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Abstract. We study typical (valid for almost all graphs of a class under
consideration) properties of the center and its spectrum (the set of centers
cardinalities) for n-vertex graphs of �xed diameter k. The spectrum of
the center of all and almost all n-vertex connected graphs is found. The
structure of the center of almost all n-vertex graphs of given diameter
k is established. For k = 1, 2 any vertex is central, while for k ≥ 3 we
identi�ed two types of central vertices, which are necessary and su�cient
to obtain the centers of almost all such graphs; in addition, centers of
constructed typical graphs are found explicitly.

It is proved that the center of almost all n-vertex graphs of diameter k
has cardinality n− 2 for k = 3, and for k ≥ 4 the spectrum of the center
is bounded by an interval of consecutive integers except no more than
one value (two values) outside the interval for even diameter k (for odd
diameter k) depending on k. For each center cardinality value outside
this interval, we calculated an asymptotic fraction of the number of the
graphs with such a center. The realizability of the found cardinalities
spectrum as the spectrum of the center of typical n-vertex graphs of
diameter k is established.
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Introduction

We study �nite labeled ordinary graphs. For a connected graph G, the
distance ρG(u, v) between its vertices u, v ∈ V (G) is de�ned as the length of the
shortest path connecting these vertices. In this case, eG(v) = maxu∈V ρG(v, u) is the
eccentricity of the vertex v of the graph G, d(G) = maxv∈V eG(v) is the diameter
of the graph G, and r(G) = minv∈V eG(v) is the radius of the graph G. A vertex is
called central if its eccentricity is equal to the radius of the graph. The graph center
C(G) is the set of all central vertices of the graph G.

It is well known that for any graph H there is a connected graph G such that its
subgraph induced by the center C(G) is isomorphic to H. This fact was established
by G.N. Kopylov and E.A. Timofeev [13], its simple justi�cation was also given by
S.T. Hedetniemi (see [?]). And for any rational q, 0 < q ≤ 1, F. Buckley proved the
existence of a graph G such that |C(G)| = q |V (G)| [2].

For an arbitrary class of connected graphs K through Spc(K) we denote the
center spectrum of graphs of this class, i.e. the set of cardinalities of graphs centers
from the class K. The class of all n-vertex connected graphs is naturally partitioned
into subclasses of graphs determined by their diameter. Let Jn, d=k, Jn, d≥k, J ∗n, d≥k
be the following classes of labeled n-vertex graphs: graphs of diameter k; connected
graphs of diameter at least k and graphs (not necessarily connected) with a shortest
path of length at least k, respectively. Then Jn, d≥1 is the class of all n-vertex
connected nontrivial graphs, and obviously, the following inclusions are ful�lled:
Jn, d=k ⊆ Jn, d≥k ⊆ J ∗n, d≥k.

In [13] all possible values of the parameters n, m and c are found for which there
exists an n-vertex graph with m edges and c central vertices. The relations between
these parameters are reduced to lower and upper bounds of the number of edges
m in terms of the given parameters n and c (see Section 2, Theorem 2). Using this
Theorem of G.N. Kopylov and E.A. Timofeev, one can �nd the center spectrum of
all n-vertex connected graphs (see Section 2, Theorem 3):

Spc(Jn, d≥1) =
[[

1, n
]]
\ {n− 1}, n ≥ 2 (1)

(here
[[
x, y

]]
denotes an integer interval between two given numbers x and y, i.e.[[

x, y
]]

= [x, y]∩Z). In addition, for almost all n-vertex connected graphs G, the
following equality holds |C(G)| = n. Obviously, Spc(Jn, d=1) = {n}. Moreover, from
the well-known result of J.W. Moon and L. Moser (almost all graphs have diameter
2 [14]) it is easy to obtain that almost all graphs from Jn, d=2 have the radius equal
to the diameter [8], and therefore, the cardinality of the center is also equal to n.
Naturally the question arises as to the possible center spectrum of almost all n-
vertex graphs of �xed diameter k ≥ 3. The radius of almost all graphs of the class
Jn, d=k is established by the author in [8]. For k ≥ 3, almost all n-vertex graphs of

diameter k have radius dk2 e.
Note that Yanan Hu and Xingzhi Zhan found the center spectrum of n-vertex

graphs of given radius r [12]. As for the properties of the center spectrum of almost
all n-vertex graphs of �xed diameter k (for large n), this result only implies inclusion
Spc(Jn, d=k) ⊆

[[
1, n

]]
\{n−1} for all n ≥ (8k−2)/3. This relation is a consequence

of the equality (1), i.e. new restrictions for possible values of the center spectrum
of the almost all graphs do not arise.

In [15] Dhruv Mubayi and Douglas B. West investigated the smallest hn,k(c)
and the largest fn,k(c) number of vertices with eccentricity c in n-vertex graphs of
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diameter k. For individual cases that do not cover all possible relationships between
parameters n, k and c, the values fn,k(c) and hn,k(c) are found. In particular, for

c = dk2 e, which is the radius of almost all graphs from Jn, d=k, hn,k(dk2 e) = 0 and

fn,k(k2 ) = n−k, fn,k(k+1
2 ) = n−k+1. Such a lower bound of the center cardinality

is reduced to trivial, and the upper bound, due to the de�nition, does not take
into account possible jumps and gaps of center cardinality values in the interval[[

1, fn,k(dk2 e)
]]
, de�ned by these estimates, and also turns out to be uninformative

for the study of the distribution of the center cardinalities of the almost all graphs,
when n tends to in�nity.

In this paper, we investigate the center and its spectrum for almost all n-
vertex graphs of �xed diameter k. Necessary preliminary information is contained in
Section 1. There is also given a de�nition of the family of nested classes Fn,k,p, p ≥ 1
of n-vertex graphs of �xed diameter k ≥ 3, possessing a number of metric properties
and constructed by the author in [8]. It was previously established that Fn,k,p is
a class of typical graphs for each of the classes Jn, d=k, Jn, d≥k and J ∗n, d≥k [8]

(Theorem 1 and its Corollaries). Hereinafter, we use this class of typical graphs.
In Section 2, we �nd the center spectrum of all and almost all n-vertex connected

graphs (Theorem 3).
In Section 3, we establish the structure of the center of almost all graphs of a

given diameter. For almost all graphs G of diameter k = 1, 2, every vertex is central,
i.e. C(G) = V (G). For k ≥ 3, we identi�ed two types of central vertices, which are
necessary and su�cient to obtain the centers of almost all n-vertex graphs of �xed
diameter k. For odd k these are the central vertices of diametral paths of the graph
and vertices equidistant at distance k+1

2 from their endpoints, while for even k these
are only the central vertices of diametral paths (Theorem 4). Moreover, for typical
graphs G ∈ Fn,k,p the center C(G) is explicitly distinguished (Lemma 5).

