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ERGODIC THEOREMS IN BANACH IDEALS OF COMPACT

OPERATORS
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Abstract. LetH be an in�nite-dimensional Hilbert space, and let B(H)
(K(H)) be the C?�algebra of all bounded (compact) linear operators in
H. Let (E, ‖ · ‖E) be a fully symmetric sequence space. If {sn(x)}∞n=1 are
the singular values of x ∈ K(H), let CE = {x ∈ K(H) : {sn(x)} ∈ E} with
‖x‖CE = ‖{sn(x)}‖E , x ∈ CE , be the Banach ideal of compact operators

generated by E. We show that the averages An(T )(x) =
1

n+1

n∑
k=0

T k(x)

converge uniformly in CE for any Dunford-Schwartz operator T and
x ∈ CE . Besides, if 0 ≤ x ∈ B(H)\K(H), there exists a Dunford-Schwartz
operator T such that the sequence {An(T )(x)} does not converge uniform-
ly. We also show that the averages An(T ) converge strongly in (CE , ‖·‖CE )
if and only if E is separable and E 6= l1 as sets.

Keywords: symmetric sequence space, Banach ideal of compact opera-
tors, Dunford-Schwartz operator, individual ergodic theorem, mean ergo-
dic theorem.

1. Introduction

Let B(H) be the C?�algebra of all bounded linear operators in a complex Hilbert
space H, equipped with the uniform norm ‖ · ‖∞. The study of noncommuta-
tive individual ergodic theorems in the space of measurable operators a�liated
with a semi�nite von Neumann algebra M ⊂ B(H) equipped with a faithful
normal semi�nite trace τ was initiated by F. Yeadon. In [23], as a corollary of
a noncommutative maximal ergodic inequality in L1 = L1(M, τ), the following
individual ergodic theorem was established.

Azizov, A.N., Chilin, V.I., Ergodic theorems in Banach ideals of compact

operators.

© 2021 Azizov A.N., Chilin V.I.

Received February, 26, 2021, published May, 21, 2021.

534



ERGODIC THEOREMS IN BANACH IDEALS OF COMPACT OPERATORS 535

Theorem 1. Let T : L1 → L1 be a positive L1 − L∞-contraction. Then for any
x ∈ L1 there exists x̂ ∈ L1 such that the averages

An(T )(x) =
1

n+ 1

n∑
k=0

T k(x)

converge to x̂ bilaterally almost uniformly (in Egorov's sense), that is, given ε > 0,
there exists a projection e ∈M such that τ(1− e) < ε and

‖e(An(T )(x)− x̂)e‖∞ → 0 as n→∞,

where 1 is the unit ofM.

The study of individual ergodic theorems beyond L1(M, τ) started much later
with another fundamental paper by M. Junge and Q. Xu [13], where, among
other results, individual ergodic theorem was extended to the case with a positive
Dunford-Schwartz operator acting in the space Lp(M, τ), 1 < p < ∞. In [3] ([4]),
utilizing the approach of [16], an individual ergodic theorem was proved for a
positive Dunford-Schwartz operator in a noncommutative Lorentz (respectively,
Orlicz) space.

Let H be a complex in�nite-dimensional Hilbert space. Let E ⊂ c0 be a fully
symmetric sequence space. Denote by CE the Banach ideal of compact operators in
H associated with E. In Section 3 of the article, we obtain the following individual
Dunford-Schwartz-type ergodic theorem.

Theorem 2. (i). Given a Dunford-Schwartz operator T : CE → CE and x ∈ CE,
there exists x̂ ∈ CE such that ‖An(T )(x)− x̂‖∞ → 0 as n→∞;

(ii). If 0 ≤ x ∈ B(H) \ K(H), then there exists a Dunford-Schwartz operator
T : B(H)→ B(H) such that the averages An(T )(x) do not converge uniformly.

Noncommutative mean ergodic theorem can be stated as follows: if T is an L1−
L∞-contraction and 1 < p <∞, then the averages An(T ) converge strongly in Lp =
Lp(M, τ), that is, given x ∈ Lp, there exists x̂ ∈ Lp such that ‖An(T )(x)− x̂‖p → 0
as n→∞. If p = 1 and τ(1) =∞, this is not true in general. As a consequence, if
τ(1) =∞, mean ergodic theorem may not hold in some noncommutative symmetric
spaces. In Yeadon's paper [24], the following mean ergodic theorem was established.

Theorem 3. Let E = (E(M, τ), ‖·‖E) be a noncommutative fully symmetric space
such that

(i) L1(M, τ) ∩M is dense in E;
(ii) ‖en‖E → 0 for any sequence of projections {en} ⊂ L1(M, τ)∩M with en ↓ 0;
(iii) ‖en‖E/τ(en)→ 0 for any increasing sequence of projections {en} ⊂ M,

0 < τ(en) <∞, with τ(en)→∞.
Then for any x ∈ E and a positive L1 − L∞-contraction T : E → E there exists

x̂ ∈ E such that ‖An(T )(x)− x̂‖E → 0.

In [3], the mean ergodic theorem was established for a noncommutative symmetric
space E(M, τ) associated with a fully symmetric function space with nontrivial
Boyd indices and order continuous norm.

