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ON THE TRANSCENDENTAL SOLUTIONS OF FERMAT TYPE
DELAY-DIFFERENTIAL AND c-SHIFT EQUATIONS WITH
SOME ANALOGOUS RESULTS

A. BANERJEE, T. BISWAS

ABSTRACT. In this paper, we mainly investigate on the finite order
transcendental entire solutions of two Fermat types delay-differential and
one Fermat type c-shift equations, as these types were not considered
earlier. Our results improve those of [13] in some sense. In addition, we
also extend some recent results obtained in [18]. A handful number of
examples have been provided by us to justify our certain assertion as and
when required.

Keywords: Fermat type equation, delay-differential equations, shift equ-
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1. INTRODUCTION AND SOME BASIC DEFINITIONS

At the outset, we assume that the readers are familiar with the basic terms and
notations of Nevanlinna’s value distribution theory of meromorphic functions in the
complex plane C. So for such a meromorphic function f, terms like T'(r, f), N(r, f),
m(r, f) etc., we refer to [6, 8]. The notation S(r, f), is defined to be any quantity
satisfying S(r, f) = o(T'(r, f)) as r — oo, possibly outside a set E of r of finite
logarithmic measure. The order of f is defined by

log T
p(f) = limsup 06\ J) (r. f) .
r—oo  logr
Moreover, the shift and difference operator of a function are represented by f(z+c)
and A(f) = f(z+¢) — f(2), c € C\{0}, respectively.
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In this paper, by linear c-shift operator in f(z), we mean
(1.1) Le(z,f) =) a;f(z + je),
j=0

where 7 > 1, ar # 0, a;’s are any constants. On the other hand, for delay-differential
operator in f, we mean, a finite sum of products of f, shifts of f, derivatives of f
and derivative of their shifts f(z + jc), (c € C), with constants coefficients.

We organize our paper as follows: In Section 2, we investigate on the entire
solutions of Fermat type delay-differential and c-shift equations and extend some
previous results. The non-existence conditions of meromorphic solutions of certain
non-linear c-shift equations will be considered in Section 3, which extend [18].

2. FERMAT TYPE DELAY-DIFFERENTIAL AND c-SHIFT EQUATIONS

Initially, Fermat type equations were investigated by Gross [3, 4], Montel [16].
Yang [21] investigated the Fermat type equation and obtained the following result:

Theorem A. [21] Let m, n be positive integers satisfying % + % < 1. Then there
are no non-constant entire solutions f(z) and g(z) that satisfy

(2.1) a(2)f"(2) + b(2)g™(2) = 1,
where a(z), b(z) are small functions of f(z).

From Theorem A it is clear that either m > 2, n > 2 or m > 2, n > 2. So,
it is natural that the case m = n = 2 can be treated when f(z) and g¢(z) have
some special relationship in (2.1). This was the starting point of a new era about
the solution of Fermat type equations. As a result, successively several papers were
published (see [1, 9, 10, 11, 12, 15, 19, 20, 22, 24]).

In 2007, Tang-Liao [19] investigated on the transcendental meromorphic solutions
of the following non-linear differential equations

(2.2) FP + PP (fM(2)* = Q(2),
where P(z), Q(z) are non-zero polynomials.

In 2013, Liu-Yang [14] considered the existence of solutions of the analogous
difference equations of (2.2) namely

(2.3) F(2)? + P(2)*(f(z +¢) = f(2))* = Q(2),
In this paper, we wish to investigate on the existence of solutions of certain
Fermat type delay-differential equation as follows:

(24) F) + B Pz 4 0) = fP()? = Q(2),
where R(z), Q(z) are and non-zero polynomials.

Liu-Yang [14] proved that (2.3) has no finite order transcendental entire solution,
that’s why in (2.4), it will be natural to investigate the case for k > 1.

Theorem 2.1. If the non-linear delay-differential equation (2.4) has a transcendental
entire solution of finite order, then f(z) takes the form

az+b —(az+b)
fl) = QR H Q@ T

a,b € C such that Q1(2)Q2(z) = Q(z). Moreover, one of the following conclusions
hold:
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(i) If e*© # 1; then k must be odd, Q(z) and R(z) reduce to constants satisfying
the equation 2iRa* +1 = 0.

(ii) If e*® = 1; then deg R(z) = 1, none of Q1(z), Q2(2) be constants. Also,

) = Qi(z) _ Q2(2)
P(Q1) (=1 1H1P(Q2)

such that P(z) =1 i (If)ak’l[x(l)(z +¢)—zW(2)].
=0

R(z

The following examples clarify that both the cases of Theorem 2.1 actually hold.

