
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common with our algorithm is Prawitz method [10]. This joint idea is search for a
special computable substitution that is able to make combinable several fragments
of the proof, while going �downwards�, from premises to goal. The resolution method
[11] also uses analogical idea (namely uni�cation), but it tries to unify positive and
negative entries of a proposition, therefore searching for an inconsistency, instead
of compatibility.

The main di�erence between our algorithm and a top-down approach in [6]
consists in locality (i.e. it a�ects only a currently observed inference transition)
of the method that makes it e�cient (but still non-trivial)

2. Inference in a Pure Logical Framework

2.1. Language and Deductive System. Let's consider a de�nition of a deductive
system D. First of all, let's �x a context free unambiguous grammarG for a language
of expressions L(G) with set of non-terminals N . For each n ∈ N let's designate
as Gn a grammar, obtained from G by changing the start non-terminal to n. We
need these grammars because the formalized calculus may exploit expressions from
di�erent Gn languages. To show the fact, that an expression e belongs to language
Gn we will use notation e : n. The reason to use this type-style notation (instead
of e ∈ L(Gn)) is that it is used in the implementation language. We suppose, that
for each non-terminal n there is an in�nite set of terminal symbols v, such that the
rule n → v is in G, so that v : n. We will call such symbol v a variable of type n.
Let's denote var(e) all variables, which occur in an expression e.

The assertion has a form a = p1,...,pn
p0

where p1, . . . , pn are premises and p0 is a

proposition of a. Assertion with n = 0 is called an axiom, otherwise it is called an
inference rule. The deductive system D is a pair: D = (G,A) where G is a grammar
of expressions and A is a set of axiomatic assertions of D (axioms and rules of
inference).

2.1.1. Remark on terminology. In the further text the terminology is inspired by a
Metamath formal system, where a notion of an �assertion� or �statement� corresponds
to the standard notion of an �inference rule� (axiomatic or admissible), an �axiomatic
assertions� corresponds to the standard notion of an �axiom�, and a �provable
assertion� to a �derivable rule� or �theorem�.

2.2. Matching. Given a �nite set of variables V = {vi : ni|i < k} and a set of
expressions E = {ei : mi|i < k}, a mapping θ : V → E is called a substitution, i� for
any i < k the rule ni → mi is derivable in grammar G. This means, that in grammar
G you may substitute non-terminal n with non-terminal m, and, therefore, with
the expression e. For example, in a formal set theory that admits classes and sets,
a substitution of a set instead of class should be legal and valid but not vice versa.

Application of a substitution θ to an expression e is straightforward and is
designated as θ(e). Note, that application of substitution demands a conformity
of variable types. Further we will assume, that all application of substitution are
type-correct. By de�nition of substitution, if e is an expression from L(G), and
θ is applicable to e then θ(e) also stays in L(G) - this follows from the context
freedom of G. The application of substitution to a complex object (like assertion
or proof) is understood component-wise. There is a natural notion of composition
of substitutions, which we will denote as (θ ◦ η)(e) = θ(η(e)).
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An expression e1 matches with an expression e2, i� there is a substitution θ
such that e2 = θ(e1). Such substitution is called a matching of e1 with e2. The
consequence of grammar unambiguity is that if a matching exists, it is unique.

2.3. Inference. A pseudo-inference tree in a deduction system D = (G;A) is a
�nite tree, which nodes are labeled: of odd depth with deduction rules from A(a-
nodes) and of even depth with expressions from L(G) (e-nodes) and any e-node has
at most one descendant a-node. Also we demand that leafs must be only e-nodes
and a-nodes are labeled with substitutions, so actually a label of an a-node is a pair:
(a, θ) - an assertion and a substitution. Note, that here we don't demand validity:
pseudo-inference may be invalid.

Two pseudo-inference trees T1 and T2 are congruent, i� their graph structures
are isomorphic, corresponding a-nodes have the same assertions as labels, and no
restrictions on e-nodes. Let's designate this relation as T1 ∼ T2.

Given two pseudo-inference trees T1 and T2, we say that T1 is more general
then T2 (respectively, T2 is less general then T1), i� there exist such substitution
δ, that T2 = δ(T1) (recall, that application of substitution to complex structures is
component-wise).