In Section 4, we asymptotically study the center spectrum of n-vertex graphs
of a �xed diameter. It is proved that the center of almost all n-vertex graphs of
diameter k has cardinality n for k = 1, 2, and n− 2 for k = 3, while for k ≥ 4 the
center spectrum is bounded by an interval of consecutive integers and additionally
contains at most one value (two values) outside this interval for even diameter k (for
odd diameter k) depending on the value k (Theorem 6). Note that the boundaries of
the interval depend on predetermined arbitrary integer p and shrink when choosing
a greater value p. For each value of the center cardinality outside this interval, the
asymptotic fraction of the number of the graphs with such a center are calculated.
Moreover, the graphs whose center cardinality belongs to the interval also have a
nonzero asymptotic fraction (see Theorem 6 for more details). In Theorem 5 it is
established realizability of the found cardinalities spectrum as the center spectrum
Spc(Fn,k,p) of typical n-vertex graphs of diameter k. Furthermore, typical graphs
for graphs classes corresponding to the cardinality cases of the center in Theorem
6 are found in Corollaries 12, 13. Theorem 6 implies a number of properties of the
centers of almost all graphs of �xed diameter k. For example, there are almost no
graphs with a trivial center of diameter k = 2, 4 and odd diameter k, while for any
even k ≥ 6 this is not true. Similarly, there are almost no graphs with a 2-vertex
center of diameter k = 1, 3, 5 and even diameter k, however, for every odd k ≥ 7
this does not hold. Unexpected is the jump of the center cardinality outside the
interval of the consecutive integer values both from above for odd diameter k ≥ 5,
and from below for even k ≥ 6 and odd k ≥ 7.
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All obtained typical properties of the center and its spectrum for n-vertex graphs
of �xed diameter k ≥ 2 remain typical for connected graphs of diameter at least k,
as well as for graphs (not necessarily connected) with a shortest path of length at
least k. In particular, Corollary 6 is valid.

1. Preliminary information

The article uses the generally accepted concepts and notation of graph theory
[4,11], as well as the standard concepts of combinatorial analysis [10]. We consider
only �nite ordinary (i.e., without loops and multiple edges) graphs G = (V,E)
with set of vertices V = {1, 2, . . . , n}, n ∈ N. As usual, denote by G \ v the graph
obtained as a result of removing a vertex v and all edges incident to it, G\V ′ is the
graph obtained by removing all vertices from a subset V ′ ⊆ V , G \ {e1, e2, . . . , ek}
is the graph obtained as a result of removing edges e1, e2, . . . , ek of the graph G,
G+H is the graph obtained by the join operation from graphs G and H, degG v is
the degree of vertex v of the graph G, δ(G) is the minimum degree of vertices of G,
BGi (v) = {u ∈ V | ρG(v, u) ≤ i} is a ball of radius i centered at a vertex v ∈ V in the
metric space of the graph G with the metric ρG, S

G
i (v) = {u ∈ V | ρG(v, u) = i }

is a sphere of radius i centered at a vertex v ∈ V , Kn is a complete n-vertex graph,
K1,n−1 is an n-vertex star, Cn is an n-vertex cycle, Pn is an n-vertex simple path. For
a shortest path P with endpoints v0 and vn, sequentially passing through vertices
v0, v1, . . . , vn, we use the notation P = (v0, v1, . . . , vn). A vertex of degree 1 is called
pendant, a shortest path of length d(G) is the diametral path of the graph G, and
under by a pair of diametral vertices we mean an unordered sample of two vertices
from the set V , the distance between which is equal to the diameter.

The graph Vk(u, v) shown in Fig. 1a we call the shuttlecock on the vertices u, v [5].
A graphG (not necessarily connected) has a shuttlecock, ifG has a subgraph Vk(u, v)
and degG u = degG v = k+1 (Fig. 1b). It is easy to see that a graph does not contain

Fig. 1. The shuttlecock

shuttlecocks if and only if it does not contain coincident balls of radius 1 centered
at di�erent vertices [5].

By (n)k we denote the number of order placements from n elements by k, i.e.
(n)k = n(n−1) · · · (n−k+1), and wherein we de�ne (n)k = 0 for n < k and (n)0 =
(0)0 = 1. We will write dxe (bxc) to denote the smallest (largest) integer greater
(less) or equal to real nonnegative number x. To denote the asymptotic equality of
functions f(n) and g(n) as n → ∞, we use the notation f(n) ∼ g(n), which by

de�nition means that limn→∞
f(n)
g(n) = 1 or, equivalently, f(n) = g(n)(1 + r(n)) for

all large enough n, where r(n) = o(1) is the approximation error of g(n).
To estimate the measure of the number of graphs with a certain property,

the concept of almost all is often used; in this approach, the studied property
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is considered for graphs with a large number of vertices. Let Jn be the class of
labeled n-vertex graphs with the �xed set of vertices V = {1, 2, . . . , n}, n ∈ N.
Consider some property P, by which each graph may or may not possess. Through
J Pn denote the set of all graphs from Jn that possess the property P. Almost all

graphs possess the property P if limn→∞
|JPn |
|Jn| = 1, i.e. |J Pn | ∼ |Jn|, and there are

almost no graphs with the property P, if limn→∞
|JPn |
|Jn| = 0.

In the study and selection of almost all graphs in the class of graphs under
consideration it is often useful to de�ne not characteristic properties themselves for
the notion of almost all, but directly select a subclass of typical graphs itself (in [6,7]
a more general concept of a class of typical combinatorial objects and an abstract
typical combinatorial object for a given class of objects admitting the concept of
dimension is formulated). Further we will also use this formal concept for graphs
(when the dimension of a graph is understood as the number of its vertices). Let
Ω be an arbitrary class of graphs such that Ωn 6= ∅ for all large enough n, where
Ωn = Ω ∩ Jn. A subclass Ω∗ ⊆ Ω is the class of typical graphs of the class Ω if

lim
n→∞

|Ω∗n|
|Ωn|

= 1.

In [8] for every k ≥ 3, a family of nested classes Fn,k,p, p ≥ 1 of n-vertex graphs
of �xed diameter k is constructed. To de�ne the class Fn,k,p, �rst consider special
graphs of diameter 3 and their properties. Let x, y ∈ V and Fn,3,p(x, y) be the class
of all graphs F ∈ Jn with the following properties:

a) the vertices x, y are not pendant in F ;
b) ρF (z, x) = ρF (z, y) = 2 for some vertex z ∈ V (a vertex with this property

will be called the pole of graph F );
c) d(F ) = 3, the graph F has the unique pair of diametral vertices x, y and does

not contain shuttlecocks;
d) the following property of spheres holds:

|SF1 (u) ∩ SF1 (v)| ≥ p ∀u, v ∈ V \ {x, y} and u 6= v,

|SF1 (u) ∩ SF1 (v)| ≥ p ∀v ∈ V \ {x, y} ∀u ∈ {x, y}.

Now, we de�ne graphs of the class Fn,k,p as follows. Let u = (u0, u1, . . . , uk−2)
be an arbitrary ordered sequence of di�erent vertices from the set V . Fix an
arbitrary pair of neighboring elements us and us+1, 0 ≤ s ≤ k − 3. On the set
V \{u0, . . . , us−1, us+2, . . . , uk−2} of n−k+ 3 vertices, de�ne an arbitrary graph F
from the class Fn−k+3,3,p(us, us+1). Finally, join by edges the vertices ui, ui+1 for
i 6= s and 0 ≤ i < k− 2. Denote the so-obtained graph by G(u, s, F ). Let Fn,k,p be
the class of all constructed graphs G(u, s, F ) under condition 0 ≤ s ≤ bk−32 c, and let
Fsn,k,p denote the class of all graphs G(u, s, F ) for �xed s ≤ k−3. In what follows, we

will use the notation G(u, s, F ) for the graph constructed for given k, p, u, s and F ,
without detailing the properties k ≥ 3, p ≥ 1, u = (u0, u1, . . . , uk−2), 0 ≤ s ≤ bk−32 c
and F ∈ Fn−k+3,3,p(us, us+1), unless otherwise speci�ed.

