
S e©MR ISSN 1813-3304

ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Òîì 18, �1, ñòð. 369�376 (2021) ÓÄÊ 517.54

DOI 10.33048/semi.2021.18.026 MSC 30A10

SOME REMARKS ON ROTATION THEOREMS

FOR COMPLEX POLYNOMIALS

V.N. DUBININ

Abstract. For any complex polynomial P (z) = c0+c1z+...+cnz
n, cn 6=

0, having all its zeros in the unit disk |z| ≤ 1, we consider the behavior
of the function (argP (eiθ))′θ when the real argument θ changes. We give
some sharp estimates of this function involving of the values of P (eiθ),
argP (eiθ) or the coe�cients ck, k = 0, 1, n− 1, n.

Keywords: complex polynomials, rotation theorems, inequalities, boundary
Schwarz lemma, rational functions.

1. Introduction

Let all zeros of the polynomial

(1) P (z) = c0 + c1z + ...+ cnz
n, cn 6= 0,

lie in the unit disk |z| ≤ 1, ck ∈ C, k = 0, 1, ..., n, n ≥ 1. In the theory of
polynomials, inequality

(2) Re
zP ′(z)

P (z)
≥ n

2
,

is well known, which is valid for all points z on the circle |z| = 1 that are di�erent
from the zeros of the polynomial P . The equality in (2) takes place if and only
if all zeros of P lie on |z| = 1 (see, for example, [1, p. 439]). Inequality (2) can
be interpreted as a rotation theorem for the complex polynomial P on the circle
|z| = 1:

(3) (argP (z))′θ ≥
n

2
,
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z = eiθ, 0 ≤ θ ≤ 2π. In a series of papers beginning with [2], this author developed
the geometric function theory approach to inequalities for polynomials and rational
functions. This is described in detail in the survey article [6] and some subsequent
publications of the author. In particular, as an example of the application of the
boundary Schwarz lemma, the following strengthening of inequality (3) is given in
[5]

(4) (argP (z))′θ ≥
n

2
+
|cn| − |c0|

2(|cn|+ |c0|)
≥ n

2
,

|z| = 1, P (z) 6= 0. Equality in (4) holds for polynomials P with zeros lying on the
unit circle |z| = 1 and for any z, |z| = 1, P (z) 6= 0 [5, inequality (10)]. Note that
if the polynomial P (z) of the form (1) has no zeros in the disk |z| < 1, then the
zeros of the polynomial znP (1/z) lie in the disk |z| ≤ 1. Applying (4) to the last
polynomial, we obtain the inequality

(argP (z))′θ ≤
n

2
+
|cn| − |c0|

2(|cn|+ |c0|)
≤ n

2
,

for all z on |z| = 1 for which P (z) 6= 0. Earlier [2], a weakened version of inequality
(4) was established, in which the right-hand side of (4) is replaced by the quantity

n

2
+

√
|cn| −

√
|c0|

2
√
|cn|

≥ n

2
,

[2, Theorem 4]. At present, the application of the boundary Schwarz lemma to
inequalities for complex polynomials had raised considerable interest (see, for example,
[11], [12], [14], [18] � [23], [25] and references therein ). As regards inequality (4)
directly, we note the following results. In the papers of Govil, Kumar [10] and
Rather, Dar, Iqbal [19] inequality (4) is generalized in di�erent directions and
another proofs of the above inequality are given. Gulzar, Zargar, Akhter [11],
Hussain, Ahmad [12], and Milovanović, Mir, and Ahmad [18] used (4) to generalize
and strengthen the well-known inequalities for polynomials. In the paper of Rather,
Dar, Iqbal [20] the weakened version (4) was used.

In this note, we, �rst, re�ne inequality (4) taking into account the values of
the polynomial P on the circle |z| = 1. Further, the strengthening of (4) with the
involvement of the coe�cients c1 and cn−1 of the polynomial P is obtained. In
addition, we give an upper bound for the left-hand side of (3) in the form of a �nite
increment theorem. The proofs of all theorems are carried out in a uni�ed manner
and are based on the geometric function theory approach [6]. In the �nal Section 3,
some remarks are made concerning the estimation of the value (argR(z))′θ for the
rational function R.