23212 1 3 —(32+2)
Example 2.1. The function f(z) = < +2 ¢

2(z) — %(f’(z +¢)— f(2))? =6, where c = i, R = fé.

satisfies the Fermat equation

az+b —(az+b)
Example 2.2. The function f(z) = aze + Bae

satisfies the Fermat

equation f2(z) — a‘;’ig (f'(z+¢c)— fl(2)? = aﬁz22such that e*© = 1, Q1(2) = az,
Q2(2) = Pz, where o, € C\{0}. Here, R = e ch) e
Bz . z
- ia(B.(z +¢) — B.2)’ e, R= iac’
In 2015, Liu-Dong [13] investigated on
(2.5) D*f2(2) + (Af(z +¢c) + Bf(2))* =1

and proved that if there exist finite order transcendental entire solutions of (2.5),
then A2 = B? + D2. In that paper, they also discussed about

(2.6) F2(2) + (Af™(2) + Bf™(2))? = 1

that (2.6) admits transcendental entire solution when m + n is an even and m, n
are odds.

In this paper, we wish to investigate on the following Fermat type equation as
this type of equation was not dealt earlier:

(2.7) F2(2)+ R2(2)(Af™ (2 + ) + Bf"(2))* = 1,

where m,n € N, R(z) be a non-zero polynomial, A and B are non-zero constants
and prove the following theorem.

Theorem 2.2. If the non-linear delay-differential equation (2.7) has a transcendental
entire solution of finite order, then R(z) reduces to constant, namely, R and f(z)
takes the form
eaz+b + e—(az—i—b)
flo)= e

such that when

1
- B p2 _
(I) m, n are even, then a™™" # +£5, R* =

a2m A2 — g2n B2’
v —a"B=+\/(a"B)2 — (amA)? e am A\
et = oY) . Also, e*c ¢ ¢ £1,— Yz ;
— .
a"B+amA’

(I1) m, n are odd, then e*¢ = £1, a™ ™" £ ¥% and R =
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—1
111 j is odd, then e = i, a™ " # +i8 and R= —————;
(III) m s even, n is odd, then e i, a # Liz an B Liam A’

(IV) n is even, m is odd, then a™ " # +iZ, R? =

—qn n 2 m 2
eac = "B+ \/(ami) + (am4) . Also, e*c ¢ {:I:l,
a

T a2n B2 4 q2m A2’
a™A  a"B
a®B’ amA |’

Remark 2.1. Adopting the same procedure of Case (I) in Theorem 2.2, for m =
n = 0, if we choose f(z) = Dg(z) and R = 1/D in (2.7), then we have R?> =
1

VPR — A?=DB?+ D?, i.e., we get |13, Theorem 1.13|. So our theorem is a

significant extension of the same.

Following example shows that in Theorem 2.1, each of the cases (I)-(IV) actually
occurs.

2713 o —(22+3)

Example 2.3. (I) Let m, n both be even. Consider the function f(z) = 5

It is easy to see that f satisfies the Fermat equation f?(z)— 3 (f"(z+c)+3f"(2))* =
1, such that €3¢ = —3 4+ 2/2.

(ITI) Let m, n be both odd. Choose f(z) = , which satisfies the Fermat
equation f*(z) — 5z (5f'(z + ¢) + f(2))? = 1, such that e = —1.

(III) Let m be even and n be odd. The function f(z) = M satisfies the
Fermat equation f?(z) — 8+161.(f”(z +¢)+3f"(2))? =1, such that e¢ = i.

(IV) Let m be odd, n be even. Consider the function f(z) = M . The
function f satisfies the Fermat equation f*(z) — 105 (3f'(z+¢) +2f"(2))? = 1, such

2¢ 1
that e = 3.

e37 T4y o~ (32+4)
2

In [14], Liu-Yang obtained the following result:

Theorem B. There is no finite order transcendental entire solution of (2.3), where
P(z), Q(z) are non-zero polynomials.

In this paper, we partially extend the above result in the following manner.

Theorem 2.3. The non-linear c-shift equation

(2.8) FA2) + L2z f) =1
has finite order transcendental entire solution of the form
eaz+b +e—(a2+b)
fe) =
satisfying following two equations:
(2.9) ag + a1 + age®®® + ...+ a,e” = —i,
’ ag + a1e”% + age 2% 4 4 a,e T = .