In [8] for any �xed k ≥ 3 and p ≥ 1, it is proved that the class of graphs Fn,k,p
is typical for each of the classes Jn, d=k, Jn, d≥k and J ∗n, d≥k, and also established

asymptotically exact value 2(n
2) ξn,k of the number of graphs in this class.
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Theorem 1 [8]. Let k ≥ 3, 0 < ε < 1 and p ≥ 1 do not depend on n. Then there
is a constant c > 0 independent of n and such that for every n ∈ N the following
inequalities hold

2(n
2)ξn,k

(
1− c

(
5+ε
6

)n−k+1)
≤ |Fn,k,p| ≤ |Jn, d=k|

≤ |Jn, d≥k| ≤ |J ∗n, d≥k| ≤ 2(n
2)ξn,k

(
1 + c

(
5+ε
6

)n−k+1)
,

where ξn,k = qk (n)k−1

( 3

2k−1

)n−k+1

, qk =
1

2
(k − 2) 2−(k−1

2 ).

Ñorollary 1 [8]. Let k ≥ 3 and p ≥ 1 be independent of n. Then for n→∞

|Fn,k,p| ∼ |Jn, d=k| ∼ |Jn, d≥k| ∼ |J ∗n, d≥k| ∼ 2(n
2)ξn,k.

Ñorollary 2 [8]. Let k ≥ 3 and p ≥ 1 be independent of n. Then Fn,k,p is the class
of typical graphs of the class of n-vertex graphs of diameter k.

Next, we need the following properties of the graphs G(u, s, F ).

Lemma 1 [8] (properties of G(u, s, F )). Let k ≥ 3, p ≥ 1 and G = G(u, s, F ) ∈
Fn,k,p. Then the following properties hold:

(i) G ∈ Jn,d=k;

(ii) the vertices us, us+1 are not pendant in F ;

(iii) u0, uk−2 is the unique pair of diametral vertices of the graph G and u0,
u1, . . . , uk−2 ∈ V (P ) for every diametral path P .

Ñorollary 3. For a vertex v of graph G(u, s, F ) ∈ Fn,k,p , the following conditions
are equivalent:

(i) v belongs to some diametral path;
(ii) v ∈ SF1 (us) ∪ SF1 (us+1) ∪ {u0, u1, . . . , uk−2};
(iii) v is not a pole.

Proof. In view of properties b), c) of the graph F , it is easy to understand the
equivalence of statements (ii) and (iii). Moreover, property c) of the graph F implies
that any vertex v from SF1 (us) ∪ SF1 (us+1) belongs to some diametral path of the
graph F with endpoints us, us+1. Extending it with two paths passing respectively
through the vertices u0, . . . , us and us+1, . . . , uk−2, we get the diametral path of
the graph G(u, s, F ).

Further, note that if the vertex v is a pole, then ρF (us, v) = ρF (v, us+1) = 2.
Therefore, v cannot belong to a diametral path with endpoints u0, uk−2, since this
path contains us, us+1 and ρF (us, us+1) = 3 by Lemma 1. �

Lemma 2. Let k ≥ 3, p ≥ 1 and 0 ≤ s ≤ k−3. Then the following properties hold:

(i) |Fn,k,p| = 1
2 (k − 2)(n)k−1|Fn−k+3,3,p(x, y)|, where x 6= y;

(ii) |Fsn,k,p| =
σ(s)
k−2 |Fn,k,p|, where σ(s) = 1 for s = k−3

2 and σ(s) = 2 if s 6= k−3
2 ;

(iii) Fn,k,p =
b k−3

2 c⋃
s=0
Fsn,k,p ;

(iv) F in,k,p ∩ F
j
n,k,p = ∅ if i 6= j and i, j ≤ bk−32 c.
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Proof. Statements (i)-(ii) are proved in [8]. And statement (iii) follows from the
de�nitions of the classes. Prove (iv). Let G = G(u, s, F ) ∈ Fn,k,p. By Lemma 1(iii),
the graph G has the single pair of diametral vertices u0, uk−2. Moreover, a part
of the diametral path of the graph G from a given diametral vertex to the �rst
encountered vertex v from the graph F can be uniquely reconstructed knowing the
edges of the graphG, because degF v ≥ 2 by Lemma 1(ii). Therefore,G has two such
vertex-disjoint parts of its diametral path of length s ≤ bk−32 c and k−3−s ≥ dk−32 e.
Consequently, if G(u, i, F ) = G(u′, j, F ′) and i, j ≤ bk−32 c, then i = j. �

Further, we use the following well-known fact.

Lemma 3 (see, for example, [9]). The radius of a simple path of length k is equal
to dk2 e, and the central vertices of the path are at distance dk2 e and b

k
2 c from its

endpoints.

2. Center spectrum of connected n-vertex graphs

Consider the class Jn, d≥1 of all n-vertex connected graphs. Obviously, the
diameter d of these graphs satis�es the inequalities 1 ≤ d ≤ n − 1. Now, we �nd
center spectrum Spc(Jn, d≥1) for n = 2, 3, 4.
Example 1: Let n = 2. In this case, there is only one connected graph K2.

Moreover, r(K2) = 1 and |C(K2)| = 2. Thus, Spc(J2, d≥1) = {2}.
Example 2: Let n = 3. For d = 1 there is a unique graph K3. Moreover,

r(K3) = 1 and |C(K3)| = 3. For d = 2 there is a single graph, a 3-vertex simple
path P3, for which r(P3) = 1 and |C(P3)| = 1. Thus, Spc(J3, d≥1) = {1, 3}.

Fig. 2. 4-vertex connected graphs

Example 3: Let n = 4 (�g. 2). For d = 1 there is the only graph K4 with
r(K4) = 1 and |C(K4)| = 4. For d = 2 there are four graphs: a star K1,3, a
cycle C4, a square with diagonal H1 and a graph-claw H2, for which the following
equalities hold:
r(K1,3) = 1 and |C(K1,3)| = 1;
r(C4) = 2 and |C(C4)| = 4;
r(H1) = 1 and |C(H1)| = 2;
r(H2) = 1 and |C(H2)| = 1.

For d = 3 there is a single graph, a 4-vertex simple path P4, herewith r(P4) = 2
and |C(P4)| = 2. Thus, Spc(J4, d≥1) =

[[
1, 4

]]
\ {3}.

Now, �nd the center spectrum of all and almost all graphs of the class Jn, d≥1.
We need the following G.N. Kopylov and E.A. Timofeev's Theorem.
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Theorem 2 [13]. For n ≥ 2, there exists a graph in the class of connected n-
vertex graphs with m edges and c central vertices if and only if one of the following
conditions holds:

(i) c ≤ n, c 6= n− 1 and c(c−1)
2 + c(n− c) ≤ m ≤ n(n−2)+c

2 ;

(ii) c = n and n ≤ m ≤ n(n−2)
2 ;

(iii) 2 ≤ c ≤ n− 2 and E(c, n) ≤ m ≤ (n−2)(n−3)
2 + c, where

E(c, n) =

 n− 1 if c = 2,
n+ 1 if c even and n− 3 ≤ c ≤ n− 2,
n else.

Theorem 3 (spectrum Spc(Jn, d≥1)). The following properties are valid:

(i) Spc(Jn, d≥1) =
[[

1, n
]]
\ {n− 1} for every n ≥ 2;

(ii) almost all n-vertex connected graphs have a center of cardinality n.

