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ON UNIQUENESS AND STABILITY OF A CYCLE IN ONE

GENE NETWORK

V.P. GOLUBYATNIKOV, L.S.MINUSHKINA

Abstract. We describe necessary and su�cient conditions for unique-
ness and stability of a cycle in an invariant domain of phase portrait
of one Glass-Pasternack type block-linear dynamical system that simu-
lates functioning of one natural gene network. Existence of such a cycle,
geometry and combinatorics of phase portraits of similar systems were
studied in our previous publications.

Keywords: circular gene network, �xed points, cycles, piecewise linear
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1. Introduction

We study one dynamic system which describes biochemical processes of synthesis
and degradation in circular gene networks where the velocity of synthesis of each
substance depends on concentration of the previous one as follows:

dx1

dt
= L(y4)−k1x1;

dy2

dt
= Γ2(x1)−k2y2;

dy3

dt
= Γ3(y2)−k3y3;

dy4

dt
= Γ4(y3)−k4y4,

(1)
see [1�4], where various cases of similar systems were considered. In our studies
here, monotonically decreasing step function L, and monotonically increasing func-
tions Γj are de�ned by the following relations

L(z) =

{
a1k1, 0 6 z 6 1;

0, z > 1;
Γj(z) =

{
0, 0 6 z 6 1;

bj lj , z > 1;
j = 2, 3, 4; (2)
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they describe negative feedback and, respectively, positive feedbacks in the gene
network. As it was shown in [5, 6], cycles in the phase portrait of the system (1)
and its analogues do exist if and only if

a1 > 1, bj > 1, (3)

and we assume in the sequel, that these conditions are satis�ed.

Biological interpretations of analogous dynamical systems of di�erent dimensions
are described in [7�10], see also references therein. It should be emphasized here
that most of publications on piecewise-linear modelling of circular gene networks
were devoted to one very particular case kj = 1 for all j = 1, 2, . . . d in the equations
of d-dimensional dynamical systems of the type (1), see for example [1,11,12], where
the questions of existence of cycles in phase portraits of some similar dynamical
systems were studied. Under these conditions, trajectories of the dynamical systems
are piecewise linear as well, and this simpli�es analysis of the phase portraits of
gene networks models. Same assumptions kj = 1 were done in some publications
on smooth gene networks models, see [13,14].

The negative coe�cients (−kj) in these dynamical systems describe the rates of
degradations of biological components in the gene networks, so it is quite arti�cial
to assume that for di�erent components, these coe�cients coincide. Now, starting
from our recent publications [5,6], we consider the general case of arbitrary positive
kj 's.

Block-linear dynamical systems similar to (1) are studied intensively from di�er-
ent viewpoints in various domains related to the Qualitative Theory of Di�erential
Equations and its applications since [15,16] and till now, see for example [17�19].

2. State Transition Diagram

As it was shown in [6, 20], trajectories of all points of parallelepiped

Q4 = [0, a1]× [0, b2]× [0, b3]× [0, b4]

do not leave it as t grows, i.e., Q4 is a positively invariant domain in the phase
portrait of the dynamical system (1). Due to (3), the point E = (1, 1, 1, 1) of
discontinuity of all step functions in the equations of (1) is contained in the interior
of Q4. Following [1, 20], let us draw four hyperplanes x1 = 1, yj = 1 parallel to
coordinate planes so that we obtain 24 = 16 smaller parallelepipeds, intersecting in
the point E, which we call blocks from now.

De�nition 1. The valence V (B) of a block B ⊂ Q4 is a number of its 3-dimensional
faces such that trajectories of their points come out of B to its adjacent blocks.

This decomposition of the invariant domain Q4 consists of eight one-valent
blocks, and eight three-valent blocks. We are focused here on study of behaviour of
trajectories of the system (1) in the domain W1 ⊂ Q4 composed by the one-valent
blocks.

Let us enumerate all blocks by binary multi-indices {ε1ε2ε3ε4}, where εi = 1 if
xi > 1, and εi = 0 otherwise. It is convenient to represent W1 as a subdomain of 4-
dimensional Boolean cube where the blocks correspond to vertices, and transitions
from block to block play role of edges. We call such representation State Transition
Diagram. The following proposition is well-known in the cases of dynamical systems
of the type (1), see [11,12].
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Proposition 1. For any pair B1, B2 of adjacent blocks, trajectories of all points
of their common 3-dimensional face F = B1 ∩B2 pass only in one direction: either
from B1 to B2 or from B2 to B1.