In Section 4, we give the following criterion for the validity of the mean ergodic
theorem in a Banach ideal of compact operators in H.

Theorem 4. The following conditions are equivalent:
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(i). For any Dunford-Schwartz operator T : CE → CE the averages An(T )
converge strongly in CE;

(ii). (E, ‖ · ‖E) is separable and E 6= l1 as sets.

Commutative counterparts of Theorems 2 and 4 were established in [2].
In the end of the article, we give applications of Theorems 2 and 4 to the

well-studied Orlicz and Lorentz ideals of compact operators. We note that our
noncommutative versions of ergodic theorems are true for any Dunford-Schwarz
operators without the assumption that these operators are positive.

2. Preliminaries

2.1. Symmetric sequence spaces. Let l∞ (respectively, c0) be the Banach space
of bounded (respectively, converging to zero) sequences {ξn}∞n=1 of complex numbers
equipped with the uniform norm ‖{ξn}‖∞ = sup

n∈N
|ξn|, where N is the set of natural

numbers. If 2N is the σ-algebra of all subsets of N and µ({n}) = 1 for each n ∈ N,
then (N, 2N, µ) is a σ-�nite measure space such that L∞(N, 2N, µ) = l∞ and

L1(N, 2N, µ) = l1 =

{
{ξn}∞n=1 ⊂ C : ‖{ξn}‖1 =

∞∑
n=1

|ξn| <∞

}
⊂ l∞,

where C is the �eld of complex numbers.
For any subset E ⊂ l∞ we denote Eh = {{ξn}∞n=1 ∈ E : ξn ∈ R for each n},

where R is the �eld of real numbers. It is know that (l∞h , ‖ · ‖∞) and ((c0)h, ‖ · ‖∞)
are Banach lattices with respect to the natural partial order

{ξn} ≤ {ηn} ⇐⇒ ξn ≤ ηn for all n ∈ N.
If ξ = {ξn}∞n=1 ∈ l∞, then the non-increasing rearrangement ξ∗ : (0,∞)→ (0,∞)

of ξ is de�ned by
ξ∗(t) = inf{λ : µ{|ξ| > λ} ≤ t}, t > 0,

(see, for example, [1, Ch. 2, De�nition 1.5]). As such, the non-increasing rearrange-
ment of a sequence {ξn}∞n=1 ∈ l∞ can be identi�ed with the sequence ξ∗ = {ξ∗n}∞n=1,
where

ξ∗n = inf

{
sup
n/∈F
|ξn| : F ⊂ N, |F | < n

}
.

If {ξn} ∈ c0, then ξ∗n ↓ 0; in this case there exists a bijection π : N → N such that
|ξπ(n)| = ξ∗n, n ∈ N.

Hardy-Littlewood-Polya partial order in the space l∞ is de�ned as follows:

ξ = {ξn} ≺≺ η = {ηn} ⇐⇒
m∑
n=1

ξ∗n ≤
m∑
n=1

η∗n for all m ∈ N.

A non-zero linear subspace E ⊂ l∞ with a Banach norm ‖ · ‖E is called a
symmetric (fully symmetric) sequence space if

η ∈ E, ξ ∈ l∞, ξ∗ ≤ η∗ (resp., ξ∗ ≺≺ η∗) =⇒ ξ ∈ E and ‖ξ‖E ≤ ‖η‖E .
Every fully symmetric sequence space is a symmetric sequence space. The converse
is not true in general. At the same time, any separable symmetric sequence space
is a fully symmetric space.

If (E, ‖ · ‖E) is a symmetric sequence space, then

‖ξ‖E = ‖ |ξ| ‖E = ‖ξ∗‖E for all ξ ∈ E.
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Besides, (Eh, ‖ · ‖E) is a Banach lattice with respect to the partial order induced
from l∞.

Immediate examples of fully symmetric sequence spaces are (l∞, ‖ · ‖∞),
(c0, ‖ · ‖∞) and the Banach spaces

lp =

ξ = {ξn}∞n=1 ∈ l∞ : ‖ξ‖p =

( ∞∑
n=1

|ξn|p
)1/p

<∞

 , 1 ≤ p <∞.

For any symmetric sequence space (E, ‖ · ‖E) the following continuous embeddings
hold [1, Ch. 2, � 6, Theorem 6.6]: (l1, ‖ · ‖1) ⊂ (E, ‖ · ‖E) ⊂ (l∞, ‖ · ‖∞). Besides,
‖ξ‖E ≤ ‖ξ‖1 for all ξ ∈ l1 and ‖ξ‖∞ ≤ ‖ξ‖E for all ξ ∈ E.

If there is ξ ∈ E \ c0, then ξ∗ ≥ α1 for some α > 0, where 1 = {1, 1, ...}.
Consequently, 1 ∈ E and E = l∞. Therefore, either E ⊂ c0 or E = l∞.

2.2. Symmetric operator spaces. Now, let (H, (·, ·)) be an in�nite-dimensional
Hilbert space over C, and let (B(H), ‖ · ‖∞) be the C?�algebra of all bounded
linear operators in H. Denote by K(H) (F(H)) the two-sided ideal of compact
(respectively, �nite rank) linear operators in B(H). It is well known that, for any
proper two-sided ideal I ⊂ B(H), we have F(H) ⊂ I, and if H is separable, then
I ⊂ K(H) (see, for example, [19, Proposition 2.1]). At the same time, if H is a
non-separable Hilbert space, then there exists a proper two-sided ideal I ⊂ B(H)
such that K(H) $ I.