Here e #£ +1. Also if T =1, ag # +ay is required.

Remark 2.2. In Theorem 2.3, if we take 7 = 1 and a; = —ag = 1, from (2.9),
it is clear that when L.(z, f) = A.f(z), there exists no finite order transcendental
entire solution, which includes special case of Theorem B.

Example 2.4. Consider the function f(z) = sin(32). Here a = &£, ¢’ = 1. Then

f(2) be a solution of the equation f%(z)+ (Lc(2, f))? = 1, provided that T is an odd
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integer say T = 2m+ 1, m > 1 and the coefficients of L.(z, f) satisfy the following
simultaneous equations:

ap—as+ag —ag+ ...+ (-1)"ag,, = 0,
al_a3+a5_a7+...+(—1)ma2m+1 = —]_;

and when T is an even integer say T = 2m, m > 1, the coefficients of L.(z, f)
satisfy the following simultaneous equations:

ao—a2+a4—a6+...+(—1)ma2m = 0,
a1 —a3+a5—a7+...+(—1)m—1a2m_1 = 1.

The following lemma plays an important part for the proof in this section:

Lemma 2.1. 23] Suppose fi(z) (j = 1,2,...,n+ 1) and gi(z) (k = 1,2,...,n)
(n > 1) are entire functions satisfying the following conditions:
(i) Y0y fi(2)e9®) = fuia(2),
(ii) The order of f;(z) is less than the order of e9*(?) for 1 < j < n+1,
1 < k < n and furthermore, the order of f;(z) is less than the order of
e9n(2)=gr(2) form>2and1<j<n+1,1<h<k<n.

Then fi(2) =0, (j =1,2,...,n+1).

Proof of Theorem 2.1. Assume that f(z) is a finite order transcendental entire
solution of (2.4), then

(2.10) [f(2) +iR(2)(f®) (z 4+ ¢) = fP(2))]

x[f(z) = iR(2)(f P (z + ¢) = fP(2)] = Q(2).
Thus both of f(2)+iR(2)(f*) (z4+¢)— f*)(2)) and f(2)—iR(2)(f*) (z4c)— fF)(2))
have finitely many zeros. Combining (2.10), with Hadamard factorization theorem,
we assume that

F@) +iRE) (P (2 + ) — FF(2) = Qu(2)e")
and
f(2) —iR(2)(fP (z+ ) = fF(2)) = Qa(2)e ),

where P(z) is a non-constant polynomial, otherwise f(z) will be a polynomial and
Q1(2)Q2(z) = Q(z), where Q1(z), Q2(z) are non-zero polynomials. We denote the
degrees of Q1(2), Q2(z) and P(2) by ki, ko and k3, respectively. Thus, we have,

_ Qi(2)e"? + Qa(2)e” )

(2.11) £(2) g
and
(2.12) F® (g o) — fO(2) = Q1(2)el®) — Qz(z)e_P(Z).

2iR(z)
From (2.11), we have

(2) —P(2)
(2.13) F®(2) = p1(z)ef J;pQ(z)e P |
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where,
(214 n() = Q) [P+ My (PP, P®)]
+Q' (2)Ma 1 (P/, P’ ..., P(k—l))

+o 4+ QE V)M, (P + QP (2),

(2.15)  pa(2) = Qa(2) [(—1)kP’(z)k+Nl,k (P’,P’/,...,P<k>)]
(=11 Qb (2) N1 (P’,P”, . .,P<’H>)

..+ Qék_l)(Z)Nk,l(Pl) + Qék)(z)v

where M; ;—j+1(Njx—;j+1) (7 = 1,2) are differential polynomials of P’ with degree
k—1. M p—j41(Njr—j+1) are differential polynomial of P’ with degree k — j + 1
(7 =3,4,....k). It follows that p;(z), p2(2) are polynomials with degree k1 + k(ks —
1) > k1 and ky + k(ks — 1) > kg, respectively. Using (2.12) and (2.13) we have

Q1(2)eP®) — Qy(z)e” P

2.1
(2.16) %iR(2)

 pi(z+0)ePEt) 4 py(z 4+ c)e PO B p1(2)ePF) 4 py(2)eF(2)

B 2 2

01z + AP — pr(2))ePD + (= + e=2PE) — ()

= 5 .
Then (2.16) can be written as
(2.17) [pl (z+¢)ePPE) —pi(2) — ?Rl((j” eP(?)

i [Pz(z +e)e B —po(z) + ?52:8} o
Applying Lemma 2.1 on (2.17), we have
1 AcP(z) _ _@(?) _ 0
and
z

(2.19) Pl + c)em 3@ _py(2) 4 QR(()) B

Now we show that P(z) is a one-degree polynomial. If not, suppose that deg(P(z)) >
2. Then applying Lemma 2.1 on (2.18) and (2.19), we have pi(z + ¢) = 0 and
pa2(z + ¢) = 0, a contradiction, which implies that P(z) is a one-degree polynomial,
say,

(2.20) P(z) =az+0b, a,beC.
In view of (2.20), (2.17) yields

@.21) =
Q2(2) | —p(s) _
z’R(z)} .