2. Rotation theorems

For points z = eiθ di�erent from the zeros of a polynomial P , we introduce the
notation

Λ(P, z) = 2(argP (eiθ))′θ − n.

In view of (3)

Λ(P, z) ≥ 0
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on the circle |z| = 1. It is natural to pose the question of estimating the rotation
speed P (z) when z rotates on the circle |z| = 1, depending on the value of P (z)
itself. Some progress in the solution of this question is given by

Theorem 1. If all zeros of a polynomial P of the form (1) lie in the disc |z| ≤ 1,
then for any point z on the circle |z| = 1 that is di�erent from zero of the polynomial
P , inequality

(5) Λ(P, z) ≥

∣∣∣∣∣(Λ(P, z) + 1)
c0P (z)

cnznP (z)
− 1

∣∣∣∣∣
holds. Equality in (5) at the point z = 1 is attained for a polynomial P of the form

(6) P (z) = (z − α1)

n∏
k=2

(z − αk),

where αk, k = 1, ..., n, are arbitrary numbers that satisfy the relations |α1| <
1, |αk| = 1, αk 6= 1, k = 2, ..., n.

Proof. Let

P (z) = cn

n∏
k=1

(z − αk),

and let αk 6= 1, k = 1, ..., n. In [8] (see also [9, Theorem 1]), among other results,
Goryainov obtained inequality

(7)

∣∣∣∣f ′(0)− 1

f ′(1)

∣∣∣∣ ≤ 1− 1

f ′(1)
,

which is valid for any holomorphic map of the disk |z| < 1 into itself, normalized
by conditions f(0) = 0, f(1) = 1 and f ′(1) 6=∞. Here f(1) is the angular limit of
f when z → 1, and f ′(1) is the angular derivative of the function f at the point
z = 1. It is well known that f ′(1) ≥ 1. Equality in (7) is attained for the function

f∗(z) = z
1− a
1− a

z − a
1− az

for any a, |a| < 1. Consider the Blaschke product

f(z) =
cn
cn

[
n∏
k=1

1− αk
1− αk

]
P (z)

zn−1P (1/z)
= z

[
n∏
k=1

1− αk
1− αk

]
n∏
k=1

z − αk
1− αkz

.

If |α| = 1, then
z − α
1− αz

=
1

α
· z − α

1/α− z
= − 1

α
,

and for |α| < 1 the function

w =
z − α
1− αz

is a linear-fractional mapping of the disk |z| < 1 onto the disk |w| < 1, such that
the circle |z| = 1 turns to the circle |w| = 1. Thus, the function f is holomorphic
in the disk |z| < 1 and satis�es the conditions:

|f(z)| < 1 when |z| < 1, f(0) = 0, f(1) = 1 and f ′(1) ≥ 1.
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Taking into account the geometric meaning of the derivative, we conclude that at
the points of the circle |z| = 1, di�erent from the zeros of the polynomial P ,

|f ′(z)| = zf ′(z)

f(z)
=

=
znP (1/z)

P (z)
· z

n−1P ′(z)P (1/z)− P (z)[(n− 1)zn−2P (1/z)− zn−3P ′(1/z)]
(zn−1P (1/z))2

=

=
zP ′(z)

P (z)
− n+ 1 +

P ′(z)

zP (z)
= 2Re

zP ′(z)

P (z)
− n+ 1

is satis�ed.
Goryainov's inequality (7) applied to the function f gives∣∣∣∣∣ c0P (1)

cnP (1)

[
2Re

P ′(1)

P (1)
− n+ 1

]
− 1

∣∣∣∣∣ ≤ 2Re
P ′(1)

P (1)
− n.

In general, if point z0, |z0| = 1, is di�erent from the zeros of the polynomial P ,

then the point z = 1 is di�erent from the zeros of the polynomial P̃ (z) := P (zz0).

Applying what was proved above to the polynomial P̃ , we have∣∣∣∣∣ c0P (z0)

cnz
n
0P (z0)

[
2Re

z0P
′(z0)

P (z0)
− n+ 1

]
− 1

∣∣∣∣∣ ≤ 2Re
z0P

′(z0)

P (z0)
− n.