Denote Bh(H) = {x ∈ B(H) : x = x∗}, B+(H) = {x ∈ Bh(H) : x ≥ 0}, and let
τ : B+(H)→ [0,∞] be the canonical trace on B(H), that is,

τ(x) =
∑
j∈J

(xϕj , ϕj), x ∈ B+(H),

where {ϕj}j∈J is an orthonormal basis in H (see, for example, [20, Ch. 7, E. 7.5]).
Let P(H) = {e ∈ B(H) : e = e2 = e∗} be the lattice of projectors in B(H). If

1 is the identity of B(H) and e ∈ P(H), we will write e⊥ = 1− e.
Let x ∈ B(H), and let {eλ(|x|)}λ≥0 be the spectral family of projections for the

absolute value |x| = (x∗x)1/2 of x, that is, eλ(|x|) = {|x| ≤ λ}. If t > 0, then the
t-th generalized singular number of x, or the non-increasing rearrangement of x, is
de�ned as

µt(x) = inf{λ > 0 : τ(eλ(|x|)⊥) ≤ t}
(see [11]).

A non-zero linear subspace X ⊂ B(H) with a Banach norm ‖ · ‖X is called
symmetric (fully symmetric) if the conditions

x ∈ X, y ∈ B(H), µt(y) ≤ µt(x) for all t > 0

(respectively,

x ∈ X, y ∈ B(H),

s∫
0

µt(y)dt ≤
s∫

0

µt(x)dt for all s > 0 (writing y ≺≺ x))

imply that y ∈ X and ‖y‖X ≤ ‖x‖X .
The spaces (B(H), ‖ · ‖∞) and (K(H), ‖ · ‖∞) as well as the classical Banach

two-sided ideals

Cp = {x ∈ K(H) : ‖x‖p = τ(|x|p)1/p <∞}, 1 ≤ p <∞,
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are examples of fully symmetric spaces.
It should be noted that for every symmetric space (X, ‖ · ‖X) ⊂ B(H) and all

x ∈ X, a, b ∈ B(H),

‖x‖X = ‖ |x| ‖X = ‖x∗‖X , axb ∈ X, and ‖axb‖X ≤ ‖a‖∞‖b‖∞‖x‖X .

Remark 1. If X ⊂ B(H) is a symmetric space and there exists a projection
e ∈ P(H) ∩X such that τ(e) =∞, that is, dim e(H) =∞, then µt(e) = µt(1) = 1
for every t ∈ (0,∞). Consequently, 1 ∈ X and X = B(H). If X 6= B(H) and
x ∈ X, then eλ(|x|)⊥ = {|x| > λ} is a �nite-dimensional projection, that is,
dim eλ(|x|)⊥(H) <∞ for all λ > 0. This means that x ∈ K(H), hence X ⊂ K(H).
Therefore, either X = B(H) or X ⊂ K(H).

Thus, if H is non-separable, then there exists a proper two-sided ideal I ⊂ B(H)
such that K(H) $ I and (I, ‖ · ‖∞) is a Banach space which is not a symmetric
subspace of B(H).

If x ∈ K(H), then |x| =
m(x)∑
n=1

sn(x)pn (if m(x) = ∞, the series converges

uniformly), where {sn(x)}m(x)
n=1 is the set of singular values of x, that is, the set

of eigenvalues of the compact operator |x| in the decreasing order, and pn is the
projection onto the eigenspace corresponding to sn(x). Consequently, the non-
increasing rearrangement µt(x) of x ∈ K(H) can be identi�ed with the sequence
{sn(x)}∞n=1, sn(x) ↓ 0 (if m(x) <∞, we set sn(x) = 0 for all n > m(x)).

2.3. Duality between symmetric sequence and operator spaces. Let
(X, ‖ · ‖X) ⊂ K(H) be a symmetric space. Fix an orthonormal basis {ϕj}j∈J in H
and choose a countable subset {ϕjn}∞n=1. Let pn be the one-dimensional projection
on the subspace C · ϕjn ⊂ H. It is clear that the set

E(X) =

{
ξ = {ξn}∞n=1 ∈ c0 : xξ =

∞∑
n=1

ξnpn ∈ X

}
(the series converges uniformly), is a symmetric sequence space with respect to the
norm ‖ξ‖E(X) = ‖xξ‖X . Consequently, each symmetric subspace (X, ‖·‖X) ⊂ K(H)
uniquely generates a symmetric sequence space (E(X), ‖·‖E(X)) ⊂ c0. The converse
is also true: every symmetric sequence space (E, ‖ · ‖E) ⊂ c0 uniquely generates a
symmetric space (CE , ‖ · ‖CE ) ⊂ K(H) by the following rule (see, for example, [17,
Ch. 3, Section 3.5]):

CE = {x ∈ K(H) : {sn(x)} ∈ E}, ‖x‖CE = ‖{sn(x)}‖E .

In addition,

E(CE) = E, ‖ · ‖E(CE) = ‖ · ‖E , CE(CE) = CE , ‖ · ‖CE(CE)
= ‖ · ‖CE .