+ {pg(z +c)e % —pa(z) +
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Using (2.20), the expressions of p;(z) and p2(z) given by (2.14) and (2.15) reduec
to

k k

22 =Y (1) Q06 and o) =3 () -0

=0 =0

respectively. Now we have to consider the following two cases:

Case 1: If e*¢ £ 1. Then considering the degrees of p;, @1 and ps, Q2 of the
equation (2.21), one can conclude that R(z) is constant, say, R. Thus, using (2.20)
and (2.22), (2.18) and (2.19) become

039 iRy (1) [+ 0 - @) = i)
=0
and
(2.24) mi (I;)(a)kl [ O (z) — e’“cQél)(erc)} = Qa(2).
=0

Considering the highest degree on both sides of (2.23) and (2.24), we have
iRa*(e® —1) = 1 and iR(—a)*(1 —e7%) =1,
which implies €2 = (—1)¥. Since e?® # 1, k must be odd and

(2.25) 0 (2m + )i
. —
m is any integer. So,

(2.26) 2iRa” 4+ 1 =0.

Eliminating e®<"(*) from (2.18) and (2.19), we have

iRp1(2) +Q1(2)  iRpa(z+c)
(2.27) , = -
iRp1(z + ¢) iRpa(z) — Q2(2)
= (m(2)p2(2) = p1(z + )p2(z + ) ) R? + (p1(2)Q2(2) — p2(2)Q1(2))iR
+Q1(2)Q2(2) = 0.
First suppose Q(z) be constant, then @1(z) and Q2(z) are constants, then from
(2.22) and (2.27) we have, (2iRa* + 1)Q1Q2 = 0, which is possible from (2.26).
Suppose that Q(z) be one-degree polynomial and let Q1(z) = a1z + ag, a1 # 0
and @Q2(z) be constant. Using e®® = —1, (2.25), (2.26), we have from (2.23) that

iR[a*{—(a1(z + ¢) + a) — (12 + ap)} — 2ka*la1] = a2+ ag
—  iR[a"{2(a1z + ap) + aic} + 2ka" T ray] + (a1z + ap) =0
—  (2iRa" +1)(a12 + ag) + iRa* vy (ac + 2k) = 0
=  2k=—-(2m+ 1)mi,
a contradiction. Similarly, considering Q1(z) and Q2(z) respectively as constant
and one-degree polynomial, we can get a contradiction in a similar way. So, Q(2)
cannot be one-degree polynomial.

Next suppose that Q(z) is a polynomial of degree 2. If Q1(z) and Q2(z) both
are one-degree polynomials, then from previous argument, we get a contradiction.
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Now let Q1(z) = 222+ P12+ Bo, B2 # 0 and Q2(z) be a constant. Using e%¢ = —1,
(2.25), (2.26), we have from (2.23) that

iR[a* {—(B2(z + ¢)® + Bi(z + ¢) + Bo) — (B22" + P12 + Bo)}
+kaf " —(2B2(z + ¢) + B1) — (2622 + B1)} — 2k(k — 1)a*72,]
= B2 + Brz + Bo

= (2iRa" +1)(Boz? + B2 + Bo) + 2iRa* ! By(ac + 2k)z + Py(z) = 0,

where Py(z) is a polynomial of degree 0. Now, comparing the coefficient of z from
both side of the above equation, again we have 2k = —(2m + 1)7i, a contradiction.
Similarly, considering (1(z) and Q2(z) respectively as constant and two-degree
polynomial, again we get a contradiction. Thus @(z) cannot be a second degree
polynomial.