An inference tree is a pseudo-inference tree, if for any transition from e-nodes
e1, . . . en via a-node a to e-node e0 there exists a substitution θ such that e1,...en

e0
is

equal to θ(a) (where θ is called a witness of this transition).
An assertion s = p1,...pn

p0
is said to be derivable (in the system (G,A)), if there

exist an inference tree with the root p0 where the set of leaves is {p1, . . . pn}.
Note, that since the main goal of this system is to show the derivability of

assertions, which may have premises, we don't separate the class of derivable
assertions, which leafs are axioms.

Lemma 1 (Monotonicity). Let πbe a proof of a derivable assertion s and θ � any
substitution of variables, which occur in s. Then θ(π) is a the proof of the derivable
assertion θ(s).

Proof. It is su�cient to notice, that application of a substitution to each proof
transition keeps matching: if e0 is deduced from e1, . . . , en in the proof π with
assertion b and substitution η is its witness, then θ(e0) is deduced from

θ(e1), . . . , θ(en)

with the same a and substitution θ ◦ η is its witness. �

The notion of a deductive system, presented here is very close to the notion of
canonical deductive system given by Post [9]. The di�erence is in the treatment of
expressions: Post's canonical system doesn't constrain the set of legal substitutions.
Here we restrict the language to context-free unambiguous class, so that e�cient
uni�cation/matching algorithms are possible. Also, monotonicity property, which
we need to prove correctness, is proved only for the context-free grammars. Unambi-
guity of grammar is necessary for the uniqueness of a matching and uni�er (up to
renaming).

3. Proof Search Algorithm

Suppose that we have a deductive system D and we want to answer the question:
is some particular statement s provable in D? Let's note, that there is no symmetry
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in asking for provability and non-provability of s in general case, because it is
possible to show provability by giving actual proof and checking it, but it is not
possible to assert that something is not provable - we might not have a negation in
the deductive system (once more let's stress here that we are speaking about the
general case, for a particular decidable calculus it may be wrong).

From the general considerations, while searching for a proof for the statement
s = p1,...,pn

p0
we may follow di�erent strategies:

(1) start with premises p1, . . . , pn make various inferences and try to obtain the
goal p0 (downwards approach)

(2) start with the goal p0, look for all possible ways how it can be obtained in
D, get the sub-goals q1, . . . , qm and do the same for them, until we come
up to premises (upwards approach)

The outer loop of the algorithm uses the second variant - upwards search, from
conclusion to premises, but inside of it there is a top-down loop. So, in a very
general sense, the proposed algorithm uses both proof-search strategies: bottom-up
and top-down, but they are not equal and play di�erent roles. Namely, upwards pass
is a traversal of possible variants to derive a goal, while downwards pass is a quest
for valid consequences of premises which uses the structure of a tree, which is built
during the upwards pass. When we reach the root on the downwards pass, then the
target statement is proved. Summarizing the above, the proposed algorithm uses a
mixture of top-down and bottom-up strategies.

3.1. Proof Variant Tree. The proof search algorithm essentially is construction
of a tree of proof variants - so called proof variant tree (PV-tree). The completeness
of the algorithm is guaranteed by the completeness of the tree of variants. The
PV-tree nodes are marked with expressions (nodes of even depth) and assertions
(nodes with odd depth) - just like proof trees. The variables of e-nodes are marked
up with replaceable/non-replaceable �ags. It is necessary because some variables
are passed from the statement, which is being proved, so they cannot be replaced
or modi�ed, therefore they are marked as non-replaceable; while others come from
internal expressions of a proof and may be substituted with arbitrary expressions.
The starting point of the tree construction algorithm is a goal expression p0, all
of its variables are marked as non-replaceable and these variables will stay non-
replaceable while tracing further into the PV-tree.