We will call the pair (CE , ‖ · ‖CE ) a Banach ideal of compact operators (cf. [12,
Ch. III]). It is known that (Cp, ‖ · ‖p) = (Clp , ‖ · ‖Clp ) for all 1 ≤ p < ∞ and
(K(H), ‖ · ‖∞) = (Cc0 , ‖ · ‖Cc0 ).

Hardy-Littlewood-Polya partial order in the Banach ideal K(H) is de�ned by

x ≺≺ y, x, y ∈ K(H) ⇐⇒ {sn(x)} ≺≺ {sn(y)}.

We say that a Banach ideal (CE , ‖ · ‖CE ) is fully symmetric if conditions y ∈ CE ,
x ∈ K(H), x ≺≺ y entail that x ∈ CE and ‖x‖CE ≤ ‖y‖CE . It is clear that (CE , ‖·‖CE )
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is a fully symmetric ideal if and only if (E, ‖ · ‖E) is a fully symmetric sequence
space.

Examples of fully symmetric ideals include (K(H), ‖ · ‖∞) as well as the Banach
ideals (Cp, ‖ · ‖p) for all 1 ≤ p < ∞. It is clear that C1 ⊂ CE ⊂ K(H) for every
symmetric sequence space E ⊂ c0 with ‖x‖CE ≤ ‖x‖1 and ‖y‖∞ ≤ ‖y‖CE for all
x ∈ C1 and y ∈ CE .

Remark 2. If x, y, yk ∈ K(H) are such that yk ≺≺ x for all k ∈ N and ‖yk−y‖∞ →
0 as k →∞, then y ≺≺ x.

Indeed, since yk ≺≺ x, it follows that
m∑
n=1

sn(yk) ≤
m∑
n=1

sn(x) for all m, k ∈ N.

By [12, Ch.II, � 2, Sec. 3, Corollary 2.3], |sn(yk)− sn(y)| ≤ ‖yk − y‖∞ → 0, hence
m∑
n=1

sn(yk)→
m∑
n=1

sn(y) as k →∞ for every m ∈ N. Therefore

m∑
n=1

sn(y) = lim
k→∞

m∑
n=1

sn(yk) ≤
m∑
n=1

sn(x)

for all m.

2.4. Dunford-Schwartz operators and conditional expectation. A linear
operator T : B(H)→ B(H) is called a Dunford-Schwartz operator if

‖T (x)‖1 ≤ ‖x‖1 for all x ∈ C1 and ‖T (x)‖∞ ≤ ‖x‖∞ for all x ∈ B(H).

In what follows, we will write T ∈ DS to indicate that T is a Dunford-Schwartz
operator.

Any fully symmetric ideal CE is an exact interpolation space in the Banach pair
(C1,B(H)) (see [7, Theorem 2.4]), in particular, T (CE) ⊂ CE and ‖T‖CE→CE ≤ 1
for all T ∈ DS. Hence T (K(H)) ⊂ K(H), and the restriction of T on K(H) is a
linear contraction (also denoted by T ). We note that if T ∈ DS, then An(T ) ∈ DS;
also, T (x) ≺≺ x and An(T )(x) ≺≺ x for any x ∈ K(H) and n ∈ N.

We need the following Theorem on the existence of conditional expectation from
B(H) into von Neumann subalgebra N ⊂ B(H) (see, for example, [21], [22]).

Theorem 5. Let N be a von Neumann subalgebra in B(H) such that the restriction
of the canonical trace τ on N is a semi�nite trace. Then there exists a unique
positive linear map U : B(H) → N (conditional expectation on N ), having the
following properties:

(i) τ(x) = τ(U(x)) for all x ∈ C1;
(ii) U(x) = x for all x ∈ N ;
(iii) ‖U‖B(H)→N = 1.
Moreover, the conditional expectation U is projection of norm one from

(Lp(B(H), τ), ‖ · ‖p) = (Cp, ‖ · ‖p) onto (Lp(N , τ), ‖ · ‖p), 1 ≤ p <∞.

Thus, the conditional expectation U : B(H)→ N ⊂ B(H) is a positive Dunford-
Schwartz operator.

3. Individual ergodic theorem in fully symmetric ideals of compact

operators

Let H, τ : B+(H) → [0,∞], and C1 be as above. Below we give a proof of
Theorem 2 (i).
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Proof. Since T (C2) ⊂ C2, ‖T‖C2→C2 ≤ 1 and the Banach space C2 is re�exive, by
the mean ergodic theorem [6, Ch.VIII, � 5, Corollary 4], the sequence {An(T )(x)}
converges strongly in C2, that is, for every x ∈ C2 there exists x̂ ∈ C2 such that
‖An(T )(x)− x̂‖2 → 0. As ‖ξ‖∞ ≤ ‖ξ‖2 for all ξ ∈ l2, it follows that ‖x‖∞ ≤ ‖x‖2
for all x ∈ C2. Consequently,

‖An(T )(x)− x̂‖∞ → 0 for every x ∈ C2.

Let now x ∈ K(H) and ε > 0. Then there exists xε ∈ F(H) ⊂ C2 such that
‖x − xε‖∞ < ε/4. Since the sequence An(T )(xε) converges uniformly, there exists
N = N(ε) such that

‖Am(T )(xε)−An(T )(xε)‖∞ <
ε

2
whenever m,n ≥ N.