Proof. Prove statement (i). The case n = 2 is considered in Example 1. Therefore,
we can assume that n ≥ 3. Let c ∈

[[
1, n

]]
\ {n − 1}. Further, we �nd the value

of the parameter m, satisfying one of conditions (i)-(iii) of Theorem 2, considering
possible cases for the value c.

Let c = 1. Note that the inequality n− 1 ≤ n(n−2)+1
2 holds for every n ≥ 3, i.e.

m = n− 1 satis�es condition (i) from Theorem 2.

Let 2 ≤ c ≤ n − 4. Then n ≥ 6. Note that the inequality n ≤ (n−2)(n−3)
2 + 2 is

valid for every n ≥ 6, i.e. m = n satis�es condition (iii) from Theorem 2 for every
n ≥ 6.

Let c = n− i, where i = 0, 2, 3. Then n− i > 0. Note that inequality

c(c− 1)

2
+ c(n− c) ≤ n(n− 2) + c

2

is equivalent to inequality (n− i)(n+ i−2) ≤ n(n−2). It is not hard to understand
the validity of this inequality for i = 0, 2, 3, i.e. m = (n − i)(n + i − 1)/2 satis�es
condition (i) from Theorem 2.

Thus, due to Theorem 2, for all speci�ed values of the parameter c, there exists
a graph G ∈ Jn, d≥1 such that |C(G)| = c. To prove the converse, it su�ces to note
that if G ∈ Jn, d≥1, then 1 ≤ |C(G)| ≤ n and n− 1 /∈ Spc(Jn, d≥1) by Theorem 2.

Prove statement (ii). It is known that almost all n-vertex graphs have diameter
and radius equal to 2 (see, for example, [4]). It remains to note that Jn, d=2 ⊆
Jn, d≥1 ⊆ Jn and {G ∈ Jn, d=2| r(G) = d(G)} ⊆ {G ∈ Jn, d≥1 | |C(G)| = n}. �

3. Center of almost all graphs from Jn, d=k
Find out the structure of the center of almost all n-vertex graphs of a given

diameter. A radius of almost all graphs of �xed diameter k was established in [8].
Almost all graphs of diameter k = 1, 2 have the radius equal to the diameter.
Therefore, every vertex is central, i.e. C(G) = V (G) for almost all graphs G of
diameter k = 1, 2. The radius of almost all graphs of �xed diameter k ≥ 3 is equal
to dk2 e. Investigate the center of such n-vertex graphs. For this, turn to the class
of typical graphs Fn,k,p , establish properties of their central vertices and �nd the
center explicitly.

Lemma 4 [8]. If k ≥ 3, p ≥ 1 and G ∈ Fn,k,p , then r(G) = dk2 e.
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Ñorollary 4 [8]. For each graph G ∈ Fn,k,p , every central vertex of its arbitrary
diametral path is the central vertex of the graph G.

Note that the converse statement in Corollary 4, generally speaking, is not true;
this will be shown below.

Ñorollary 5. If P is an arbitrary diametral path of a graph G ∈ Fn,k,p , then
C(G) ∩ V (P ) = C(P ).

Proof. From Corollary 4 we have C(P ) ⊆ C(G)∩V (P ). Moreover, by Lemmas 3 and
4, if v ∈ P \C(P ), then eG(v) ≥ eP (v) > r(P ) = r(G) and, therefore, v 6∈ C(G). �

Lemma 5 (center C(G), G ∈ Fn,k,p). Let G = G(u, s, F ) ∈ Fn,k,p. Then
(i) if k is even, then

C(G) =

{
SF1 (us+1) if s = k

2 − 2 ,
{u k

2−2
} else;

(ii) if k is odd, then

C(G) =


V \ {u0, . . . , uk−2} if s = k−3

2 ,
BF1 (us+1) if s = k−5

2 ,
{u k−5

2
, u k−3

2
} else;

(iii) C(G) consists of all central vertices of diametral paths with endpoints u0,
uk−2 and all vertices, equidistant at distance k+1

2 from the vertices u0, uk−2.

Proof. Prove statements (i) and (ii). In view of Lemma 1, a diametral path P of
the graph G has the form P = (u0, . . . , us, u

′
s, u
′
s+1, us+1, . . . , uk−2). By Lemmas 3,

4 and Corollary 5, we obtain

r(G) = r(P ) =
⌈k

2

⌉
and C(G) ∩ V (P ) = C(P ). (2)

Due to the properties of the graph F , the set V (F ) \ {us, us+1} consists of three
types of vertices x, y, z such that

ρG(x, us) = 1, ρG(x, us+1) = 2,

ρG(y, us+1) = 1, ρG(y, us) = 2, (3)

ρG(z, us) = ρG(z, us+1) = 2.

Further, by x, y, z we mean an arbitrary vertex from F \ {us, us+1} with the above
metric relations. From condition s ≤ bk−32 c we have s

′ = k−3−s ≥ dk−32 e. Consider
the possible cases.

Case 1. Let s = s′. Then k is odd and s = k−3
2 . By (2), we have C(G)∩ V (P ) =

{u′s, u′s+1}. Considering the form of the graph G(u, s, F ) and the relation (3), we

obtain eG(x) = eG(y) = eG(z) = s+ 2 = dk2 e. Therefore, x, y, z ∈ C(G). Hence,

C(G) = {u′s, u′s+1} ∪ V (F ) \ {us, us+1} = V \ {u0, . . . , uk−2}.
Case 2. Let k be even and s < s′. Then

s′ ≥ k

2
− 1 >

k

2
− 2 ≥ s. (4)

It follows from (2) and (4) that

C(G) ∩ V (P ) =

{
{u′s+1} if s′ = k

2 − 1 ,
{u k

2−2
} else.

(5)
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Reckoning the form of the graph G(u, s, F ), the relations (3) and (4), we obtain

eG(x) = max{s+ 1, s′ + 2} = s′ + 2 ≥ 0.5k + 1,

eG(y) = max{s+ 2, s′ + 1} = s′ + 1 ≥ 0.5k,

eG(z) = max{s+ 2, s′ + 2} = s′ + 2 ≥ 0.5k + 1.

Therefore, x, z 6∈ C(G) due to (2) and the following equivalence holds

y ∈ C(G)⇔ s′ + 1 =
k

2
⇔ s =

k

2
− 2.

Hence,

C(G) \ V (P ) =

{
SF1 (us+1) if s = k

2 − 2 ,
∅ else.

(6)

Thus, from (5), (6) we obtain the required form C(G) for even k.
Case 3. Let k be odd and s < s′. Then

s′ >
k − 3

2
> s. (7)

It follows from (2) and (7) that

C(G) ∩ V (P ) =

{
{u′s+1, us+1} if s′ = k−1

2 ,
{u k−5

2
, u k−3

2
} else.

(8)

Reckoning the form of the graph G(u, s, F ), the relations (3) and (7), we obtain

eG(x) = max{s+ 1, s′ + 2} = s′ + 2 ≥ 0.5(k + 1) + 1,

eG(y) = max{s+ 2, s′ + 1} = s′ + 1 ≥ 0.5(k + 1),

eG(z) = max{s+ 2, s′ + 2} = s′ + 2 ≥ 0.5(k + 1) + 1.

Therefore, x, z 6∈ C(G) by (2) and

y ∈ C(G)⇔ s′ + 1 =
k + 1

2
⇔ s =

k − 5

2
.