Given a node of even depth, which is marked up with an expression e, we fork
it out with nodes, marked up with all assertions {a1, . . . , an} where the conclusion
is uni�able with e with some substitution θ. In turn, for each of odd-depth node
a = q1,...,qn

q0
and appropriate substitution θ, its premises θ(q1), . . . , θ(qn) form a

set of direct descendants of a. Almost for sure there will be a collision of variable
names at this step (except for a very rare occasions), so to avoid it we will accept
an agreement that while matching a with e, we will replace all variables of a, which
are not substituted with θ, with new fresh ones. Precedence is a binary relation on
PV-trees which is designated as n � m: here n is a direct descendant of m.

For any subtree of an PV-tree we say that it is a proof variant, i� any e-node
in it has at most one descendant. Any proof variant v immediately generates a
pseudo-inference tree π(v), when we remove all unrelated data from it.

Lemma 2. Any proof variant π is more general, then any other pseudo-inference
tree π′, which is congruent to π and has the same root node.
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Proof. By induction on the depth of π. The base is trivial: when the depth is 1,
then both trees are root nodes, which coincide. Step of induction. Let's consider
some highest inference step in π and π′, both due to some assertion a = p1,...,pn

p0
.

Corresponding e-nodes are e1,...,en
e0

and
e′1,...,e

′
n

e′0
for π and π′ correspondingly (here

ei and e
′
i are leafs of corresponding trees). By induction there is a substitution δ

such that δ(e0) = e′0. By construction of π and π′ there are substitutions θ and
θ′ such that ei = θ(pi) and e′i = θ′(pi) for all 0 ≤ i ≤ n. To prove the step of
induction we need to extend δ to such substitution ε ⊇ δ that ε(ei) = e′i for all i.
For further considerations let's introduce following sets of variables: V0 = var(e0)
and V1 = (

⋃
1≤i≤n var(ei)) \ V0; W0 = var(p0) and W1 = (

⋃
1≤i≤n var(pi)) \W0.

First of all let's notice, that any variable x ∈ V1 is an image of some variable
y ∈ W1 by θ, because when we construct PV-tree, we introduce fresh variables for
all variables from a, which are not touched by matching with assertion proposition.
So, for those variables x ∈ V1 the inverse mapping θ−1(x) = y is de�ned. Let's
de�ne the substitution ε point-wise (variable-wise):

ε(x) =

{
δ(x), if x ∈ V0
θ′(θ−1(x)), otherwise, i.e. x ∈ V1

Now let's check, that ε(ei) = e′i for all i > 0 (the case i = 0 follows from δ ⊆ ε). If
ε(ei) 6= e′i for some i, then (ε◦θ)(pi) 6= θ′(pi). Then there is some x ∈W0∪W1 such
that (ε ◦ θ)(x) 6= θ′(x). If x ∈ W0, then (ε ◦ θ)(x) is a subexpression of e0, and on
variables of e0 subsitutions ε and δ act the same, so (ε◦θ)(x) = δ(θ(x)) 6= θ′(x) and
δ(e0) 6= e′0 - contradiction. In case when x ∈ W1 we know, that θ(x) = y for some
y ∈ V1, so by de�nition of ε we have (ε ◦ θ)(x) = ε(y) = θ′(θ−1(y)) = θ′(x). �

3.2. Substitution Pseudo-Inference Tree. The nodes in PV-tree are marked
not only by the expressions and assertions. Each node n in PV-tree has a set of its
substitution pseudo-inference trees, which is designated as s(n). Substitution pseudo-
inference tree (SPI-tree) T is a pseudo-inference tree, which nodes are labeled with
the nodes of PV-tree and substitutions. The substitution of a root node will be
addressed as θ(T ).

Initially, when created, the set of SPI-tree for any PV-tree node is empty. Let's
consider some just created PV-tree e-node e. We look at the premises p1, . . . , pn of
a statement, which is proved. If some pi of these premises matches with e (note,
that here variables in e are non-replaceable!), then e is trivially provable from pi.
So we place the one-node SPI-tree, constructed from the matching substitution and
current PV-tree node, into the set of SPI-tree for this node.

If we �nd a new SPI-tree node for some e-node, then we try to shift it a step
down to the root. For this purpose we test all of its siblings (they correspond to
the premises of some assertion) for being also proved (i.e. the set of SPI-tree is
non-empty). If we �nd, that all siblings of the node are proven, we can try to go
a step further to the root and �nd an SPI-tree node for its ancestor. To do it we
need a concept of uni�cation of substitutions.

