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ALL TIGHT DESCRIPTIONS OF MAJOR 3-PATHS IN

3-POLYTOPES WITHOUT 3-VERTICES

TS.CH-D.BATUEVA, O.V.BORODIN, A.O. IVANOVA, D.V.NIKIFOROV

A 3-path uvw is an (i, j, k)-path if d(u) ≤ i, d(v) ≤ j, and d(w) ≤ k,
where d(x) is the degree of a vertex x. It is well-known that each 3-
polytope has a vertex of degree at most 5, called minor. A description of
3-paths in a 3-polytope is minor or major if the central item of each its
triplet is at most 5 or at least 6, respectively. Back in 1922, Franklin
proved that each 3-polytope with minimum degree 5 has a (6, 5, 6)-
path, which description is tight. Recently, Borodin and Ivanova extended
Franklin's theorem by producing all the ten tight minor descriptions of
3-paths in the class P4 of 3-polytopes with minimum degree at least 4.
In 2016, Borodin and Ivanova proved that each polytope with minimum
degree 5 has a (5, 6, 6)-path, and there exists no tight description of 3-
paths in this class of 3-polytopes other than {(6, 5, 6)} and {(5, 6, 6)}.

The purpose of this paper is to prove that there exist precisely the
following four major tight descriptions of 3-paths inP4: {(4, 9, 4), (4, 7, 5),
(5, 6, 6)}, {(4, 9, 4), (5, 7, 6)}, {(4, 9, 5), (5, 6, 6)}, and {(5, 9, 6)}.

Keywords: plane graph, 3-polytope, structural properties, 3-path, tight
description.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its
incident edges. A k-vertex (k-face) is a vertex (face) with degree k, a k+-vertex has
degree at least k, etc. The minimum vertex degree of G is δ(G). We will drop the
arguments whenever this does not lead to confusion.
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A k-path is a path on k vertices. A path uvw is an (i, j, k)-path if d(u) ≤ i,
d(v) ≤ j, and d(w) ≤ k. The weight w(H) of a subgraph H of a graph G is the
degree-sum of the vertices of H in G. By Pδ denote the class of 3-polytopes with
minimum degree δ; in particular, P3 is the set of all 3-polytopes. It is well-known
that each 3-polytope has a vertex of degree at most 5, called minor.

In 1904, Wernicke [22] proved that if P5 ∈ P5 then P5 contains a 5-vertex
adjacent to a 6−-vertex. This result was strengthened by Franklin [14] in 1922 by
proving the existence of a (6, 5, 6)-path in every P5.

We recall that a description of 3-paths is tight if none of its parameters can be
strengthened and no term dropped. The tightness of Franklin's description is shown
by putting a vertex inside each face of the dodecahedron and joining it to the �ve
boundary vertices.

Franklin's Theorem [14] is fundamental in the structural theory of planar graphs;
it has been extended or re�ned in several directions, see, for example, [1�7,9,12,13,
15,16,18�21] and surveys Jendrol'�Voss [17] and Borodin�Ivanova [8].

We now mention only a few easily formulated results on P5, which are the closest
to Franklin's Theorem and whose parameters are all sharp. Borodin [3] proved that
there is a 3-face with weight at most 17. Jendrol' and Madaras [16] ensured a 5-
vertex that has three neighbors whose weight sums to at most 18 and a 4-path
with weight at most 23. For triangulations in P5, Madaras [19] found a 5-path with
weight at most 29, the same upper bound was proved (but never published) in MSc
thesis of Z. Micova (formerly P.J. Safarik University) in 2003.

In 2014, Borodin and Ivanova proved [6] that there exist precisely seven tight
descriptions of 3-paths in triangle-free 3-polytopes: {(5, 3, 6), (4, 3, 7)}, {(3, 5, 3),
(3, 4, 4)}, {(5, 3, 6), (3, 4, 3)}, {(3, 5, 3), (4, 3, 4)}, {(5, 3, 7)}, {(3, 5, 4)}, {(5, 4, 6)},
which was a result of a new type in the structural theory of plane graphs.

A description of 3-paths in a 3-polytope is minor or major if the central item of
each its triplet is at most 5 or at least 6, respectively.