Hence,

C(G) \ V (P ) =

{
SF1 (us+1) if s = k−5

2 ,
∅ else.

(9)

It follows from (8) and (9) that

C(G) =

{
BF1 (us+1) if s = k−5

2 ,
{u k−5

2
, u k−3

2
} else.

Thus, the form C(G) required in statement (ii) for odd k is obtained in cases 1, 3.
Prove statement (iii). By Corollary 4, every central vertex of a diametral path

of the graph G belongs to C(G). Now let v be equidistant at distance k+1
2 from the

both vertices u0, uk−2. Then the vertex v does not belong to diametral paths of
the graph G by Lemma 1(iii). By corollary 3, the vertex v is a pole of the graph F .
Therefore, s = k−3

2 . Hence, v ∈ C(G) by the obtained statement (ii).

Prove the converse statement. Let v ∈ C(G). Note that that if s = k−3
2 and the

vertex v is a pole, then v is equidistant at distance k+1
2 from the diametral vertices

u0, uk−2. Using statements (i) and (ii), it is easy to understand that in other cases
the vertex v is at distance dk2 e from one of the vertices u0, uk−2 and belongs to
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V (P ) ∪ SF1 (us) ∪ SF1 (us+1). Hence, v is the central vertex of some diametral path
of the graph G with endpoints u0, uk−2 by Corollary 3 and Lemmas 1(iii), 3. �

Theorem 4 (Center of almost all graphs from Jn, d=k). Let k ≥ 3 be a �xed integer.
Then

(i) the center of almost all n-vertex graphs of even diameter k consists of all
central vertices of diametral paths of the graph;

(ii) the center of almost all n-vertex graphs of odd diameter k consists of all
central vertices of diametral paths of the graph and all vertices equidistant at distance
k+1
2 from their endpoints. Furthermore, the proportion of such n-vertex graphs

whose center consists only of central vertices of diametral paths of the graph is
asymptotically equal to k−3

k−2 .

Proof. Directly from Corollary 1 and Lemmas 1(iii), 5(iii) we obtain the required
properties of the central vertices of almost all n-vertex graphs of a given diameter.

By Kn,k we denote the class of all graphs from Jn, d=k whose center consist
only of all central vertices of diametral paths of the graph. Find out a fraction of
such graphs of odd diameter k. Let s∗ = k−3

2 . From Lemma 5 and the proof of its

statement (iii) it follows that Fsn,k,p ⊆ Kn,k for every s 6= s∗ and Fs∗n,k,p∩Kn,k = ∅.
Hence, ⋃

0≤s< k−3
2

Fsn,k,p ⊆ Kn,k ⊆ Jn, d=k \ Fs
∗

n,k,p . (10)

From Lemma 2 we obtain

|
⋃

0≤s< k−3
2

Fsn,k,p | = |Fn,k,p \ Fs
∗

n,k,p| = |Fn,k,p|
(

1− σ(s∗)

k − 2

)
. (11)

By Lemmas 1(i) and 2, we have

|Jn, d=k \ Fs
∗

n,k,p| = |Jn, d=k| −
σ(s∗)

k − 2
|Fn,k,p|. (12)

Thus, from (10)-(12) and Corollary 1 as n→∞ we conclude

|Kn,k|
|Jn, d=k|

−→ 1− σ(s∗)

k − 2
=
k − 3

k − 2
.

�

Theorem 4 implies that to obtain almost all graphs G of odd diameter k ≥ 3
in the center C(G) cannot do without vertices equidistant at distance k+1

2 from
endpoints of its diametral paths (since the class Kn,k does not asymptotically
cover the whole class Jn, d=k), and for k ≥ 5 it is also impossible to do without
central vertices of diametral paths (because the class Kn,k has a nonzero asymptotic
fraction). In addition, note that Fred Buckley and Martin Lewinter investigated
the class of graphs (L′-graphs), centers of which do not contain vertices lying on
diametral paths, and established characteristic limitations between the diameter
and the radius for these graphs [?]. In particular, they showed that there are no
such graphs of diameter 3. It means that for k = 3 in the center C(G) it is also
impossible to do without central vertices of diametral paths.
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4. Center spectrum of almost all graphs from Jn, d=k
Let us investigate the center spectrum of almost all n-vertex graphs of a �xed

diameter. For this, turn to the class of typical graphs Fn,k,p.

Lemma 6. Let G = G(u, s, F ) ∈ Fn,k,p. Then
(i) if k is even, then

|C(G)| = 1⇔ s 6= k

2
− 2,

p+ 1 ≤ |C(G)| ≤ n− k − p− 1 for s =
k

2
− 2;

(ii) if k is odd, then

|C(G)| = 2⇔ s 6= k − 3

2
and s 6= k − 5

2
,

p+ 2 ≤ |C(G)| ≤ n− k − p for s =
k − 5

2
,

|C(G)| = n− k + 1⇔ s =
k − 3

2
.

Proof. Let P = (u0, . . . , us, u
′
s, u
′
s+1, us+1, . . . , uk−2) be an arbitrary diametral path

of the graph G. From the property of spheres of the graph F we have the inequalities
|SF1 (us) ∩ SF1 (u′s)| ≥ p and |SF1 (us+1) ∩ SF1 (u′s+1)| ≥ p. Therefore,

|SF1 (us)| ≥ p+ 1, |SF1 (us+1)| ≥ p+ 1. (13)

From the property of a pole of the graph F we obtain

∃z ∈ V (F ) \ (BF1 (us) ∪BF1 (us+1)).

It is also easy to see that the sets {u0, . . . , uk−2}, {z}, SF1 (us), S
F
1 (us+1) are pairwise

disjoint. Hence,

|V | ≥ |(SF1 (us)|+ |SF1 (us+1)|+ k ≥ 2p+ k + 2. (14)

Now, for even k, from Lemma 5 and the relations (13), (14) we obtain the required
statement (i).

Let k be odd. Due to the inequality (14) and the condition p ≥ 1, the sets {2},
{p + 2, p + 3, . . . , n − k − p}, {n − k + 1}, {n − k + 1} are pairwise disjoint. Now
from Lemma 5 and the relations (13), (14) we obtain the statement (ii). �

Ñorollary 6. If G ∈ Fn,k,p , then n ≥ 2p+ k + 2.

Let us show the realizability of all center cardinalities indicated in Lemma 6 in
graphs of the class Fn,k,p for all large enough n. For this purpose, give a method of
constructing the graphs G(u, s, F ) of the class Fn,k,p using two constructions that
allow us to construct graphs F ∈ Fn,3,p(x, y).

First, for any m ≥ 1 de�ne m-vertex graph Hm in the following way. We put
H1 = K1. For m ≥ 2, �x pairwise non-adjacent edges ei = viv

′
i, i = 1, 2, . . . , bm/2c

in a complete graph K2bm/2c. If m even, put Hm = K2bm/2c \ {e1, . . . , ebm/2c}, else
Hm = K1 +K2bm/2c \ {e1, . . . , ebm/2c}.