3.2.1. Uni�cation of Substitutions. Two substitutions θ1 and θ2 are called compatible,
i� ∀x ∈ dom(θ1)∩dom(θ2) θ1(x) = θ2(x). This relation is designated as θ1 ∼c θ2. It
is obvious, that relation∼c is an equivalence and θ1 ∼c θ2 ⇔ θ1∪θ2 is a substitution

Given a set of substitutions Ξ = {θ1, . . . , θn}, we say that a substitution δ is a
uni�er for Ξ, i� for all i, j ≤ n we have δ◦θi ∼c δ◦θj . Uni�er δ is calledmost general,
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i� for any other uni�er η for the set Ξ, there is such η′ that η = η′ ◦ δ. For each
set Ξ, if a uni�er for Ξ exists, there is a unique up to the variable renaming most
general uni�er, which we will designate as mgu(Ξ). And the common substitution⋃
i mgu(Ξ) ◦ θi will be designated as com(Ξ)

3.2.2. Building SPI-tree for Assertion Nodes. So, imagine that we have some a-
node a in the proof variant tree, and all of its direct descendants e1, . . . , e2 have
non-empty sets of SPI-tree s(e1), . . . , s(en). Then for any tuple of SPI-tree T1 ∈
s(e1), . . . , Tn ∈ s(en), if the set of substitutions {θ(T1), . . . , θ(Tn)} is uni�able, and
δ is the most general uni�er for it (i.e

δ = mgu(θ(T1), . . . , θ(Tn))

) then a new SPI-tree T0 with substitution θ = com(θ(T1), . . . , θ(Tn)) is added to
s(a). The tree of T0 is obtained as:

T0(T1, . . . , Tn) =
δ(T1) . . . δ(Tn)

(θ, a)

Note, that uni�er δ, obtained at this step, propagates through the whole trees
Ti (applies to all of its components: expressions and substitutions). Also, non-
replaceable variables cannot be substituted with at this step. So, the set of all
SPI-tree for the node a will be:

s(a) = {T0(T1, . . . , Tn)|T1 ∈ s(e1), . . . , Tn ∈ s(en),∃mgu(θ(T1), . . . , θ(Tn))}

3.2.3. Building SPI-tree for Expression Nodes. The set of SPI-tree for the e-node e
is updated at each update of SPI-tree set of any of its descendants. For an e-node
e, if one of its descendants is updated with the SPI-tree s, then the set s(e) is also
updated with a new node, which only descendant is s and substitution coincides
with the substitution of a descendant:

T0(T1) =
T1

(θ, e)

and a set of all SPI-tree nodes for the node e will be:

s(e) =
⋃
a�e
{T0(T1)|T1 ∈ s(a)}

Lemma 3. Each substitution pseudo-inference tree T de�nes a unique proof variant
π(T ).

Proof. Induction on the depth of T . The base is trivial: when we match some
expression with a premise of a proven assertion, it clearly generates a proof variant.
Step of induction comes from the de�nition of SPI-tree for e-nodes: each SPI-tree
e-node has at most one direct descendant. �

Theorem 1 (Soundness). For any substitution pseudo-inference tree T with root
(θ, e) the tree π(T ) is an inference tree of θ(e).

Proof. Let's prove it by induction on the depth of T . The base of induction is trivial:
we have no obligations on leafs except for them to be e-nodes.