Recently, Borodin and Ivanova [10] extended Franklin' Theorem to P4 by proving
that there exist precisely the following ten tight minor descriptions of 3-paths:
{(6, 5, 6), (4, 4, 9), (6, 4, 8), (7, 4, 7)}, {(6, 5, 6), (4, 4, 9), (7, 4, 8)},
{(6, 5, 6), (6, 4, 9), (7, 4, 7)}, {(6, 5, 6), (7, 4, 9)}, {(6, 5, 8), (4, 4, 9), (7, 4, 7)},
{(6, 5, 9), (7, 4, 7)}, {(7, 5, 7), (4, 4, 9), (6, 4, 8)},
{(7, 5, 7), (6, 4, 9)}, {(7, 5, 8), (4, 4, 9)}, and {(7, 5, 9)}.

Back in 1996, Jendrol' [15] gave the following description of 3-paths in P3:
{(10, 3, 10), (7, 4, 7), (6, 5, 6), (3, 4, 15), (3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7),
(4, 7, 5)}.

The �rst tight description of 3-paths in P3 was obtained in 2013 by Borodin et
al. [12]: {(3, 4, 11), (3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (7, 4, 7), (6, 5, 6)}.

Another tight description was given by Borodin, Ivanova and Kostochka [13]:
{(3, 15, 3), (3, 10, 4), (3, 8, 5), (4, 7, 4), (5, 5, 7), (6, 5, 6), (3, 4, 11), (4, 4, 9), (6, 4, 7)}.
Also, it is shown in [13] that there exist precisely three one-term descriptions:
{(5, 15, 6)}, {(5, 10, 15)}, and (10, 5, 10), two of which are major. Recently, the third
major tight description for P3 was found in Borodin-Ivanova [11]:
{(3, 18, 3), (3, 11, 4), (3, 8, 5), (3, 7, 6), (4, 9, 4), (4, 7, 5), (5, 6, 6)}.

In 2016, it was proved in Borodin-Ivanova [7] that P5 allows precisely one tight
description of 3-paths in addition to Franklin's Theorem, namely {(5, 6, 6)}.
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The purpose of this paper is to extend theresults in [7] from P5 to P4 as follows.

Theorem 1. There exist precisely the following four tight major descriptions of
3-paths in P4:
(td1): {(4, 9, 4), (4, 7, 5), (5, 6, 6)},
(td2): {(4, 9, 4), (5, 7, 6)},
(td3): {(4, 9, 5), (5, 6, 6)}, and
(td4): {(5, 9, 6)}.

The problem posed in [13] of describing alltight descriptions of 3-paths in P3 is
widely open. Even for P4, we have found already almost 40 tight descriptions of
3-paths with no limitations on the central items of triplets, but this list still seems
to be far from being complete.

2. Proving Theorem 1

Figures 1�3 show 3-polytopes H1�H3 important for the proof; here, H1 and
H3 are derived from the well-known Platonic and Archimedean solids. Concerning
Fig. 2 from [11], it should be noted that the actual 3-polytope H2 is formed by
two identical copies of the depicted con�guration by shifted gluing on their outer
6-faces (in the way that six 8-vertices are formed).
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Fig. 1. 3-polytope H1 having only (5, 6, 6)-paths.

2.1. Proving that (td1): {(4, 9, 4), (4, 7, 5), (5, 6, 6)} is a description of 3-paths
in P4. Suppose that P

′ is a counterexample, so it does not obey (td1).

2.1.1. Constructing a triangular counterexample to description (td1). Let P be a
counterexample on V (P ′) with the maximum number of edges. From now on, by
d(v) of v ∈ V (P ) we mean the degree of v in P .

We abbreviate the clause �since P does not contain a path xyz such that d(x) ≤ i,
d(y) ≤ j and d(z) ≤ k� to �by non-(i, j, k)!�.

We now prove that P is a triangulation. Suppose there is a 4+-face f = abc . . .
in P . Let a be a vertex of maximum degree among all vertices incident with f . It
su�ces to prove that P +ac is also a counterexample to Theorem 1 (recall that a, c
are not adjacent outside, for otherwise {a, c} would be a 2-cut in P ).

First observe that d(a) ≥ 6, for otherwise P would contain a (5, 5, 5)-path abc
contrary to the absence of (5, 6, 6)-paths by assumption.
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Fig. 2. 3-polytope H2 with only (4, 7, 5)-paths [11].
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Fig. 3. 3-polytope H3 having only (4, 9, 4)-paths

Now note that P + ac cannot have a forbidden path avoiding the edge ac since
the degree of each vertex in P + ac is not smaller than in the counterexample P .