Construction of the State Transition Diagram (4) composed by the one-valent
blocks follows the Algorithm described in [21]. Each transition here is de�ned
uniquely since each blocks in W1 is one-valent. Hence, trajectories of all points of
W1 pass from one block to another according to the following diagram

{1111} F0={x1=1}−−−−−−−→ {0111} F1={y2=1}−−−−−−−→ {0011}

F7={y4=1}
x F2={y3=1}

y
{1110} {0001}

F6={y3=1}
x F3={y4=1}

y
{1100} F5={y2=1}←−−−−−−− {1000} F4={x1=1}←−−−−−−− {0000}

(4)

It is worthy to note that similar Diagrams in di�erent forms were studied for
various dynamical systems of �biochemical kinetics�, both, in smooth and piecewise
linear cases, see [1, 3, 22], and especially [23], where one of the main objects of
studies was called the �Integer-Valued Lyapunov Function� which is very similar to
the valence of a vertex of an oriented graph.

3. Poincar�e map

In order to simplify notations and calculations, let us introduce new coordinate
system

x̃1 = x1 − 1; ỹj = yj − 1, j = 2, 3, 4

such that the point E = (1, 1, 1, 1) becomes the new origin O. For convenience we
omit tilde from now keeping in mind new variables. The system (1) has a linear
form in each block from the diagram (4). Let us �x an interior point X(0) ∈ F0 =
{1111} ∩ {0111} with coordinates

x
(0)
1 = 0; y

(0)
2 > 0; y

(0)
3 > 0; y

(0)
4 > 0.

Here F0 = [0, b2 − 1] × [0, b3 − 1] × [0, b4 − 1]. According to the Proposition 1,
trajectory of any such point X(0) ∈ F0 enters the block {0111}, where the system
(1) has a form 

ẋ1 = −k1(x1 + 1);

ẏ2 = −l2(y2 + 1);

ẏ3 = l3b3 − l3(y3 + 1);

ẏ4 = l4b4 − l4(y4 + 1).

Trajectories of the system in this block are described as follows:

x1(t) = (x
(0)
1 + 1)e−k1t − 1; y2(t) = (y

(0)
2 + 1)e−l2t − 1;

y3(t) = (b3 − 1) + (y
(0)
3 − (b3 − 1))e−l3t; y4(t) = (b4 − 1) + (y

(0)
4 − (b4 − 1))e−l4t.
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Solution to the Cauchy problem for this system with the initial data X(0) gives us
coordinates of the point X(1) where this trajectory intersects the next face F1 =
{0111} ∩ {0011}, see (4):

x
(1)
1 = (1 + y

(0)
2 )−

k1
l2 − 1; y

(1)
2 = 0;

y
(1)
3 = (b3 − 1) +

y
(0)
3 − (b3 − 1)

(1 + y
(0)
2 )

l3
l2

; y
(1)
4 = (b4 − 1) +

y
(0)
4 − (b4 − 1)

(1 + y
(0)
2 )

l4
l2

.

These formulae describe the �rst shift of the initial point along the trajectory f0 :
F0 → F1. Remaining transitions in the diagram (4) can be represented in a similar
way. Composition of eight such shifts Ψ = f7 ◦f6 ◦f5 ◦f4 ◦f3 ◦f2 ◦f1 ◦f0 : F0 → F0

is called Poincar�e map (of the cycle which we are going to �nd). It maps any point
of the face F0 to an interior point of F0.

Quite similar transition formulae for some other block-linear dynamical systems
of the type (1) were derived in [5, 24,25].

4. Positive Jacobian matrix

Just for simplicity of notations, we reduce the proof of existence and uniqueness
of a cycle in the domain W1 to that of existence and uniqueness of a non-zero �xed
point of the �normalized� Poincar�e map

Φ = (ϕ1, ϕ2, ϕ3) : K3(u1, u2, u3)→ K3(u1, u2, u3)

of the unit 3D cube K3 = [0, 1]3 into itself. Here Φ = L−1 ◦ Ψ ◦ L, and L : K3 →
F0 ⊂W1 is linear di�eomorphism

L(u1, u2, u3) = (0, (b1 − 1)u1, (b2 − 1)u2, (b3 − 1)u3).

Note that by de�nition, ϕj(0, 0, 0) = 0, and for all remaining points (u1, u2, u3) ∈
K3, the following inequalities hold: 0 < ϕj(u1, u2, u3) < 1, j = 1, 2, 3.

As in [24], simple calculations imply the following

Proposition 2. a) The �rst derivatives of all functions ϕj are positive, and all
their second derivatives are negative;
b) The map Φ is injective, and its Jacobian detJ(Φ) is strictly positive at any

point of K3;

c)
dϕ1(u1, 0, 0)

du1

∣∣∣∣
u1=0

> 1.