Let's assume that for some assertion node a = q1,...,qm
q0

it has an SPI-tree

node T0 with substitution θ0 and T1, . . . , Tm are direct descendants of T0. Let
e0 be a unique ancestor of a in the PV-tree. Then, by de�nition, for substitutions
θ1, . . . , θm, corresponding to T1, . . . , Tm we have that the set {θ1, . . . , θm} has a
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uni�er δ. By induction, all Ti induce proofs π1(T1), . . . , πm(Tm) for expressions
θ1(e1), . . . , θm(em). By the de�nition of uni�er of substitutions, for all 1 ≤ i, j ≤ m
we have that δ ◦ θi ∼ δ ◦c θj and by construction of T0:

θ0 =
⋃

1≤i≤m

δ ◦ θi

Also there is a substitution η such that η(q0) = e0 and η(qj) = ej for all j ≤ m.
Let's consider a substitution η′ = θ0 ◦ η:

η′(q0) = (θ0 ◦ η)(q0) = θ0(η(q0)) = θ0(e0)

η′(qi) = (θ0 ◦ η)(qi) = θ0(η(qi)) = (δ ◦ θi)(η(qi)) = (δ ◦ θi)(ei) = δ(θi(ei))

By monotonicity lemma δ(π(si)) will be a proof of δ(θi(ei)), so η
′ is a witness for

the observed transition in the proof. �

Lemma 4. Let's consider disjoint SPI-tree trees T1 and T2, with roots e1 and e2
correspondingly. Then var(T1) ∩ var(T2) = var(e1) ∩ var(e2).

Proof. First of all, let's notice, that this property holds for PV-tree trees. Indeed, if
T1 and T2 are two PV-tree with roots e1 and e2, then when we build T1 and T2 up
from e1 and e2 correspondingly, then at each expansion step variables are kept or
new fresh variables are introduced. When we construct SPI-tree, then substitutions,
which a�ect nodes of SPI-tree, are constructed only from variables from the upper
part of the tree, so, this property is hereditarily kept. �

Lemma 5. Let's consider two pseudo-inference trees T and T ′, with roots e and e′

correspondingly, three substitution θ, α and β such that θ(T ) = T ′, (α ◦ β)(e) = e′

and require, that

(1) dom(β) ∩ dom(θ) ⊆ var(e)
(2) var(im(β)) ∩ dom(θ) ⊆ dom(β)
(3) dom(α) ∩ dom(θ) ⊆ var(im(β))

Then there is a substitution σ such that θ = σ ◦ (β �dom(θ)).

Proof. Let's denote X0 = dom(β) ∩ dom(θ) and X1 = var(im(β)) ∩ dom(θ). Let's
notice, that θ(e) = e′ = α(β(e)). Then by 1 for all x ∈ var(e) we have θ(x) =
α(β(x)), so by 2 and 3 we obtain that (α ◦ β) �X0

⊆ θ. Then we can decompose
θ as θ = (α ◦ β) �X0 tθ1, where dom(θ1) ∩ X0 = ∅. Then it is su�cient to take
σ = θ1 ∪ α �X1 . In fact, we have (θ1 ∪ α �X1) ◦ (β �X0) = θ1 ∪ (α ◦ β) �X0= θ. �

Theorem 2 (Dominance). If the algorithm �nds a substitution pseudo-inference
tree T for the root of PV-tree for some assertion a = p1,...,pn

p0
, then π(T ) is more

general then any proof π′ of a, congruent to π(T ).

Proof. By the correctness lemma we have that π(T ) is a proof of a. Now let's check
that π(T ) is the most general proof of a. Let π′ be another proof of a, congruent to
π = π(T ). By lemma 2 we have, that underlying PV-tree P of T is more general,
then π′, so there is a substitution ε1 such that ε1(P ) = π′.

We prove, that π(T ) is more general then π′ by induction on the depth of T .
The base of induction is obvious: leaf nodes of T are premises of a, therefore they
are the same for π and π′. The step of induction. Let's consider the lowest (root)

inferences e1,...,em
e0

and
e′1,...,e

′
m

e′0
from π and π′ accordingly. Inference step e1,...,em

e0

in T is labeled with substitution θ0 = θ(T ). By construction of SPI-tree, we can
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consider all direct SPI-tree descendants T1, . . . , Tm of the root of T , and their root
expressions e′′i . Then expressions e′′i are obtained from corresponding nodes of PV-
tree tree P with expressions e′′′i by applying substitutions θi = θ(Ti): e

′′
i = θi(e

′′′
i ).

By construction of SPI-tree there is a most general uni�er δ = mgu(θ1, . . . , θm) and
θ0 = com(θ1, . . . , θm).