So suppose P +ac has a 3-path acz or yac forbidden by (td1). Since a and c have
degrees 7+ and 5+ in P + ac, respectively, the only danger is to create a (4, 7, 5)-
path in P + ac. However, this could happen only if d(a) = 6 and d(c) = 4, and
then we have a (5, 6, 6)-path abc already in P since d(b) ≤ d(a) by assumption, a
contradiction.
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2.1.2. Discharging. Euler's formula |V | − |E|+ |F | = 2 for P may be written as

(1)
∑
v∈V

(d(v)− 6) = −12.

Every vertex v contributes the charge µ(v) = d(v)− 6 to (1), so only the charges
of 5−-vertices are negative. Using the properties of M as a counterexample, we
de�ne a local redistribution of µ's, preserving their sum, such that the new charge
µ′(v) is non-negative for all v ∈ V . This will contradict the fact that the sum of the
new charges is, by (1), equals to −12.

Throughout the paper, we denote the vertices adjacent to a vertex v in a cyclic
order by v1, . . . , vd(v).

Our rules of discharging are as follows:

R1. Every 6-vertex gives 1
2 to an adjacent 5−-vertex.

R2. Every 7+-vertex v gives 2
3 to an adjacent 4-vertex.

R3. Every 7+-vertex gives 1
4 to an adjacent 5-vertex.

R4. Every 7+-vertex v gives 1
6 to a 6-vertex v2 if d(v1) ≥ 7 and d(v3) ≥ 7.

2.1.3. Checking µ′(v) ≥ 0 whenever v ∈ V .

CASE 1. d(v) = 4. If v has a 5−-neighbor, then it has three 7+-neighbors by
non-(5, 4, 6)!, so we have µ′(v) = 4− 6 + 3× 2

3 = 0 by R2.
Further suppose v is completely surrounded by 6+-vertices. Note that if v has

a 6-neighbor v1, then d(v2) ≥ 7 and d(v4) ≥ 7 by non-(4, 6, 6)!, so v1 gives 1
2 to

v by R1. The same is true for v3 if d(v3) = 6. In view of R2, we have µ′(v) ≥
−2 + 2× 1

2 + 2× 2
3 > 0.

CASE 2. d(v) = 5. If v has a 5−-neighbor, then it has four 7+-neighbors by
non-(5, 5, 6)!, so µ′(v) = 5− 6 + 4× 1

2 = 0 by R3.
Next suppose v has no 5−-neighbors. If v has a 6-neighbor v1, then d(v2) ≥ 7

and d(v5) ≥ 7 by non-(5, 6, 6)!, which means that v receives 1
2 +2× 1

4 from v1, v2, v5
by R1 and R3, and hence µ′(v) ≥ 0.

If v has no 6−-neighbors at all, then µ′(v) = −1 + 5× 1
4 > 0 by R3.

CASE 3. d(v) = 6. If v has no 5−-neighbors, then it does not give charge away
by R1, which means that µ′(v) = µ(v) = 0.

Suppose d(v1) ≤ 5. Now v has �ve 7+-neighbors by non-(5, 6, 6)!. Note that
each of v3, v4, v5 gives 1

6 to v by R4, while v gives 1
2 to v1by R1, which results in

µ′(v) = 0 + 3× 1
6 −

1
2 = 0.

CASE 4. d(v) = 7. If v has a 4-neighbor, v1, then v has no other 5−-neighbors
due to non-(4, 7, 5)!; so v gives 2

3 to v1 by R2. Furthermore, v can only make at

most two donations of 1
6 to v3, . . . , v6 by R4.

Indeed, each such a donation to vk with 3 ≤ k ≤ 6 forbids a donation to vk−1
and vk+1, as said in R4. As a result, µ′(v) = 7− 6− 2

3 − 2× 1
6 = 0, as desired.

Now suppose v has no 4-neighbor. Now at most four donations of 1
4 are possible

to 5-neighbors by R3 due to non-(5, 5, 5)!. Also, donations of 1
6 by R4 are possible.
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We note that donations of 1
4 and 1

6 can occur along at most two consecutive

edges at v, which means that the total number of donations is at most b 2×72+1c = 4.

This yields µ′(v) ≥ 1− 4× 1
4 = 0, and we are done.

CASE 5. 8 ≤ d(v) ≤ 9. By the same reasons as in Case 4, our v can make at
most b 2×93 c = 6 donations at all, including at most one donation of 2

3 to a 4-vertex

by R2. Therefore, µ′(v) ≥ d(v)− 6− 2
3 − (6− 1)× 1

4 > d(v)− 8 ≥ 0.