Therefore,

‖Am(T )(x)−An(T )(x)‖∞ ≤ ‖Am(T )(x− xε)−An(T )(x− xε)‖∞

+ ‖Am(T )(xε)−An(T )(xε)‖∞ ≤ 2‖x− xε‖∞ +
ε

2
< ε.

for allm,n ≥ N . Thus, since CE ⊂ K(H) and the space (K(H), ‖·‖∞) is complete, it
follows that for any x ∈ CE there exists x̂ ∈ K(H) such that ‖An(T )(x)− x̂‖∞ → 0.
Using Remark 2, we obtain that x̂ ≺≺ x, hence x̂ ∈ CE . �

Now we give a proof of the part (ii) of Theorem 2. We begin with a Dunford-
Schwartz operator acting in (l∞, ‖·‖∞), that is, when a linear operator T : l∞ → l∞

is such that ‖T (ξ)‖1 ≤ ‖ξ‖1 for all ξ ∈ l1 and ‖T (ξ)‖∞ ≤ ‖ξ‖∞ for all ξ ∈ l∞

(writing T ∈ DS). The following Theorem is a commutative version of Theorem 2
(ii) (proof see in [2, Theorem 3.3]).

Theorem 6. If ξ ∈ l∞ \ c0, then there exists T ∈ DS such that the averages
An(T )(ξ) do not converge coordinate-wise, hence uniformly.

Assume �rst that (H, (·, ·)) is a separable in�nite-dimensional complex Hilbert
space. Fix an orthonormal basis {ϕn}n∈N in H. Let pn be the one-dimensional
projection on the linear subspace C · ϕn ⊂ H. It is clear that pmpn = 0 for all
m,n ∈ N, n 6= m.

For any ξ = {ξn}∞n=1 ∈ l∞ and h =
∞∑
n=1

(h, ϕn)ϕn ∈ H we set

xξ(h) =

∞∑
n=1

ξn(h, ϕn)ϕn =

∞∑
n=1

ξnpn(h).

It is clear that xξ ∈ B(H) and xξ = (wo) −
∞∑
n=1

ξnpn, where (wo) stands for the

weak operator topology. In addition,

N = {xξ ∈ B(H) : ξ = {ξn}∞n=1 ∈ l∞}
is the smallest commutative von Neumann subalgebra in B(H) containing all projec-
tions pn. Besides, the restriction of the trace τ on N is a semi�nite trace.

De�ne the linear map Φ : (N , ‖ · ‖∞) → (l∞, ‖ · ‖∞) by setting Φ(xξ) = ξ.
By de�nition of Φ, we have Φ(N ) = l∞. Using [17, Ch. 1, � 1.1, E. 1.1.11], we see
that ‖xξ‖∞ = ‖ξ‖∞ = ‖Φ(xξ)‖∞, that is, Φ is a linear surjective isometry. Since
ξ = {ξn}∞n=1 ≥ 0 whenever xξ ∈ N+, the map Φ is positive. Therefore, Φ is a
positive linear surjective isometry.
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If (E, ‖ · ‖E) ⊂ c0 is a symmetric sequence space and NE = N ∩ CE , then for

any xξ =
∞∑
n=1

ξnpn ∈ NE we have that {sn(xξ)}∞n=1 = {ξ∗n} ∈ E, hence {ξn} ∈ E.

In addition, ‖xξ‖CE = ‖{ξ∗n}‖E = ‖{ξn}‖E . Consequently, the restriction Φ|NE :
(NE , ‖ · ‖CE ) → (E, ‖ · ‖E) is a positive linear surjective isometry (we denote this
restriction also by Φ).

Below we give a proof of Theorem 2 (ii).

Proof. Let 0 ≤ x ∈ B(H) \ K(H). Assume �rst that H is separable. Since x /∈
K(H), it follows that there exists a spectral projection eλ(|x|), λ > 0, such that
τ(eλ(|x|)⊥) =∞. Choose an orthonormal basis {ϕn}∞n=1 in H such that eλ(|x|)⊥ ≥
pni for some sequence {ni}∞i=1, where pn is the one-dimensional projection on the
subspace C · ϕn ⊂ H.

Let N = {xξ ∈ B(H) : ξ = {ξn}∞n=1 ∈ l∞} be the smallest commutative von
Neumann subalgebra in B(H) containing all projections pn. Since the restriction of
the trace τ on N is a semi�nite trace, it follows by Theorem 5 that there exists a
conditional expectation U : B(H)→ N such that

0 ≤ y = U(x) ≥ U(λ eλ(|x|)⊥) ≥ λU(pni) = λpni for all i ∈ N.

Consequently, y /∈ K(H) and y = xξ ∈ N , where 0 ≤ ξ = {ξn}∞n=1 ∈ l∞ \ c0.
Besides, by de�nition of Φ, we have Φ(y) = ξ.

Next, by Theorem 6, there exists an operator S : l∞ → l∞, S ∈ DS, such that
the sequence {An(S)(ξ)} does not converge uniformly. Consider the operator

T = Φ−1SΦU : B(H)→ N ⊂ B(H).