Lemma 1. There exists an unique point u0
1 ∈ (0, 1) such that ϕ1(u0

1, 0, 0) = u0
1.

Actually, this fact is shown in [24], all arguments here follow the scheme of proofs
of the Lemmas 2, 3, 4 below: The function ∆0(u1) := ϕ1(u1, 0, 0)− u1 vanishes at

u1 = 0, ∆0(1) < 0, and
d∆0

du1

∣∣∣∣
u1=0

> 0, see the Figure 1.

1. Let us �x any non-zero point (u2, u3) ∈ [0, 1]× [0, 1], and consider analogous
function ∆1(u1, u2, u3) = ϕ1(u1, u2, u3) − u1. Clearly, for all non-zero (u2, u3) the
following inequalities hold: ∆1(0, u2, u3) > 0 and ∆1(1, u2, u3) < 0. Hence, at some
point u1 = ψ1(u2, u3) the function ∆1(ψ1(u2, u3), u2, u3) vanishes, see the Figure
2. The simple case u2 = u3 = 0 is explained in the Lemma 1.
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Figure 1. Graph of the function ϕ1(u1, 0, 0)− u1

Figure 2. Graph of ∆1(u1, u2, u3) for �xed (u2, u3)

Lemma 2. There exists a unique point u1 = ψ1(u2, u3) in the interval (0, 1) such
that

∆1(ψ1(u2, u3), u2, u3) = 0, or ϕ1(ψ1(u2, u3), u2, u3) = ψ1(u2, u3). (5)

Existence of such a point is shown above. It follows from the Proposition 2 that
the second derivative of ∆1(u1, u2, u3) with respect to u1 is strictly negative (recall
that u2, u3 are �xed). Thus its �rst derivative at the point u1 = ψ1(u2, u3) should
be strictly negative as well, and one has at the point P1 = (ψ1(u2, u3), u2, u3)

∂∆1

∂u1
< 0, or

∂ϕ1

∂u1
< 1. (6)

Hence, it follows from (6) that the function u1 = ψ1(u2, u3) is determined uniquely
and is smooth.
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Let us calculate derivatives of (5) with respect to u2 and to u3 at the point P1:

∂ϕ1

∂u1

∂ψ1

∂u2
+
∂ϕ1

∂u2
=
∂ψ1

∂u2
;

∂ϕ1

∂u1

∂ψ1

∂u3
+
∂ϕ1

∂u3
=
∂ψ1

∂u3
; or

∂ψ1

∂u2

(
1− ∂ϕ1

∂u1

)
=
∂ϕ1

∂u2
,

∂ψ1

∂u3

(
1− ∂ϕ1

∂u1

)
=
∂ϕ1

∂u3
. (7)

Positivity of the matrix J(Φ) and inequalities (6) imply that at the point P1 one
has

∂ψ1

∂u2
> 0,

∂ψ1

∂u3
> 0. (8)

In a similar way, one can verify that the second derivatives of ψ1(u2, u3) at the
point P1 are negative as well.

2. Given (u2, u3) ∈ [0, 1]× [0, 1], consider the function

∆2(u2, u3) = ϕ2(ψ1(u2, u3), u2, u3)− u2.

As in the Lemma 2, ∆2(0, u3) > 0 and ∆2(1, u3) < 0 for all u3 ∈ [0, 1], so at some
point u2 = ψ2(u3) one has ∆2(u2, u3) = 0.

For a �xed u3, graph of the function ∆2(u2, u3) is convex, cf. the Figure 2. The
proof of this fact follows from direct calculations:

∂

∂u2
(ϕ2(ψ1(u2, u3), u2, u3)− u2) =

∂ϕ2

∂u1

∂ψ1

∂u2
+
∂ϕ2

∂u2
− 1.

∂

∂u3
(ϕ2(ψ1(u2, u3), u2, u3)− u2) =

∂ϕ2

∂u1

∂ψ1

∂u3
+
∂ϕ2

∂u3
> 0.

It was indicated above that the second derivatives of ϕj and ψ1 are negative, thus
inequalities (8) imply that the second derivatives of the compositions are negative
as well:

∂2

∂u2
2

(ϕ2(ψ1(u2, u3), u2, u3)− u2) =
∂2ϕ2

∂u2
1

(
∂ψ1

∂u2

)2

+
∂ϕ2

∂u1

∂2ψ1

∂u2
2

+
∂2ϕ2

∂u2
2

< 0. (9)

In a similar way, one can verify inequalities
∂2

∂u2
3

(ϕ2(ψ1(u2, u3), u2, u3)− u2) < 0,

and
∂2

∂u2∂u3
(ϕ2(ψ1(u2, u3), u2, u3)− u2) < 0.