Now suppose that Q(z) is a polynomial of degree n > 3. Let Q1(z) = ;27 +
vj—122 7 4+ o+ 90, 75 # 0 and Q2(2) be of degree n — j, 3 < j <n . Again using
e’ = —1, (2.25), (2.26), we have from (2.23) that

(2iRa* + 1)Q1(2) + niRa" 1y, (ac + 2k) 271 + P;_o(2) = 0,

Pj_5(z) is a polynomial of degree j —2. Here, comparing the coefficient of 27! from
both sides of the above equation, again we have 2k = —(2m + 1)7i, a contradiction.
Similarly, @2(z) cannot be a polynomial of degree n — j, as in that case also we get
a contradiction. So, Q(z) cannot be a polynomial of degree n > 3.

Thus Q(z) must be constant, say (). Therefore, we must have the form of the
solution is

_ Qleaz+b + Q2e—az—b

1(2) ' 7
such that Q1Q2 = Q.

Case 2: If e = 1, then (2.21) becomes

(2.28) {pl(z +c¢)—pi(z) — ?}%((j))] eP(2)

Q2(2) | —Pes) _
iR(z)]e "o =0

Applying Lemma 2.1 and using (2.22) on (2.28), we have

+ {pg(z +c¢)—pa(z) +

02 Gy (})a [eG+a-ale)] ~ @

=0
and
k
230 iR ;)0 @6 - @6+ ] = Q)
=0

k
Note that the highest degree of Z(’f)a’“_l[le)(z + ¢ - QY(2)] and
=0

k
> (];)(fa)k’l[ ;l)(z) — (21)(2 + ¢)] are k; — 1 and ko — 1 respectively. Also we

see that none of Q1(z) and Q2(z) be constants, i.e., deg Q(z) > 2. Comparing the
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total degree of the equations (2.29) and (2.30), we can deduce that deg R(z) = 1.
Moreover,

_ Qi) _ Q2(2)
P(Q1)  (=DFH1P(Q2)

such that
k
P(z) = zz (I;) abt [x(l)(z +¢)—zW(2)|.
(I

Proof of Theorem 2.2. Assume that f(z) is a finite order transcendental entire
solution of (2.7), then
(2.31) [/(2) +iR(=) (A" (2 + ¢) + Bf™ (2))]
*[f(z) = iR(2) (A" (2 + ¢) + Bf(2))] = 1.
Thus both of f(2)+iR(2)(Af"™) (z4c)+Bf™(2)) and f(z)—iR(2)(Af™ (z4c)+

Bf(™ (%)) have no zeros. Combining (2.31), with Hadamard factorization theorem,
we assume that

F(2) +iR(2)(Af "™ (z + ¢) + Bf ™M (2)) = eF)
and
J(2) = iR A (2 + ) + Bf(2)) = 7,

where P(z) is a non-constant polynomial, otherwise f(z) will be constant. Thus we
have,

eP(z) + e_P(z)

(2.32) f(z) = '
and
(2.33) AF (e +0) + B (e = S

2iR(z)
Using (2.32) in (2.33), we have
eP(Z) — eip(z)

@3)  p— =

(NN

[p1(z +¢)eP T 4oz + c)e*P(”C)}

B
+5 [ql(z)ep(z) + qz(z)e*P(z)}
such that
pi(z+c¢)=Pz+¢)" + My -1 (P’(z +¢),P"(z4¢),...,P™(z + c)) )

p2(z+¢) = (=1)"P'(z + )™ + Mo (P’(z +¢),P"(z+c),..., P (2 + c)) :
01(2) = P'(2)" + Nins (P’, P P(”)> ,

qQ(Z) = (_1)TLP/(Z)TL + Nz’n,1 (P/aP//a .. 7P(n)) ’
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where M; 1, Nin—1 (i = 1,2) are differential polynomials of P’ with degree m—1,
n — 1. Then (2.34) can be written as

(2.35) [iAR(z)pl(z +0)eAP®) 4 iBR(2)qi () — 1] P
+ [iAR(z)pz(z +¢)e 2PE) L iBR(2)qs(2) + 1} e P = .

Applying Lemma 2.1 on (2.35), we have

(2.36) iAR(2)p1(z + )P @) LiBR(2)q1(2) —1 =0
and
(2.37) iAR(2)pa(z 4 ¢)e 2P LiBR(2)qa(2) + 1 = 0.

Now we show that P(z) is a one-degree polynomial. If not, suppose that deg(P(z)) >
2. Applying Lemma 2.1 on (2.36) and (2.37), we have p1(z+c¢) = 0 and p2(z+c¢) = 0,
a contradiction, which concludes that P(z) is a one-degree polynomial, say,

(2.38) P(z) =az+b.
Using (2.38), we have
(239) () =a™, pa(2) = (—a)™, @u(2) =", ga(2) = (—a)".
Using (2.38) and (2.39) in (2.35), we have
(2.40) [iAa™ R(2)e" + iBa™ R(z) — 1] ®*1?