It is clear that T ∈ DS. Since U : B(H) → N is a conditional expectation and
y = U(x), it follows that U(y) = y, UΦ−1 = Φ−1, and T k(y) = Φ−1SkΦ(y) for
each k ∈ N.

Since Φ−1 is an isometry and

An(T )(y) =
1

n+ 1

n∑
k=0

T k(y) = Φ−1

(
1

n+ 1

n∑
k=0

SkΦ(y)

)
= Φ−1(An(S)(ξ)),

for all n ∈ N, it follows that the sequence {An(T )(y)}∞n=1 does not converge
uniformly.

Now, as above, y = U(x) ∈ N entails T k(x) = Φ−1SkΦ(y) = T k(y) for all k ∈ N.
Therefore, we have

An(T )(x)−An(T )(y) =
1

n+ 1
(x− y),

and it follows that the sequence {An(T )(x)}∞n=1 also does not converge uniformly.
Let now H be non-separable, and let 0 ≤ x ∈ B(H) \ K(H). Since x /∈ K(H), it

follows that there exists a spectral projection eλ(|x|), λ > 0, such that τ(eλ(|x|)⊥) =
∞. Choose an orthonormal basis {ϕj}j∈J in H such that eλ(|x|)⊥ ≥ pjn for some
sequence {jn}∞n=1, where pj is the one-dimensional projection on the subspace C ·
ϕj ⊂ H. If p = sup

n∈N
pjn , then H0 = p(H) is a separable in�nite-dimensional Hilbert

subspace in H such that K(H0) = pK(H)p.
Since z = pxp ∈ B+(H0) and z ≥ λpeλ(|x|)⊥p ≥ λp, it follows that z ∈

B+(H0) \ K(H0). In view of the above, there exists a Dunford-Schwartz operator
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D0 : B(H0) → B(H0) such that the sequence {An(D0)(z)}∞n=1 does not converge
uniformly.

It is clear that D(y) = D0(pyp), y ∈ B(H), is a Dunford-Schwartz operator in
B(H) such that Dk(x) = Dk

0 (z) for each k ∈ N. Then

An(D)(x)−An(D0)(z) =
1

n+ 1
(x− z),

and we conclude that the sequence {An(D)(x)}∞n=1 does not converge uniformly. �

Note that the commutative version of Theorem 2 (ii) for symmetric spaces of
measurable functions was obtained in [5].

4. Mean ergodic theorem in fully symmetric ideals of compact

operators

In this section, our goal is to prove Theorem 4. So, let (E, ‖ · ‖E) ⊂ c0 be a fully
symmetric sequence space, and let (CE , ‖·‖CE ) be a fully symmetric ideal generated
by (E, ‖ · ‖E). Let us show that the mean ergodic theorem, generally speaking, is
not true in (CE , ‖ · ‖CE ), in the cases when E = l1 as sets, or when (E, ‖ · ‖E) is
non-separable space.

Proposition 1. There exists T ∈ DS such that the averages An(T ) do not converge
strongly in (C1, ‖ · ‖1).

Proof. Let S : l∞ → l∞ be the Dunford-Schwartz operator de�ned by

S({ξn}∞n=1) = {0, ξ1, ξ2, . . . }, {ξn}∞n=1 ∈ l∞.
If ξ = {1, 0, 0, . . . } ∈ l1, then

‖A2n−1(S)(ξ)−An−1(S)(ξ)‖1

=

∥∥∥∥∥∥ 1

2n
{1, 1, . . . , 1︸ ︷︷ ︸

2n

, 0, 0, . . . } − 1

n
{1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . . }

∥∥∥∥∥∥
1

= 1.

Consequently, the sequence {An(S)(ξ)} does not converge in the norm ‖ · ‖1.
Let pn, p = sup

n∈N
pn, H0 = p(H),

N (H0) =

{
xξ = (wo)−

∞∑
n=1

ξnpn ∈ B(H0) : ξ = {ξn}∞n=1 ∈ l∞
}
,

Φ : N (H0) → l∞ and U : B(H0) → N (H0) be the same as in the proof of
Theorem 2 (ii). Then

T = Φ−1SΦU : B(H0)→ N (H0) ⊂ B(H0)

is a positive Dunford-Schwartz operator. In addition, for ξ = {1, 0, 0, . . . } ∈ l1

and xξ = Φ−1(ξ) we have that xξ ∈ N (H0) ∩ C1 and U(xξ) = xξ (see proof of
Theorem 2 (ii)). Consequently,

T (xξ) = Φ−1SΦU(xξ) = Φ−1SΦ(xξ).

Now, repeating the proof of Theorem 2 (ii), we conclude that the averages

{An(T )(xξ)}
do not converge in the norm ‖ · ‖1. �
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Proposition 2. If (E, ‖·‖E) ⊂ c0 is non-separable fully symmetric sequence space,
then there exists T ∈ DS such that the averages An(T ) do not converge strongly in
(CE , ‖ · ‖CE ).

Proof. If (E, ‖ · ‖E) ⊂ c0 is a non-separable fully symmetric sequence space, then
there exists ξ = {ξn}∞n=1 = {ξ∗n}∞n=1 ∈ E such that ξn ↓ 0 and

(1) ‖{0, 0, . . . , 0︸ ︷︷ ︸
n+1

, ξn+2, . . . }‖E ↓ α > 0.