Lemma 3. For any u3 ∈ (0, 1], the interval (0, 1) contains a unique point u2 =
ψ2(u3) such that

∆2(ψ1(ψ2(u3), u3), ψ2(u3), u3) = 0,

or ϕ2(ψ1(ψ2(u3), u3), ψ2(u3), u3) = ψ2(u3). (10)

Existence of such a point is shown above. Let ψ′2 :=
∂ψ2

∂u3
. It follows from the

inequalities (9) that at the point u2 = ψ2(u3) the �rst derivative of ∆2(u2, u3) with
respect to u2 is strictly negative:

∂

∂u2
[ϕ2(ψ1(u2, u3), u2, u3)− u2] =

∂ϕ2

∂u1

∂ψ1

∂u2
+
∂ϕ2

∂u2
− 1 < 0. (11)

Hence, the equation (10) de�nes the smooth function u2 = ψ2(u3) uniquely.
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At the same time, calculation of
d∆2(ψ2(u3), u3)

du3
gives us

∂ϕ2

∂u1

∂ψ1

∂u2
ψ′2 +

∂ϕ2

∂u1

∂ψ1

∂u3
+
∂ϕ2

∂u2
ψ′2 +

∂ϕ2

∂u3
= ψ′2,

or ψ′2

(
1− ∂ϕ2

∂u1

∂ψ1

∂u2
− ∂ϕ2

∂u2

)
=
∂ϕ2

∂u1

∂ψ1

∂u3
+
∂ϕ2

∂u3
.

Right-hand side of the last equality is positive, so (11) implies that ψ′2 > 0.

3. Consider now similar function ∆3(u3) = ϕ3(ψ1(ψ2(u3), u3), ψ2(u3), u3)− u3,
here u3 ∈ [0, 1].

Lemma 4. Second derivative of ∆3(u3) is negative.

We have
∂∆3

∂u3
=
∂ϕ3

∂u1

∂ψ1

∂u2
ψ′2 +

∂ϕ3

∂u2
ψ′2 +

∂ϕ3

∂u3
− 1. (12)

∂2∆3

∂u2
3

=
∂2ϕ3

∂u2
1

(
∂ψ1

∂u2
ψ′2

)2

+
∂ϕ3

∂u1

(
∂2ψ1

∂u2
2

)
(ψ′2)2 +

∂ϕ3

∂u1

∂ψ1

∂u2
ψ′′2 + . . .+

∂2ϕ3

∂u2
3

< 0.

Each summand here contains exactly one negative factor, all the remaining factors
are positive. As in the previous Lemmas, and on the Figure 1, we have ∆3(1) < 0
and ∆3(0) > 0, hence there exists a unique point u0

3 ∈ (0, 1) such that ∆3(u0
3) =

ϕ3(ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3)− u0
3 = 0, or

ϕ3(ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3) = u0
3. (13)

Moreover, at this point u0
3 ∈ (0, 1) one has

d∆3

du3
< 0, and ψ′2 > 0. Hence,

ψ′2

(
∂ϕ3

∂u1

∂ψ1

∂u2
+
∂ϕ3

∂u2

)
< 1− ∂ϕ3

∂u1

∂ψ1

∂u3
− ∂ϕ3

∂u3
, thus

∂ϕ3

∂u3
< 1. (14)

So, we have proved that Φ maps the point U0 = (ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3) to
itself:

ϕ1(ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3) = ψ1(ψ2(u0
3), u0

3), see (5),

ϕ2(ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3) = ψ2(u0
3), see (10),

ϕ3(ψ1(ψ2(u0
3), u0

3), ψ2(u0
3), u0

3) = u0
3, see (13).

This implies uniqueness of a �xed point of the Poincar�e map Ψ : F0 → F0 in the
interior of the face F0. Hence, we have shown uniqueness of a cycle in the union
W1 of the one-valent blocks in the phase portrait of the dynamical system (1):

Theorem 1. The one-valent domain W1 in the phase portrait of the system (1)
contains exactly one cycle C that passes from block to block according to the arrows
of the diagram (4); this cycle contains the unique �xed point P0 = L−1U0 of the
Poincar�e map Ψ : F0 → F0.