The resulting inequality coincides with inequality (5) for z = z0. If now P (z) has
the form (6), then

f(z) = f∗(z), where a = α1.

Therefore, equality is attained in (7). Hence the equality holds in (5). This completes
the proof of Theorem 1.

Inequality (5) is stronger than (4). Indeed,

Λ(P, z) ≥ 1− (Λ(P, z) + 1)

∣∣∣∣ c0cn
∣∣∣∣

is ful�lled from (5). Therefore,

Λ(P, z) ≥ |cn| − |c0|
|cn|+ |c0|

,

which is equivalent to inequality (4).

Theorem 2. Let all zeros of a polynomial P of the form (1) lie in the disc |z| ≤ 1.
Then for any point z on the circle |z| = 1, di�erent from the zeros of the polynomial
P , inequality

(8) Λ(P, z) ≥ 2(|c0| − |cn|)2

|cn|2 − |c0|2 + |cnc1 − c0cn−1|

holds1. Equality in (8) is attained for polynomials P with zeros on the unit circle
|z| = 1 for any z, |z| = 1, P (z) 6= 0.

1In the case of |c0| = |cn|, the expression on the right-hand side of (8) means zero.
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Proof. The equality |c0| = |cn| holds if and only if all zeros of the polynomial P
lie on the circle |z| = 1. Therefore, the case of equality in (8) is obvious. Further,
we consider that |c0| 6= |cn|. We need the following inequality (7) from [4]:

(9) |f ′(z)| ≥ 1 +
2(1− |f ′(0)|)2

1− |f ′(0)|2 + |f ′′(0)/2|
.

Here f is a holomorphic map of the disk |z| < 1 into itself, normalized by the
conditions: f(0) = 0, |f ′(0)| 6= 1 and z is an arbitrary point on the circle |z| = 1, in
which the derivative f ′(z) exists and |f(z)| = 1. In [16], Mercer presented a direct
proof of (9) using Rogosinski's lemma (see also [17, inequality (15)]). Consider the
Blaschke product

f(z) =
P (z)

zn−1P (1/z)
=
cnz

cn

n∏
k=1

z − αk
1− αkz

,

where P (z) = cn
∏n
k=1(z − αk). As above, we see that f is a holomorphic map of

the disk |z| < 1 into itself, f(0) = 0, and at each point z on the circle |z| = 1,
nonzero of the polynomial P , |f(z)| = 1, and there is a derivative f ′(z). Moreover,

f ′(0) =
cn
cn

n∏
k=1

(−αk) =
c0
cn
,

so |f ′(0)| 6= 1. Note that the derivative is(
n∏
k=1

z − αk
1− αkz

)′
=

(
n∏
k=1

z − αk
1− αkz

)
n∑
k=1

(
1

z − αk
+

αk
1− αkz

)
.

In view of this and Vieta's formulas, we have

f ′′(0) = 2
cn
cn

n∏
k=1

(−αk)

n∑
k=1

(
1

−αk
+ αk

)
=

2c0
cn

[
c1
c0
− cn−1

cn

]
.

Substituting the found values of the derivatives into (9), taking into account the
calculations of the |f ′(z)| in the proof of Theorem 1, we arrive at inequality (8).
The theorem is proved.

As noted by Mercer [17, Remark 3.2] for the function f from (9)

|f ′′(0)| ≤ 2(1− |f ′(0)|2)

is ful�lled. This attracts

|c1cn − c0cn−1| ≤ |cn|2 − |c0|2.

Hence it is easy to see that inequality (8) is stronger (4).

Theorem 3. Let all zeros of a polynomial P of degree n lie in the disc |z| ≤ 1.
Suppose that for some point z0 on the circle |z| = 1, the arc of this circle

γ(z0, α) := {z : |z| = 1, |argz − argz0| < α}, 0 < α < π,

does not contain the zeros of the polynomial P and the increment of the value

2 argP (z)− n argz
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along any curve on the arc γ(z0, α) with an end point at z0 does not exceed in
absolute value β, 0 < β < π. Then

(10) Λ(P, z0) ≤
tgβ2
tgα2

.