Let the operator S ∈ DS be de�ned as in the proof of Proposition 1. Then Sk(ξ) =
{0, 0, . . . , 0︸ ︷︷ ︸

k

, ξ1, ξ2, . . . } and

n∑
k=0

Sk(ξ) = {η(n)
m }∞m=1,

where
η(n)
m = ξ1 + ξ2 + . . .+ ξm for 1 ≤ m ≤ n+ 1

and
η(n)
m = ξm−n + ξm−n+1 + . . .+ ξm for m > n+ 1.

Since ξn ↓ 0, given 1 ≤ m ≤ n+ 1, we have

0 ≤ 1

n+ 1
η(n)
m ≤ 1

n+ 1

n+1∑
k=1

ξk → 0 as n→∞,

implying that An(S)(ξ)→ 0 coordinate-wise.

Assume that there exists ξ̂ ∈ E such that ‖An(S)(ξ)− ξ̂‖E → 0. Then we have

‖An(S)(ξ)− ξ̂‖∞ → 0; in particular, An(S)(ξ)→ 0 coordinate-wise, hence ξ̂ = 0.
On the other hand, as ξn ↓ 0, we obtain

An(S)(ξ) =

{
ξ1

n+ 1
,
ξ1 + ξ2
n+ 1

, . . . ,
ξ1 + ξ2 + . . .+ ξn+1

n+ 1
,
ξ2 + ξ3 + . . .+ ξn+2

n+ 1
,

ξ3 + ξ4 + . . .+ ξn+3

n+ 1
, . . . ,

ξm−n + ξm−n+1 + . . .+ ξm
n+ 1

, . . .

}
≥ {0, 0, . . . , 0︸ ︷︷ ︸

n+1

, ξn+2, . . . }.

Therefore, in view of (1), ‖An(S)(ξ)‖E ≥ α, implying that the sequence {An(S)(ξ)}
does not converge in the norm ‖ · ‖E .

Now, if we de�ne the Dunford-Schwartz operator T ∈ DS as in the proof of
Proposition 1, then repeating its proof for x = Φ−1(ξ), we conclude that the
sequence {An(T )(x)} does not converge in (CE , ‖ · ‖CE ). �

Fix T ∈ DS. By Theorem 2 (i), for every x ∈ K(H) there exists x̂ ∈ K(H) such
that ‖An(T )(x)− x̂‖∞ → 0 as n→∞. Therefore, one can de�ne a linear operator
PT : K(H)→ K(H) by setting PT (x) = x̂. Then we have

‖PT (x)‖∞ = lim
n→∞

‖An(T )(x)‖∞ ≤ ‖x‖∞,

Besides, since the unit ball in (C1, ‖·‖1) is closed in measure topology [8, Proposition
3.3] and ‖An(T )(x)‖1 ≤ ‖x‖1 for all x ∈ C1, it follows that ‖PT (x)‖1 ≤ ‖x‖1, x ∈ C1.
Consequently, ‖PT ‖C1→C1 ≤ 1, and, according to [3, Proposition 1.1], there exists
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a unique operator P̂ ∈ DS such that P̂ (x) = PT (x) whenever x ∈ K(H). In what

follows, we denote P̂ by PT .

Lemma 1. If T ∈ DS and x ∈ K(H), then

PTT (x) = PT (x) = TPT (x).

Proof. We have

‖(I − T )An(T )(x)‖∞ =

∥∥∥∥ (I − Tn+1)(x)

n+ 1

∥∥∥∥
∞
−→ 0 as n→∞.

On the other hand,

TAn(T )(x) =
1

n+ 1

n∑
k=0

T k(Tx)
‖·‖∞−→ PT (T (x)),

implying that

(I − T )An(T )(x) = An(T )(x)− TAn(T )(x)
‖·‖∞−→ PT (x)− PTT (x),

hence PTT (x) = PT (x).
Now, as ‖An(T )(x)− PT (x)‖∞ → 0, we have ‖T (An(T )(x))− T (PT (x))‖∞ → 0

as n→∞, and the result follows. �

Corollary 1. If T ∈ DS and x ∈ K(H), then

T k(PT (x)) = PT (x) for all k ∈ N, and P 2
T (x) = PT (x).

We need the following property of separable symmetric sequence spaces [9,
Proposition 2.2].

Proposition 3. Let (E, ‖·‖E) be a separable symmetric sequence space and E 6= l1

as sets. If CE 3 yn ≺≺ x ∈ CE for every n ∈ N and ‖yn‖∞ → 0 as n → ∞, then
‖yn‖CE → 0 as n→∞.

Now we can �nalize the proof of Theorem 4:

Proof. (i) ⇒ (ii): Proposition 2 implies that E is separable. If E = l1 as sets, then
the norms ‖ · ‖E and ‖ · ‖1 are equivalent [18, Part II, Ch. 6, � 6.1]. Therefore, in
view of Proposition 1, we would have that item (i) in Theorem 4 is not true.