+ [iA(—a)"R(2)e™ +iB(—a)"R(z) + 1] e **~" = 0.
Again applying Lemma 2.1 on (2.40), we have

(2.41) { . iAamR(z)ejC + iBa”R(z) —-1=0,
1A(—a)"R(z)e* 4+ iB(—a)"R(z) + 1 =0.

From here, we can conclude that R(z) is constant, say, R. So, (2.41) becomes
(2.42) iR(a™e"“A+a"B) =1
and
(2.43) iR((—a)me *“A+(—a)"B) = —1.

Case I: Let m, n be even. Then (2.43) becomes
(2.44) iR(a™e " "“A+a"B) = —1.

Now eliminating e from (2.42) and (2.44) we get, R?(a®*™A? — a?>"B?) = 1, which
a™A

implies, —— # +1,ie., a™ " # £&.

implies, a”B# ,le,a #+3

—a"B £ +/(a"B)? — (a™A)?

am™A

Again from (2.42) and (2.44) we get, e*¢ =
amA> +1
a"B
Case II: Let m, n be odd. Then (2.43) becomes
(2.45) iR(aMe ““A+a"B) = 1.
So, in this case, from (2.42) and (2.45) we get, e = £1. Also, ™" # &

—1
Th = .
en i a"B +amA

Also, e*¢ ¢ {:tl, (
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Case III: Let m be even and n be odd. Then (2.43) becomes
(2.46) iR(a™e™ A —a"B) = —1.
So, in this case, from (2.42) and (2.46) we get, e = +i and a™ " # +iZ.

i
Then R= — .
en R = B TianA

Case IV: Let m be odd and n be even. Then (2.43) becomes
(2.47) iR(a™e™ A —a"B) =1.
Now ehmmatmg e from (2.42) and (2.47) we get, R?(a®"B? + a*™A?%) = —1,
mA
which 1mp11es 75 +i.

—a"B % \/(a"B)? + (a™A)?

Again f 2.42 d (2.4 t, e9¢ =
gain from ( )an (2.47) we get, e A

Also, e*¢ & {:I:l, a4 _a"B }

a"B’ amA
O

Proof of Theorem 2.3. Assume that f(z) is a finite order transcendental entire
solution of (2.8), then

(2.48) [f(2) +iLe(2, NIf (2) —ile(z, f)] = 1.

Proceeding in the same way as done in the previous theorem, from (2.48), we have,
eP(Z) + e_P(Z)

(2.49) fle)=
and
(2.50) Lo(z, f) = el — e P

27
From (1.1), (2.49) and (2.50), we have

P(z) _ efP(z B Za]

(2.51) = Zaj (eP(zHC) + e*P(Z“C)) = —(ag+i)eP’®) — (ag —i)e ),

P(z+je) + e~ P(+ic)

Then (2.51) can be written as

(2.52) |ap+i+ ZajeA”P(z) e"@ 4 lag—i+ Zaje*AjCP(z) e P =y,
j=1 J=1

Applying Lemma 2.1 on (2.52), we have

(2.53) ap+i+ Y aetP =0
j=1

and

(2.54) ag—i+ Y aje P =,

Jj=1
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Now we show that P(z) is a one-degree polynomial. On the contrary, suppose that
deg(P(z)) > 2. Applying Lemma 2.1 on (2.53) and (2.54), we have a; = 0 for all
1 < j <7, which in view of (2.8) implies that f(z) is constant, a contradiction. So,
P(z) is a one-degree polynomial, say, P(z) = az + b. Then using (2.53) and (2.54),
the relation between a, ¢ and aj, 0 < j < 7, can be determined by (2.9). Also from
(2.9), it is clear that e*¢ # +1. If 7 = 1, ag # +a; is required. O

3. NON-LINEAR ¢-SHIFT EQUATIONS

For the existence of solutions of non-linear c-shift equation, in 2011, Qi [17]
obtained the following theorems:

Theorem C. [17] Let q(z), p(z) be polynomials and let n, m be distinct positive
integers. Then the equation

(3.1) f"(2) +a(2)f(z+ )" =p(2)
has no transcendental entire solutions of finite order.