By induction, for each 1 ≤ i ≤ 0 there is a substitution εi2 such that εi2(Ti) is a
subtree of π′ with root e′i and ε

i
2(ei) = e′i. Let's check, that ε2 =

⋃
1≤i≤m ε

i
2 is a

mapping, i.e. it is a substitution. It's su�cient to check, that εi2 ∼c ε
j
2, i.e. for any

x ∈ dom(εi2)∩dom(εj2) we have εi2(x) = εj2(x). Let's analyze the origin of the variable
x. It may come from expressions e′′′α , α ∈ {i, j}. Then ε1(x) is de�ned and then

εi2(x) = ε1(x) = εj2(x), because ε1(e′′′α ) = e′α = (εα2 ◦ θα)(e′′′α ) for indexes α ∈ {i, j}.
The other possible origin of x is var(im(θα)), and by construction of SPI-tree we
have that var(im(θα)) ⊆ var(Tα). By lemma 4, in this case x ∈ var(Ti) ∩ var(Tj),
so it comes from expressions e′′′α , α ∈ {i, j} and we return to the previous case.

Let's check, that ε2 is a uni�er for substitutions θi, i.e. that:

ε2 ◦ θi ∼c ε2 ◦ θj , for all 1 ≤ i, j ≤ m.
Indeed, if x ∈ var(e′′i ) ∩ var(e′′j ) (i.e. x ∈ dom(θi) ∩ dom(θj)), then ε2 ◦ θi(x) =

ε2 ◦ θj(x), because

(ε2 ◦ θα)(e′′α) = e′α = ε1(e′′α), α ∈ {i, j}
so for x we have ε2 ◦ θi(x) = ε1(x) = ε2 ◦ θj(x).
Now let's recall, that δ is a most general uni�er for θ1, . . . , θm, so there exists

such ε3 that ε2 = ε3 ◦ δ.
Then for each 1 ≤ i ≤ m we have

ε3(ei) = ε3(δ(e′′i )) = ε3(δ(θi(e
′′′
i ))) = e′i = ε1(e′′′i )

Let's designate two sets of variables: V1 =
⋃

1≤i≤n var(e′′′i ) and V0 = var(e′′′0 )\V1.
Recall that θ0 =

⋃
1≤i≤m δ ◦ θi. Then ε3(θ0(e′′′i )) = ε1(e′′′i ), so for any x ∈ V1 we

have that ε3(θ0(x)) = ε1(x).
Now let's de�ne a �nal substitution ε4 = ε3 ∪ ε1 �V0 . It is obvious, that for any

x ∈ V0 we have ε4(θ0(x)) = ε1(x) because in this case x /∈ dom(θ0), and for any
x ∈ V1 previously we got that ε4(θ0(x)) = ε3(θ0(x)) = ε1(x). So, ε4 ◦ θ0 = ε1, and
�nally we get:

ε4(e0) = ε4(θ0(e′′′0 )) = ε1(e′′′0 ) = e′0

For all other expressions ei, 1 ≤ i ≤ m we have, that var(ei) ∩ V0 = ∅, so

ε4(ei) = ε3(ei) = e′i

The last thing which is left to complete the proof is to show, that there is a
substitution ε′2, which maps trees δ(Ti) onto corresponding subtrees of π

′. To prove
this, we use lemma 5, where we take ε4 ◦ δ as α ◦ β, and for that we need to check
conditions 1-3 from lemma 5:

(1) dom(δ) ∩ dom(εi2) ⊆ var(e′′i )
(2) var(im(δ)) ∩ dom(εi2) ⊆ dom(δ)
(3) dom(ε4) ∩ dom(εi2) ⊆ var(im(δ))
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The �rst two conditions hold because δ operates on variables V =
⋃

1≤i≤m var(e′′i )

and lemma 4 is true, the third one holds because the only variables from dom(ε4),
which are not present in V , may come from variables of e0, which doesn't occur in⋃

1≤i≤m var(ei), but these variables can't fall into any set dom(εi2). �

Theorem 3 (Completeness). If a statement p1,...,pn
p0

has a proof π, then the set

s(p0) of SPI-trees for the root p0 at some moment of construction PV-tree will
contain some SPI-tree T , such that π(T ) is more general then π.