Lemma 7 (properties Hm). The following properties of the graph Hm hold:
(i) δ(Hm) ≥ m− 2;
(ii) Hm does not contain shuttlecocks.
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Proof. Every vertex of the graph Hm is not joined by an edge with at most one
vertex, therefore δ(Hm) ≥ m−2. Prove statement (ii). Let e be an edge of the graph
Hm. Then m ≥ 3. If the edge e is of the form vivj (the case e = v′iv

′
j is similar),

then e belongs to the shortest path (vi, vj , v
′
i) of length 2. In the case when e has

the form viv
′
j (the case e = v′ivj is similar), the edge e belongs to the shortest

path (v′j , vi, vj) of length 2. There remains the case when m is odd and e = v0vi
(similarly e = v0v

′
i), where v0 is a vertex adjacent to all other vertices. Then Hm

contains the shortest path (vi, v0, v
′
i) of length 2. Hence, in all cases Hm does not

contain a shuttlecock on the edge e. �

Let P = (x, x′, y′, y) be a 4-vertex simple path with endpoints x, y, G1 and G2

are arbitrary graphs, and z is a new vertex, moreover, the sets V (G1), V (G2),
{x, x′, y′, y}, {z} are pairwise disjoint. Join each vertex of the graph G1 by edges
with vertices x, x′, y′, z and connect each vertex of the graph G2 by edges with
vertices x′, y′, y, z. Also, join each vertex of the graph G1 by edges with all vertices
of the graph G2. The resulting graph denote by F (G1 +G2) (see Fig. 3).

Fig. 3. Graph F (G1 +G2)

Lemma 8 (graph F (G1 + G2)). Let graphs G1, G2 do not contain shuttlecocks
and δ(G1) ≥ p − 1, δ(G2) ≥ p − 1, p ≥ 1. Then F (G1 + G2) ∈ Fn,3,p(x, y), where
n = |V (G1)|+ |V (G2)|+ 5.

Proof. Denote the graph F (G1 +G2) by F . It is directly veri�ed that the graph F
has diameter 3, z is its pole and x, y is the unique pair of diametral vertices.

Let us show that F does not contain shuttlecocks. Let e ∈ E(F ). If e ∈ E(Gi),
then the edge e in the graph Gi belongs to some shortest path of length 2, as far
as Gi does not contain shuttlecocks. Since this shortest path is also the shortest in
the graph F , the graph F does not contain a shuttlecock on the edge e. Now let
e 6∈ E(G1)∪E(G2). Then in the graph F the edge e belongs to one of the following
shortest paths of length 2: (z, v1, u1), (z, v2, u2), (x, x′, y′), (x′, y′, y), (v1, v2, y),
where v1 ∈ V (G1), v2 ∈ V (G2), u1 ∈ {x, x′, y′} and u2 ∈ {x′, y′, y}. Hence, F does
not contain a shuttlecock on the edge e.
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Check the property of spheres. Let v1 ∈ V (G1) and v2 ∈ V (G2) ∪ {x′, y′, z}.
Then the following inequalities hold

|SF1 (x) ∩ SF1 (v2)| ≥ |V (G1)| ≥ δ(G1) + 1 ≥ p,

|SF1 (x) ∩ SF1 (v1)| ≥ |SG1
1 (v1) ∪ {x′}| ≥ p.

The same property of spheres for the diametral vertex y is established similarly.
Let vi, v

′
i ∈ V (Gi)∪{x′, y′, z}, wi ∈ V (Gi) and vi 6= v′i, i = 1, 2. Then the following

inequalities hold

|SF1 (vi) ∩ SF1 (v′i)| ≥ |V (Gj)| ≥ p, where j 6= i,

|SF1 (w1) ∩ SF1 (w2)| ≥ |SG1
1 (w1) ∪ {z}| ≥ p.

�

Directly from Lemmas 7 and 8 we obtain the following consequences (here, for
all speci�ed values of the parameters, we de�ne a graph F ∈ Fn,3,p(x, y) such that
|SF1 (y)| = m+ 1).

Ñorollary 7 (1 = p = m ≤ n − 5 − p). For all n ≥ 8 the graph F (Hn−6 + K1)

belongs to the class Fn,3,1(x, y) and |SF (Hn−6+K1)
1 (y)| = 2.

Ñorollary 8 (1 = p < m = n − 5 − p). For all n ≥ 8 the graph F (Hn−6 + K1)

belongs to the class Fn,3,1(y, x) and |SF (Hn−6+K1)
1 (x)| = n− 5.

Ñorollary 9 (1 ≤ p < m < n− 5− p). Let p ≥ 1. Then for all n ≥ 2p+ 7 and any
integer m such that p < m < n− 5− p, the graph F (Hn−5−m +Hm) belongs to the

class Fn,3,p(x, y) and |SF (Hn−5−m+Hm)
1 (y)| = m+ 1.

For arbitrary graphs G1 and G2 such that |V (G1)| ≥ |V (G2)|, de�ne a graph
F (G1 ~ G2) in the following way. Consider an arbitrary subset W ⊆ V (G1) of the
cardinality |V (G2)| and bijection ϕ : W → V (G2). Put F (G1 ~ G2) = F (G1 +
G2) \ {e | e is an edge with endpoints w ∈W and ϕ(w) ∈ V (G2)} (see Fig. 4).

Fig. 4. Graph F (G1 ~ G2)
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Lemma 9 (graph F (G1 ~ G2)). Let G1 and G2 be graphs such that |V (G1)| ≥
|V (G2)| ≥ 2, G1 does not contain shuttlecocks and δ(G1) ≥ p − 1, δ(G2) ≥ p − 1,
p ≥ 1. Then F (G1 ~ G2) ∈ Fn,3,p(x, y), where n = |V (G1)|+ |V (G2)|+ 5.

Proof. Denote the graph F (G1~ G2) by F . Directly it is veri�ed that the graph F
has diameter 3, z is its pole, and x, y is the unique pair of diametral vertices.

Show that F does not contain shuttlecocks. Let e ∈ E(F ). The case e 6∈ E(G2)
is considered in the same way as in Lemma 8. Now let e be an edge of the graph G2

with endpoints v2, v
′
2 ∈ V (G2). Then F contains the shortest path (v2, v

′
2, ϕ
−1(v2))

of length 2. Hence, F does not contain a shuttlecock on the edge e.
Check the property of spheres. Let u ∈ {x′, y′, z} and vi ∈ V (Gi), i = 1, 2. Then

the following inequalities hold

|SF1 (x) ∩ SF1 (u)| ≥ |V (G1)| ≥ p,

|SF1 (x) ∩ SF1 (v1)| ≥ |SG1
1 (v1) ∪ {x′}| ≥ p,

|SF1 (x) ∩ SF1 (v2)| ≥ |(V (G1) \ {ϕ−1(v2)}) ∪ {x′}| ≥ p,

|SF1 (y) ∩ SF1 (u)| ≥ |V (G2)| ≥ p,

|SF1 (y) ∩ SF1 (v2)| ≥ |SG2
1 (v2) ∪ {y′}| ≥ p,

|SF1 (y) ∩ SF1 (v1)| ≥ |(V (G2) \ V2) ∪ {y′}| ≥ p, where

V2 =

{
{ϕ(v1)} if v1 ∈W,
∅ else.