In 2015, Qi-Liu-Yang [18] obtained the meromorphic variant of Theorem C and
improved this as follows:

Theorem D. [18] Let f(z) be a transcendental meromorphic function with finite

order, m and n be two positive integers such that m > n+4, p(z) be a meromorphic

function satisfying N(T, p(l—z)) = S(r, f) and q(z) be a non-zero meromorphic

function satisfying that T(r,q(z)) = S(r, ). Then, f(2) is not a solution of equation
(3.2) (=) +4q(2) f(z 4+ )" = p(2).
Theorem E. [18] Let f(z) be a transcendental entire function with finite order,

m and n be two positive integers such that m > n + 2, p(z) be a meromorphic

function satisfying N(r, ﬁ) = S(r,f) and q(z) be a non-zero meromorphic

function satisfying that T(r,q(z)) = S(r, ). Then f(z) is not a solution of equation
In this paper we extend Theorems D-E at the expense of replacing f(z + ¢) by
L.(z, ).
Theorem 3.1. Let f(z) be a transcendental meromorphic function with finite
order, m and n be two positive integers such that m > (7 + 1)(n + 2) + 2, p(2)
be a meromorphic function satisfying N(r, ﬁ) = S(r, f) and q(z) be a non-
zero meromorphic function satisfying that T(r,q(z)) = S(r, ). Then, f(z) is not a
solution of the non-linear c-shift equation

(3.3) J™(2) + a(2)(Le(z, f))" = p(2).

Corollary 3.1. Let f(z) be a transcendental entire function with finite order, m
and n be two positive integers such that m > n+2, p(z) be a meromorphic function
satisfying N(r,ﬁ) = S(r, f) and q(2) be a non-zero meromorphic function
satisfying that T(r,q(z)) = S(r, f). Then, f(2) is not a solution of the non-linear
c-shift equation (3.3).

The next examples show that if the condition m > n + 2 is omitted then the
equation (3.3) can admit a transcendental entire solution.
First considering n = 1 and m = 2 we have the following examples.
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Example 3.1. For an odd integer s, the function f(z) = e~ < + z is a solution of

2smiz

the equation f?(z) — zL.(2,f) = e~ e, for k > 2, provided that the coefficients of
L.(z, f) satisfy the following simultaneous equations:

ap—ay +ay —az+...+ (=DFap =2,
ag+ay+ay+as+as+...+ap =1,
a1+ 2as +3as+4as+ ...+ kap.  =0.

Next considering m = n = 1 we have the following example.

iz

Example 3.2. The function f(z) = ze < satisfies the equation f(z)+ z+1L (2, f) =

Z(erf)e%z, where the coefficients of L.(z,f) is chosen such that they satisfy

simultaneously the equations

{ ap—ay +as — ...+ (=1)*ay

L,
0.

—ay +2ay —3az + ...+ k(—1)kay

To proceed further we require the following lemmas:

Lemma 3.1. [2, Lemma 5.1] Let f(z) be a finite order meromorphic function and
e >0, then T(r, f(z +¢)) = T(r, f(2)) + o(r°~17¢) + O(logr) and o(f(z +c)) =
o(f(z)). Thus, if f(z) is a transcendental meromorphic function with finite order,
then we know T(r, f(z+¢)) =T(r, f) + S(r, f).

Lemma 3.2. [5, Theorem 2.1] Let f(z) be a meromorphic function with finite order,
and let ¢ € C and 6 € (0,1). Then m (7“, fgf(Jr)c)) + m( ’f(fz(i)c)> =0 (%) =
S(r, f)-

Lemma 3.3. [7] Let f be a non-constant meromorphic function of finite order and
c e C. Then

N(r,00; f(z 4 ¢)) < N(r,00; f(2)) + S(r, f),
N(r,00; f(z+¢)) < N(r, 005 f) + S(r, f).
Proof of Theorem 3.1. Suppose by contradiction that f(z) is a transcendental

meromorphic function with finite order satisfying equation (3.3).
If T(r,p(z)) = S(r, f), then applying Lemma 3.1 to equation (3.3), we have

m.I(r,f) = T(r, f")
= T(rp(z) — a(2)(Le(z, f)")
T(r,Le(z, [)") + S(r, f)
< (r+1O)nT(r f)+ S(r f),
)

which contradicts the assumption that m > (7 4+ 1)(n + 2) +
If T(r,p(2)) # S(r, ), differentiating equation (3.3), we get