Proof. By previous theorem it is su�cient to show, that at some moment, the set
s(p0) will contain an SPI-tree congruent to π. But it is clear from the character of
the algorithm: at each step of expansion of PV-tree, we use all possible variants of
expansion (limited by demand of matching), so at some moment we will obtain all
nodes, corresponding to the proof π. �

Corollary 1. The set of all provable assertions in any pure deductive system is
computably enumerable.

As it already was mentioned, the algorithm has two di�erent aspects: bottom-
up and top-down. The bottom-up procedure (construction of a PV-tree) is quite
straightforward. The other one, top-down (construction SPI-trees), is more sophisti-
cated, and uni�cation of substitutions is a crucial part of it. Maslov' inverse method
(mentioned in the Introduction), also uses analogical procedure, but, surprisingly,
the substitution uni�cation (that is called substitution combination in [1] a combina-
tion of substitutions) is not considered as the main operation but just one in a row
of other complex formula transformations.

4. Conclusion and Future Work

The algorithm, presented in this paper, is extremely general, yet it allows practical
implementation. The generality of the underlying formal system in almost maximal,
because in comparison with the general notion of Post canonical system, it is
restricted only by the language: language has to be context free and unambiguous.
There are no other constraints like subformula property, which is vital for the
inverse method. And the restriction of grammar to context-free and unambiguous
class is natural: if you don't impose it, then there immediately arises a question
about uni�cation/matching algorithms for the language which is used.

Another good feature/property of the method, presented in this paper, is that
it is completely ready for use out-of-the-box, and you don't need to �cook� [3] a
considered logic in order to use it - just write down expression language, axioms
and inference rules and you may feed the assertion of interest to a prover engine,
which, in theory, will �nd a proof (if it exists).

What is left out of scope of this article is uni�cation/matching problem. From the
algorithm description it is clear, that e�cient uni�cation and matching algorithms
are vital for the implementation of this method. And e�cient matching of an
expression with a (potentially huge) set of assertions is usually done with indexing
[4] and is not trivial. The algorithm of uni�cation for substitutions is even more
complex and challenging. Experiments on proving a rather simple statement in
classical propositional Hilbert-style logic (with cut rule) showed, that the number
of SPI-trees may grow extremely fast. Just to feel the scale of this problem imagine,
that we have an assertion with 5 premises (common case in Metamath theorem
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base), each of which has a non-empty set of SPI-trees, having, for example 1, 10,
100, 10 and 100 elements respectively. Then we need to check 106 substitution
tuples for uni�cation. In experiment, fortunately, majority of these tuples have
been found to be non-uni�able, so we will end up with something like 500 (or
even 0) of solutions, but still, checking all of these 106 variants consequently is not
a�ordable in practice. E�cient algorithm for such massive substitution uni�cation
was developed, but it needs a thorough analysis and separate research.

The other thing, which is intentionally missed in this paper, is treatment of
proper substitutions for disjointed variables. Classical predicate calculus has special
restrictions on substitutions, which may be applied to speci�c rules of inference (like
introduction of ∀-quanti�er). In Metamath such restrictions are simpli�ed, but still
are essentially a restriction on application of particular substitutions. Addition of
such restrictions doesn't change the general scheme of algorithm, the only thing,
which is necessary to track during traversing of PV-tree are these restrictions, which
are not di�cult to check. So, in order to keep text more simple and clear we decided
to skip this details.

The problematic part of practical implementation of such method is computatio-
nal complexity. The strong side of this method is its universality and ability to apply
to the wide variety of calculi. And, as always, this universality causes problems. For
example, we cannot rely on good properties of a considered deductive system: it
may have a cut-like rule(s), no subformula property, etc. In practice this leads to
the enormous growth of a search space while searching for a proof. The only way
to cope with such combinatorial explosion is to use smart heuristics, which will
lead search in the right direction. The author's strong belief is that the advanced
methods of machine learning, based on the analysis of an already formalized proofs,
may help to develop such methods.
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