On should note that outside of such one-valent domains W1 the phase portraits
of some higher-dimensional analogues of the dynamical system (1) can contain other
cycles, or invariant surfaces, see [6, 11,20].
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5. Stability of the cycle C

Following [24], we study now the Jacobian matrix JΦ of the Poincar�e map Φ at

its �xed point U0. Let trΦ be its trace. All elements aij =
∂ϕi
∂uj

of JΦ are strictly

positive, and detJΦ > 0, see the Proposition 1. As in was shown in the previous

section, ajj < 1 for j = 1, 2, 3. Hence,
trΦ

3
< 1.

Note that the origin O ∈ K3 is a trivial �xed point of Φ, diagonal elements of

the Jacobian matrix J0 at this point satisfy the opposite inequalities
∂ϕj
∂uj

∣∣∣∣
O

> 1,

see the Figure 1 and [24].

Theorem 2. The cycle C is stable.

Proof. First, we shall show that moduli of all eigenvalues of the matrix JΦ are
less than some positive λ1 < 1. The charactristic polynomial of JΦ has the form

P (λ) = −λ3 + λ2 · trΦ − λ · I2 + detJΦ,

where I2 is �the second invariant� of the matrix JΦ. Thus, P (0) > 0, and
d2P

dλ2
< 0

for all λ >
trΦ

3
.

Let ψ′1i =
∂ψ1

∂ui
, i = 2, 3, and ψ′2 =

∂ψ2

∂u3
. It follows from the Lemma 2 that

ψ′12 · (1− a11) = a12, ψ′13 · (1− a11) = a13, 0 < a11 < 1. (15)

Similarly, the Lemma 3 implies that

a21ψ
′
12ψ
′
2 + a21ψ

′
13 + a22ψ

′
2 + a23 = ψ′2, a21ψ

′
1,2 + a22 < 1, (16)

and the following inequality actually coincides with (13)

a31ψ
′
13 + ψ′2 (a31ψ

′
12 + a32) < 1− a33.

Hence, the relations (14), (15), (16) imply that

a21a13

1− a11
+ a23 = ψ′2 ·

(
1− a22 −

a21a12

1− a11

)
;

a21a12 < (1− a22)(1− a11); (17)

and (
a31a12

1− a11
+ a32

)
ψ′2 < 1− a33 −

a31a13

1− a11
.

Thus,

ψ′2 =
a23(1− a11) + a21a13

(1− a22)(1− a11)− a21a12
<

(1− a11)(1− a33)− a13a31

a32(1− a11) + a31a12
.

Direct calculations show that this is equivalent to the inequality P (1) < 0.
Since the map Φ has a unique �xed point U0 in the interior of K3, one shall

�nd exactly this point if in the Lemma 3 the variable u3 would be expressed as a
function of u2, or in Lemma 2 u2 would be represented as u2 = u2(u1, u3) etc. So,
the proofs of the inequalities (18) are similar to that of (17).

a31a13 < (1− a33)(1− a11); a23a32 < (1− a22)(1− a33). (18)
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The sum of the inequalities (17) and (18) has the form

3− 2trΦ + I2 > 0 or
dP

dλ

∣∣∣∣
λ=1

< 0. (19)

Since P (0) > 0 and P (1) < 0, the inequality (19), and convexity of the graph of
P (λ) near λ = 1 imply that the interval (0, 1) contains at least one eigenvalue of
the matrix JΦ, and none of these eigenvalues exceeds λ = 1.

Proposition 3. Characteristic polynom P (λ) does not have multiple roots.

Proof of this proposition follows from some simple manipulations with quadratic
equation P ′(λ) = −3λ2 + 2trΦλ− I2 = 0.

If the interval (0, 1) contains only one positive eigenvalue λ1 < 1 of JΦ, then
the Frobenius-Perron theorem, see [26], implies that moduli of the remaining two
eigenvalues of this matrix do not exceed λ1.

If this interval contains all three eigenvalues of JΦ, then I2 > 0. Due to the
Proposition 3, the matrix JΦ can be diagonalized in both cases, and the moduli of
all diagonal elements here do not exceed some positive λ1 < 1.

As it was shown in [5,6,25], for dynamical systems of the type (1), trajectory of
each point of the face F0 ⊂ W1 is attracted to trajectory of one of �xed points of
the Poincar�e map Ψ. According to the Theorem 1, this �xed point P0 is unique,
so trajectories of all points of the invariant domain W1 are attracted by the cycle
C. Moreover, for any point of the domain W1, its trajectory tends to the cycle C
exponentially after some �nite iteration of Ψ, cf. [24].

Hence, the cycle C is stable, and Theorem 2 is proved.

The authors are indebted to I.I.Matveeva, V.V.Ivanov, S.A.Kantor, and unknown
referee for helpful discussions and critical comments.
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