3
(3-4) (f™(2)" + (a(2)(Le(z, f)") =1'(2).
Next dividing (3.4) by (3.3) we have
PRI (2 ) q9(2)(Le(2, 1)) = p(2)[(f™(2))" + (a(2) (Le(z, £))")]
() (Le(z, )" = (a(2) (Le (2, ))")'
'(2)

(fm(Z)) _r
™ (2) p(2)

A

(35) = f"(x) = 5
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First observe that ,,L(( ))) _2() cannot vanish identically. Indeed, if { ,,L((Zz)))

p(2)
Z((z)) =0, then we get p(z) = af™(z), where « is a non-zero constant. Substituting

the above equality to equation (3.3), we have ¢(z)(L.(z, f))" = (o —1) f™(%). From
Lemma 3.1 and the above equation, we immediately see as above that mT'(r, f) <
(t+ 1)nT(r, f)+ S(r, f), which is a contradiction to m > (7 + 1)(n + 2) + 2. From
equation (3.5), we know

(3.6) mT(r, f) = T(r, /™)

() L))+ (7 2 -

)
N N(r,p'(z) 2 Loz )" — (a()(E <z,f>>”>’)
(

IN

p(2)

- (ol ) ()

As Lemma 3.1 together with equation (3.3) implies that
(m = (r+1)n)T(r, f) + S(r, f) < T(r,p(z)) < (m+ (7 +1)n)T(r, ) + S(r, f),

we conclude that

(3.7) S(r,p(z)) = S(r, f).
Applying Lemmas 3.1, 8.2 and (3.7) to equation (3.6), we obtain that

o

p/(Z) n __ z = n\/
B8 m(r) < )+ N (2 ga) (Lo ) Gl Lol )Y )

@Y YEY . g
v (i - 55 ) s
Let
(59 HG:) = BE G Lol )"~ (Ll 1)
and
U@y P

(3.10) G(2) 1) )

First of all, we deal with N(r, H(z)). From (3.3) and (3.9), we know the poles of
H(z) are at the zeros of p(z) and at the poles of f(2), f(z+jc), (j =1,2,...,7)
and ¢(z). Poles of p(z) will not contribute towards the poles of H(z) as from the
equation (3.3) we know that the poles of p(z) should be at the poles of f(z), f(z+jc),
(j=1,2,...,7) and ¢(z). We note that T'(r,q(z)) = S(r, f).

If zp is a zero of p(z) then by (3.9), zo is at most a simple pole of H(z). If 2
is a pole of f(z) of multiplicity ¢ but not a pole of f(z+ jc), j =1,...,7, then z
will be a pole of H(z) of multiplicity at most ¢n + 1. Next suppose z; be any pole
of f(z) of multiplicity ¢ and a pole of at least one f(z + jc), j = 1,2,...,7, of
multiplicity ¢; > 0. Then z; may or may not be a pole of L.(z, f). From the above
arguments and our assumption, we conclude that

BN H) < N (r, p(lz)) NG (Le(z f))™) 4+ N, Lo(z, £)) + S(r, f)
nN(r,Le(z, f)) + (1 + L)N(r, f) + S(r, f).

IN
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Next, we turn our attention towards the poles of G(z). We know from (3.3) and
(3.10) that the poles of G(z) are at the zeros of p(z) and f(z) and at the poles
of f(2), f(z+jc), 7 =1,2,...,7. If 2 is a zero of p(z), zero of f(z), or pole of
f(z+je),j=1,2,...,7, then by (3.10) we know zo will be at most a simple pole of
G(z). If zg is a pole of f(z) but not a pole of f(z+ jc), j =1,2,...,7, then by the
Laurent expansion of G(z) at zp, we obtain that G(z) is analytic at zg. Therefore,
from our assumption and the discussions above, we know

N (ra 1)(12)) +N(r, Le(z, ) + N (T’

N(r,Le(z, f))+ N (7", ;) +S(r, f).

Using Lemma 3.3, from equations (3.8), (3.11) and (3.12) we have

mT(r,f) < nm(r, f) +nN(r,Le(z, ) + (1 + )N (r, f) + N(r, Le(2, f))
— 1
+N <r7f) +S(T7f)
nm(r, f) +n(r + DN(r, f) + (1 + DN(r, f) + (7 + 1)N(r, f)
— 1
+N <r7f) +S(T7f)
{(t+1)(n+2)+ 1}T(r, f) + S(r, f),

which contradicts the assumption that m > (7 4+ 1)(n + 2) + 2. This completes the
proof of the theorem. O

1
f

IN

(3.12) N(r,G) ) +S(r, f)

IN

IN

IN
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