Equality in (10) is attained for a polynomial P of the form

(11) P (z) = cnz(z − α2)...(z − αn),

|αk| = 1, αk 6= 1, k = 2, ..., n, point z0 = 1, any α, 0 < α < π, for which the
γ(1, α) does not contain αk, k = 2, ..., n and β = α.

Proof. We can assume that the point z0 = 1. In [7], among other results,
inequality

(12) |f ′(1)| ≤
tgβ2
tgα2

.

was established. Here f is a holomorphic self-mapping of the unit disk |z| < 1,
f(γ(1, α)) ⊂ γ(1, β) for some α and β, 0 < α < π, 0 < β < π, and f has an angular
limit f(1) = 1 and a �nite angular derivative f ′(1). Equality in (12) is attained for
the function f(z) ≡ z and α = β. We put as above

P (z) = cn

n∏
k=1

(z − αk).

Let us show that the Blaschke product

f(z) :=
cn
cn

[
n∏
k=1

1− αk
1− αk

]
P (z)

znP (1/z)
=

[
n∏
k=1

1− αk
1− αk

]
n∏
k=1

z − αk
1− αkz

.

satis�es the conditions for inequality (12). Indeed, f is a holomorphic function
mapping the disk |z| < 1 into itself. In addition, f is di�erentiable on the arc
γ(1, α), f(1) = 1 and |f(z)| = 1 on γ(1, α). In view of the hypothesis of Theorem
3, the increment of the argument of the function f along any curve γ on γ(1, α)
with an end point at the point z = 1 does not exceed in absolute value β:

|∆γargf(z)| = |∆γ(2argP (z)− n argz)| ≤ β.

Hence, f(γ(1, α)) ⊂ γ(1, β). Following the calculations carried out in the proof of
Theorem 1, we see that

|f ′(1)| = 2Re
P ′(1)

P (1)
− n.

Inequality (12) gives

2Re
P ′(1)

P (1)
− n ≤

tgβ2
tgα2

,

which is equivalent to (10) for z0 = 1. If now P (z) has the form (11), then f(z) ≡ z.
In this case, f ′(1) = 1 and

|∆γ(2argP (z)− n argz)| = |∆γargz| ≤ α, γ ⊂ γ(1, α).

and you can take β = α. This gives equality in (12) and hence equality in (10). The
theorem is proved.
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3. On rational functions

In conclusion we consider an application of the function theory to inequalities
for rational functions with prescribed poles:

R(z) =
P (z)∏n

k=1(z − ak)
,

where P (z) is an algebraic polynomial of degree m and |ak| > 1, k = 1, ..., n. In
some problems, extremal functions are related to the Blaschke product

B(z) =

n∏
k=1

1− akz
z − ak

,

which is in general de�ned for any system of poles (a1, ..., an), |ak| 6= 1, k = 1, ..., n.
The following analogue of the polynomial inequality (3) is known. If a rational

function R has exactly m zeros (counting multiplicities) belonging to the disk |z| ≤
1, then

(13) (argR(z))′θ ≥
1

2
(m− n+ (argB(z))′θ)

for all points on the circle |z| = 1 di�erent from zeros of R. If all zeros of R lie in
the complement to the disk |z| < 1, then the reverse inequality is valid:

(14) (argR(z))′θ ≤
1

2
(m− n+ (argB(z))′θ).

Equality in (13), (14) holds for R(z) = αB(z) + β with |α| = |β|. The proof
of inequalities (13) and (14) can be found in [15, Lemma 4], [3, Lemma 3 and
Theorem 4], and in [3] the geometric function theory was �rst applied to such a
range of problems. Using various versions of the boundary Schwarz lemma, Wali
and Shah [24], [26] strengthened (13), (14) in di�erent directions. Kalmykov [13]
recently proved two- and three-point distortion theorems for rational functions that
generalize some known results on Bernstein-type inequalities for polynomials and
rational functions. The rational functions under study have either majorants or
restrictions on location of their zeros. The proofs in [13] are based on the new
version of the Schwarz Lemma and univalence condition for holomorphic functions.

In this regard, it can be assumed that the application of the methods of geometric
function theory will lead to new rotation theorems for rational functions with
prescribed poles, in particular, to theorems generalizing Theorems 1�3 of this
article.
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