(ii) ⇒ (i): Let (E, ‖ · ‖E) be separable, E 6= l1 as sets, and let T ∈ DS. If
x ∈ CE and y = x − PT (x), then PT (y) = 0, which, by Theorem 2 (i), implies
‖An(T )(y)‖∞ → 0. Since E is a separable symmetric sequence space, E 6= l1 as
sets, and An(T )(y) ≺≺ y ∈ CE , it follows from Proposition 3 that

(2) ‖An(T )(y)‖CE → 0.

Since PT (z) ≺≺ z for all z ∈ K(H), it follows that An(T )(PT (x)) ≺≺ PT (x) ≺≺ x,
henceAn(T )(PT (x))−PT (x) ≺≺ 2x. Next, asAn(T )(PT (x))

‖·‖∞−→ PT (x), Proposition
3 entails

(3) ‖An(T )(PT (x))− PT (x)‖CE → 0.

Now, utilizing (2) and (3), we obtain

‖An(T )(x)− PT (x)‖CE = ‖An(T )(x)−An(T )(PT (x)) +An(T )(PT (x))− PT (x)‖CE
≤ ‖An(T )(y)‖CE + ‖An(T )(PT (x))− PT (x)‖CE → 0

as n→∞. �
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Now we give applications of Theorems 2 and 4 to Orlicz and Lorentz ideals of
compact operators.

1. Let Φ be an Orlicz function, that is, Φ : [0,∞)→ [0,∞) is convex, continuous
at 0, Φ(0) = 0 and Φ(u) > 0 if u > 0 (see, for example, [10, Ch. 2, � 2.1], [15, Ch. 4]).
Let

lΦ(N) =

{
ξ = {ξn}∞n=1 ∈ l∞ :

∞∑
n=1

Φ

(
|ξn|
a

)
<∞ for some a > 0

}
be the Orlicz sequence space, and let

‖ξ‖Φ = inf

{
a > 0 :

∞∑
n=1

Φ

(
|ξn|
a

)
≤ 1

}
be the Luxemburg norm in lΦ(N). It is well-known that (lΦ(N), ‖ · ‖Φ) is a fully
symmetric sequence space.

Since Φ(u) > 0, u > 0, it follows that
∞∑
n=1

Φ(a−1) = ∞ for each a > 0, hence

1 = {1, 1, ...} /∈ lΦ(N) and lΦ(N) ⊂ c0. Therefore, we can de�ne Orlicz ideal of
compact operators

CΦ = ClΦ(N), ‖x‖Φ = ‖x‖ClΦ(N)
, x ∈ CΦ.

By Theorem 2 (i) we obtain that given Dunford-Schwartz operator T and x ∈ CΦ,
there exists x̂ ∈ CΦ such that ‖An(T )(x) − x̂‖∞ → 0 as n → ∞ (cf. Theorem 3.2
[4]).

It is said that an Orlicz function Φ satis�es (∆2)-condition at 0 if there exist
u0 ∈ (0,∞) and k > 0 such that Φ(2u) < kΦ(u) for all 0 < u < u0. It is well known
that an Orlicz function Φ satis�es (∆2)-condition at 0 if and only if (lΦ(N), ‖ · ‖Φ)
is separable (see [10, Ch. 2, � 2.1, Theorem 2.1.17], [15, Ch. 4, Proposition 4.a.4]).

In addition, lΦ(N) = l1 as sets, if and only if lim sup
u→0

Φ(u)
u > 0 (see [15, Ch. 4,

Proposition 4.a.5], [18, Ch. 16, � 16.2]).
Thus, using Theorem 4, we obtain that the averages An(T ) converge strongly in

CΦ for any Dunford-Schwartz operator T if and only if Φ satis�es (∆2)-condition

at 0 and lim
u→0

Φ(u)
u = 0.

2. Let ψ be a concave function on [0,∞) with ψ(0) = 0 and ψ(t) > 0 for all
t > 0, and let

Λψ(N) =

{
ξ = {ξn}∞n=1 ∈ l∞ : ‖ξ‖ψ =

∞∑
n=1

ξ∗n(ψ(n)− ψ(n− 1)) <∞

}
,

the Lorentz sequence space. The pair (Λψ(N), ‖ · ‖ψ) is a fully symmetric sequence
space (see, for example, [14, Ch. II, � 5], [18, Part III, Ch. 9, � 9.1]). Besides, if
ψ(∞) = ∞, then 1 /∈ Λψ(N) and Λψ(N) ⊂ c0. In this case we can de�ne Lorentz
ideal of compact operators

Cψ = CΛψ(N), ‖x‖ψ = ‖x‖CΛψ(N)
, x ∈ Cψ,

for which is true Theorem 2 (i).
It is well known that (Λψ(N), ‖ · ‖ψ) is separable if and only if ψ(+0) = 0

and ψ(∞) = ∞ (see, for example, [14, Ch. II, � 5, Lemma 5.1], [18, Ch. 9, � 9.3,

Theorem 9.3.1]). In addition, lim
t→∞

ψ(t)
t > 0 if and only if the norms ‖ · ‖ψ and ‖ · ‖1
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are equivalent on Λψ(N), that is, Λψ(N) = l1 as sets. Therefore, by Theorem 4, we
obtain that the averages An(T ) converge strongly in Cψ for any Dunford-Schwartz

operator T if and only if ψ(+0) = 0, ψ(∞) =∞ and lim
t→∞

ψ(t)
t = 0.
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