Let u, u′ ∈ {x′, y′, z}, u 6= u′ and vi, v
′
i ∈ V (Gi), vi 6= v′i, i = 1, 2. Reckoning the

condition |V (Gi)| ≥ 2, we obtain the following inequalities

|SF1 (vi) ∩ SF1 (v′i)| ≥ |(V (Gj) \ Vj) ∪ {x′, y′}| ≥ p,

|SF1 (vi) ∩ SF1 (u)| ≥ |SGi
1 (vi) ∪ (V (Gj) \ V ′j )| ≥ δ(Gi) + 1 ≥ p,

|SF1 (v1) ∩ SF1 (v2)| ≥ |SG1
1 (v1) \ {ϕ−1(v2} ∪ {x′, y′}| ≥ δ(G1) + 1 ≥ p,

|SF1 (u) ∩ SF1 (u′)| ≥ |V (G1)| ≥ p, where j 6= i and

Vj =


{ϕ−1(vi), ϕ

−1(v′i)} if i = 2,
{ϕ(vi), ϕ(v′i)} if i = 1 and vi, v

′
i ∈W,

{ϕ(vi)} if i = 1 and vi ∈W, v′i 6∈W,
{ϕ(v′i)} if i = 1 and v′i ∈W, vi 6∈W,
∅ else;

V ′j =

 {ϕ
−1(vi)} if i = 2,

{ϕ(vi)} if i = 1 and vi ∈W,
∅ else.

�

Directly from Lemmas 7 and 9 we obtain the following consequences (here, for
all speci�ed values of the parameters, we de�ne a graph F ∈ Fn,3,p(x, y) such that
|SF1 (y)| = m+ 1).

Ñorollary 10 (2 ≤ p = m ≤ n−5−p). Let p ≥ 2. Then for all n ≥ 2p+6 the graph

F (Hn−5−p~ Kp) belongs to the class Fn,3,p(x, y) and |SF (Hn−5−p~Kp)
1 (y)| = p+ 1.
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Ñorollary 11 (2 ≤ p < m = n − 5 − p). Let p ≥ 2. Then for all n ≥ 2p + 6 the

graph F (Hn−5−p~ Kp) belongs to the class Fn,3,p(y, x) and |SF (Hn−5−p~Kp)
1 (x)| =

n− 4− p.

Theorem 5 (spectrum Spc(Fn,k,p)). Let k ≥ 3 and p ≥ 1. Then for every n ≥
2p+ k + 4 the following equalities hold

(i) Spc(Fn,k=3,p) = {n− 2};
(ii) Spc(Fn,k=4,p) =

[[
1 + p, n− 5− p

]]
;

(iii) Spc(Fn,k=5,p) =
[[

2 + p, n− 5− p
]]
∪ {n− 4};

(iv) Spc(Fn,k,p) = {1} ∪
[[

1 + p, n− k − 1− p
]]

for every even k ≥ 6;

(v) Spc(Fn,k,p) = {2} ∪
[[

2 + p, n− k − p
]]
∪ {n− k + 1} for every odd k ≥ 7.

Proof. From Lemma 6 we obtain the inclusion of the spectrum Spc(Fn,k,p) into the
set of values of the center cardinalities indicated in the statement of the theorem.
Show that any such value is realized as the cardinality of the center of a suitable
graph from the class Fn,k,p for all n ≥ 2p+ k + 4.

Let k ≥ 4 be even. By Lemmas 5 and 6, for every k ≥ 4 and n ≥ 2p +
k + 4, it is required to construct graphs G(u, s, F ) such that s = k

2 − 2, F ∈
Fn−k+3,3,p(us, us+1), |SF1 (us+1)| = m+ 1 and m can take any value satisfying the
inequalities p ≤ m ≤ n − k − 2 − p. Equivalently, for every n ≥ 2p + 7 and m,
p ≤ m ≤ n − 5 − p, it is required to construct a graph F ∈ Fn,3,p(x, y) such that
|SF1 (y)| = m+ 1. For m the following cases are possible:

1 = p = m ≤ n− 5− p (Corollary 7),
1 = p < m = n− 5− p (Corollary 8),
1 ≤ p < m < n− 5− p (Corollary 9),
2 ≤ p = m ≤ n− 5− p (Corollary 10),
2 ≤ p < m = n− 5− p (Corollary 11).

For these cases, in the above corollaries it is shown the existence of the required
graph F . Further, for every k ≥ 6 and each graph F ∈ Fn−k+3,3,p(us, us+1) (for
example, for F (Hp+1+Hn−k−3−p) if n ≥ 2p+k+4), we have |C(G)| = 1 by Lemma
6, where G = G(u, 0, F ) ∈ Fn,k,p. Thus, for any even diameter k ≥ 4, each value
of the center cardinality indicated in the statement of the theorem is realized in
graphs of the class Fn,k,p for all n ≥ 2p+ k + 4.

Now let k ≥ 3 be odd. Note that for each graph F ∈ Fn−k+3,3,p(us, us+1) (for
example, for F (Hp+1 +Hn−k−3−p) if n ≥ 2p+ k + 4), we have |C(G)| = n− k + 1

by Lemma 6, where G = G(u, k−32 , F ) ∈ Fn,k,p.
By Lemmas 5 and 6, it is required for every k ≥ 5 and n ≥ 2p+k+4 to construct

graphs G(u, s, F ) such that s = k−5
2 , F ∈ Fn−k+3,3,p(us, us+1), |BF1 (us+1)| = m

and m can take any value satisfying the inequalities 2 + p ≤ m ≤ n − k − p.
Equivalently, for every n ≥ 2p + 7 and m, p ≤ m ≤ n − 5 − p, it is required to
construct a graph F ∈ Fn,3,p(x, y) such that |SF1 (y)| = m + 1. The existence of
such graph was proved above when considering the case of even k.

Further, for every k ≥ 7, n ≥ 2p+k+4 and each graph F ∈ Fn−k+3,3,p(us, us+1),

we have |C(G)| = 2 by Lemma 6, where G = G(u, k−72 , F ) ∈ Fn,k,p. Thus, for any
odd diameter k ≥ 3 the spectrum Spc(Fn,k,p) has the required form. �

Theorem 6 (spectrum of almost all graphs from Jn, d=k). Let k ≥ 1 and p ≥ 1 be
�xed integer constants. Then

(i) |C(G)| = n for almost all n-vertex graphs G of diameter k = 1, 2;
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(ii) |C(G)| = n− 2 for almost all n-vertex graphs G of diameter 3;

(iii) |C(G)| ∈
[[

1+p, n−5−p
]]

for almost all n-vertex graphs G of diameter 4;

(iv) |C(G)| ∈
[[

2 + p, n − 5 − p
]]
∪ {n − 4} for almost all n-vertex graphs G

of diameter 5; moreover, the fraction of such graphs with an (n − 4)-vertex center
asymptotically equals 1

3 ;

(v) |C(G)| ∈ {1} ∪
[[

1 + p, n − k − 1 − p
]]

for almost all n-vertex graphs G
of even �xed diameter k ≥ 6; moreover, the fraction of such graphs with a trivial
center asymptotically equals k−4

k−2 ;

(vi) |C(G)| ∈ {2}∪
[[

2+p, n−k−p
]]
∪{n−k+1} for almost all n-vertex graphs

G of odd �xed diameter k ≥ 7; moreover, the fraction of such graphs with a 2-vertex
and an (n− k + 1)-vertex center asymptotically equals k−5

k−2 and 1
k−2 respectively.

Proof. In Section 3, we noticed that C(G) = V (G) for almost all graphs G of
diameter k = 1, 2. Further, directly from Corollary 1 and Theorem 5, we obtain
the possible values of the center cardinality of almost all n-vertex graphs of �xed
diameter k ≥ 3 for the cases (ii)-(vi). Find the asymptotic fractions of the indicated
classes of graphs. By Cn,k,i we denote the class of all graphs from Jn, d=k with an
i-vertex center.