CASE 6. d(v) ≥ 10. Still, v can make at most b 2×d(v)3 c donations by R2�R4 ,

and each of them is of at most 2
3 . For d(v) = 10 we have µ′(v) ≥ 10−6−b 203 c×

2
3 =

4− 6× 2
3 = 0. For d(v) ≥ 11, it holds µ′(v) ≥ d(v)− 6− b 2×d(v)3 c × 2

3 ≥ d(v)− 6−
2d(v)

3 × 2
3 = 5d(v)−54

9 > 5(d(v)−11)
9 ≥ 0.

Thus we have proved µ′(v) ≥ 0 for every v ∈ V , which contradicts (1):

0 ≤
∑
v∈V

µ′(v) =
∑
v∈V

µ(v) = −12.

�

2.2. Proving that each of (td2), . . . , (td4) is a description of 3-paths in P4.

Note that, by de�nition, each (i, j, k)-path is also an (i′, j′, k′)-path if i′ ≥ i, j′ ≥ j,
and k′ ≥ k.

Therefore, for each of the sets (td2), . . . , (td4) it su�ces to check that all triplets
in each of them together cover all triplets in (td1).

For example, the only triplet (5, 9, 6) in (td4) covers each of the triplets in (td1).
�

2.3. Proving that each of descriptions (td1), . . . , (td4) is tight. This is based
on the properties of H1�H3. Namely, each of (td1), . . . , (td4) must contain triplets
(5+, 6+, 6+), (4+, 7+, 5+), and (4+, 9+, 4+), due to H1, H2, and H3, respectively.

For example, an attempt to decrease 9 in any of (td1), . . . , (td4) is prevented
from by H3, in which every non-minor 3-path is centered at a 9+-vertex.

Also, we cannot replace the central 7 in (td1) or (td2) by 6, since otherwise the
thus reduced set of triplets fails to cover H2, in which each 7-vertex has just one
4-neighbor. By the same reason, we cannot replace 5 in (4, 7, 5) by 4.

Finally, we cannot replace the non-central 6 in any of (td1), . . . , (td4) due to H1,
which has no two 5−-vertices with a common neighbor. �

2.4. Proving that there are no tight major descriptions of 3-paths in

P4 other than (td1), . . . , (td4). Suppose D = {(x1, y1, z1), . . . (xk, yk, zk)} is a a
major tight description of 3-paths in P5. This means that

(1) every P4 ∈ P4 has a (xi, yi, zi)-path for at least one i with 1 ≤ i ≤ k, and

(2) if we delete any term (xi, yi, zi) from D or decrease any parameter in D by
one (but not decrease any yi below 6) without changing the other 3k−1 parameters,
then the new description is not satis�ed by at least one P4 ∈ P4.

Note that, due to its tightness, the description D cannot have triplets (X,Y, Z)
and (X ′, Y ′, Z ′) such that X ≤ X ′, Y ≤ Y ′, and Z ≤ Z ′, because D′ = D \
{(X,Y, Z)} is equivalent to D but shorter.
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Also, all parameters in D should be at least 4 since we deal with P4 and,
moreover, yi ≥ 6 whenever 1 ≤ i ≤ k. By symmetry, we can assume that xi ≤ zi
whenever 1 ≤ i ≤ k.

Note thatD must contain a term (4+, 9+, 4+) to be able to describeH3. Therefore,
our case analysis splits into Cases 1�3.

Case 1. D has a term (x1, y1, z1) = (5+, 9+, 6+). Due to Subsection 2.3, D must
coincide with the tight description (td4), so D = {(5, 9, 6)}.

Case 2. D has a term (x1, y1, z1) = (4, 9+, 5+). Due to H1, which has no 4-
vertices, there should be a term (x2, y2, z2) = (5+, 6+, 6+) in D, and hence D
coincides with the tight description {(4, 9, 5), (5, 6, 6)}, which is (td3).

Case 3. D has a term (x1, y1, z1) = (4, 9+, 4). Due to H1 again, there should be
a term (x2, y2, z2) = (5+, 6+, 6+).

Subcase 3.1. (x2, y2, z2) = (5+, 7+, 6+). Here, D = {(4, 9, 4), (5, 7, 6)}, which is
a tight description (td2).

Subcase 3.2. (x2, y2, z2) = (5+, 6, 6+). Now the �rst two terms of D do not
cover H2, which has 7-vertices, but none of them has two 4-neighbors. This mean
that there is a term (x3, y3, z3) = (4+, 7+, 5+), and so D coincides with the tight
description (td1): {(4, 9, 4), (4, 7, 5), (5, 6, 6)}. �

This completes the proof of Theorem 1.
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