Let k ≥ 4 be even and s∗ = k
2 − 2. Note that, by Lemmas 2 and 6, the following

inclusions hold

Fn,k,p \ Fs
∗

n,k,p ⊆ Cn,k,1 ⊆ Jn, d=k \ Fs
∗

n,k,p. (15)

Hence, by Lemmas 1(i) and 2, obtain

|Fn,k,p|
(

1− σ(s∗)

k − 2

)
≤ |Cn,k,1| ≤ |Jn, d=k| −

σ(s∗)

k − 2
|Fn,k,p|. (16)

Thus, from (16), Lemma 2 and Corollary 1 as n→∞ we conclude

|Cn,k,1|
|Jn, d=k|

−→ 1− σ(s∗)

k − 2
=
k − 4

k − 2
.

Now, let k ≥ 3 be odd and s∗ = k−3
2 . By Lemmas 2, 6 and Corollary 6, the

following inclusions hold

Fs
∗

n,k,p ⊆ Cn,k,n−k+1 ⊆ Jn, d=k \ (Fn,k,p \ Fs
∗

n,k,p). (17)

Hence, by Lemmas 1(i) and 2, obtain

σ(s∗)

k − 2
|Fn,k,p| ≤ |Cn,k,n−k+1| ≤ |Jn, d=k| − |Fn,k,p|

(
1− σ(s∗)

k − 2

)
. (18)

Thus, from (18), Lemma 2 and Corollary 1 as n→∞ we conclude

|Cn,k,n−k+1|
|Jn, d=k|

−→ σ(s∗)

k − 2
=

1

k − 2
.

Finally, let k ≥ 7 be odd and s∗∗ = k−5
2 . By Lemmas 2 and 6, the following

inclusions hold

Fn,k,p \ (Fs
∗

n,k,p ∪ Fs
∗∗

n,k,p) ⊆ Cn,k,2 ⊆ Jn, d=k \ (Fs
∗

n,k,p ∪ Fs
∗∗

n,k,p). (19)

Hence, by Lemmas 1(i) and 2, obtain

|Fn,k,p|
(

1− σ(s∗) + σ(s∗∗)

k − 2

)
≤ |Cn,k,2| ≤ |Jn, d=k| −

σ(s∗) + σ(s∗∗)

k − 2
|Fn,k,p|. (20)
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Thus, from (20), Lemma 2 and Corollary 1 as n→∞ we conclude

|Cn,k,2|
|Jn, d=k|

−→ 1− σ(s∗) + σ(s∗∗)

k − 2
=
k − 5

k − 2
.

�

Theorem 6 implies a number of properties of the centers of almost all graphs of
�xed diameter k. For example, there are almost no graphs with a trivial center of
diameter k = 2, 4 and odd diameter k, while for any even k ≥ 6 this is not true.
Similarly, there are almost no graphs with a 2-vertex center of diameter k = 1, 3, 5
and even diameter k, however, for every odd k ≥ 7 this does not hold. Unexpected is
the jump of the center cardinality outside the interval of consecutive integer values
both from above from n− k − p to n− k + 1 for odd k ≥ 5, and from below from
1 + p to 1 for even k ≥ 6 and from 2 + p to 2 for odd k ≥ 7.

In the following corollaries we �nd typical graphs for graphs classes corresponding
to the cardinality cases of the center in Theorem 6.

Ñorollary 12. Let k ≥ 4 be an even integer, p ≥ 1 and s∗ = k
2 − 2. Then

(i) Fs∗n,k,p is a class of typical graphs of the class of n-vertex graphs of �xed
diameter k ≥ 4 with a nontrivial center;

(ii) Fn,k,p \ Fs
∗

n,k,p is a class of typical graphs of the class of n-vertex graphs of
�xed diameter k ≥ 6 with a trivial center.

Proof. Note that Fn,k,p \ Fs
∗

n,k,p is a subclass of Cn,k,1 and Fs∗n,k,p is a subclass of

Jn, d=k \ Cn,k,1 by (15) and Lemma 1(i). Reckoning Lemma 2, Corollary 1 and
Theorem 6, for n→∞ we obtain

|Fs∗n,k,p |
|Jn, d=k \ Cn,k,1|

=
2

k − 2

|Fn,k,p|
|Jn, d=k|

(
1− |Cn,k,1|
|Jn, d=k|

)−1
−→ 1,

|Fn,k,p \ Fs
∗

n,k,p |
|Cn,k,1|

=
k − 4

k − 2

|Fn,k,p |
|Jn, d=k|

|Jn, d=k|
|Cn,k,1|

−→ 1.

�

Ñorollary 13. Let k ≥ 3 be an odd integer, p ≥ 1 and s∗ = k−3
2 , s∗∗ = k−5

2 . Then

(i) Fs∗n,k,p is a class of typical graphs of the class of n-vertex graphs of diameter

k with an (n− k + 1)-vertex center;
(ii) Fn,5,p \ Fs

∗

n,5,p is a class of typical graphs of the class of n-vertex graphs of
diameter 5, whose center cardinality is not equal to n− 4;

(iii) Fn,k,p \ (Fs∗n,k,p ∪ Fs
∗∗

n,k,p) is a class of typical graphs of the class of n-vertex
graphs of �xed diameter k ≥ 7 with a 2-vertex center;

(iv) Fs∗∗n,k,p is a class of typical graphs of the class of n-vertex graphs of �xed
diameter k ≥ 7, whose the center cardinality is not equal to 2 and n− k + 1.

Proof. By (17), (19) and Lemmas 1(i), 2, we have Fs∗n,k,p ⊆ Cn,k,n−k+1, Fn,5,p \
Fs∗n,5,p ⊆ Jn, d=5 \Cn,5,n−4 and Fn,k,p \ (Fs∗n,k,p∪Fs

∗∗

n,k,p) ⊆ Cn,k,2, Fs
∗∗

n,k,p ⊆ Jn, d=k \
(Cn,k,2 ∪ Cn,k,n−k+1) for k ≥ 7. Reckoning Lemma 2, Corollary 1 and Theorem 6,
we obtain

|Fs∗n,k,p |
|Cn,k,n−k+1|

=
1

k − 2

|Fn,k,p|
|Jn, d=k|

|Jn, d=k|
|Cn,k,n−k+1|

,
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|Fn,5,p \ Fs
∗

n,5,p |
|Jn, d=5 \ Cn,5,n−4|

=
2

3

|Fn,k,p|
|Jn, d=k|

(
1− |Cn,5,n−4|

|Jn, d=5|

)−1
,

|Fn,k,p \ (Fs∗n,k,p ∪ Fs
∗∗

n,k,p) |
|Cn,k,2|

=
k − 5

k − 2

|Fn,k,p|
|Jn, d=k|

|Jn, d=k|
|Cn,k,2|

,

|Fs∗∗n,k,p |
|Jn, d=k \ (Cn,k,2 ∪ Cn,k,n−k+1)|

=
2

k − 2

|Fn,k,p|
|Jn, d=k|

(
1− |Cn,k,2|
|Jn, d=k|

−|Cn,k,n−k+1|
|Jn, d=k|

)−1
.

�

In view of Corollary 1, the obtained properties of the centers are also valid for
graphs of the classes Jn, d≥k and J ∗n, d≥k.

Ñorollary 14. For every �xed k ≥ 2, almost all n-vertex graphs of each of the
following classes Jn, d≥k, J ∗n, d≥k are connected, have diameter k, and their center
satis�es the properties stated in Theorem 6.
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