S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 18, №1, стр. 534–547 (2021) DOI 10.33048/semi.2021.18.039 УДК 517.98 MSC 37A30, 46E30, 46L52, 47A35

ERGODIC THEOREMS IN BANACH IDEALS OF COMPACT OPERATORS

A.N. AZIZOV, V.I. CHILIN

ABSTRACT. Let \mathcal{H} be an infinite-dimensional Hilbert space, and let $\mathcal{B}(\mathcal{H})$ $(\mathcal{K}(\mathcal{H}))$ be the C^* -algebra of all bounded (compact) linear operators in \mathcal{H} . Let $(E, \|\cdot\|_E)$ be a fully symmetric sequence space. If $\{s_n(x)\}_{n=1}^{\infty}$ are the singular values of $x \in \mathcal{K}(\mathcal{H})$, let $\mathcal{C}_E = \{x \in \mathcal{K}(\mathcal{H}) : \{s_n(x)\} \in E\}$ with $\|x\|_{\mathcal{C}_E} = \|\{s_n(x)\}\|_E$, $x \in \mathcal{C}_E$, be the Banach ideal of compact operators generated by E. We show that the averages $A_n(T)(x) = \frac{1}{n+1} \sum_{k=0}^n T^k(x)$ converge uniformly in \mathcal{C}_E for any Dunford-Schwartz operator T and $x \in \mathcal{C}_E$. Besides, if $0 \leq x \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}(\mathcal{H})$, there exists a Dunford-Schwartz operator T such that the sequence $\{A_n(T)(x)\}$ does not converge uniformly. We also show that the averages $A_n(T)$ converge strongly in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ if and only if E is separable and $E \neq l^1$ as sets.

Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.

1. INTRODUCTION

Let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators in a complex Hilbert space \mathcal{H} , equipped with the uniform norm $\|\cdot\|_{\infty}$. The study of noncommutative individual ergodic theorems in the space of measurable operators affiliated with a semifinite von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ equipped with a faithful normal semifinite trace τ was initiated by F. Yeadon. In [23], as a corollary of a noncommutative maximal ergodic inequality in $L^1 = L^1(\mathcal{M}, \tau)$, the following individual ergodic theorem was established.

Azizov, A.N., Chilin, V.I., Ergodic theorems in Banach ideals of compact operators.

^{© 2021} Azizov A.N., Chilin V.I.

Received February, 26, 2021, published May, 21, 2021.

Theorem 1. Let $T: L^1 \to L^1$ be a positive $L^1 - L^{\infty}$ -contraction. Then for any $x \in L^1$ there exists $\hat{x} \in L^1$ such that the averages

$$A_n(T)(x) = \frac{1}{n+1} \sum_{k=0}^n T^k(x)$$

converge to \hat{x} bilaterally almost uniformly (in Egorov's sense), that is, given $\varepsilon > 0$, there exists a projection $e \in \mathcal{M}$ such that $\tau(\mathbf{1} - e) < \varepsilon$ and

$$||e(A_n(T)(x) - \hat{x})e||_{\infty} \to 0 \quad as \quad n \to \infty,$$

where $\mathbf{1}$ is the unit of \mathcal{M} .

The study of individual ergodic theorems beyond $L^1(\mathcal{M}, \tau)$ started much later with another fundamental paper by M. Junge and Q. Xu [13], where, among other results, individual ergodic theorem was extended to the case with a positive Dunford-Schwartz operator acting in the space $L^p(\mathcal{M}, \tau)$, 1 . In [3] ([4]),utilizing the approach of [16], an individual ergodic theorem was proved for apositive Dunford-Schwartz operator in a noncommutative Lorentz (respectively,Orlicz) space.

Let \mathcal{H} be a complex infinite-dimensional Hilbert space. Let $E \subset c_0$ be a fully symmetric sequence space. Denote by \mathcal{C}_E the Banach ideal of compact operators in \mathcal{H} associated with E. In Section 3 of the article, we obtain the following individual Dunford-Schwartz-type ergodic theorem.

Theorem 2. (i). Given a Dunford-Schwartz operator $T : C_E \to C_E$ and $x \in C_E$, there exists $\hat{x} \in C_E$ such that $||A_n(T)(x) - \hat{x}||_{\infty} \to 0$ as $n \to \infty$;

(ii). If $0 \leq x \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}(\mathcal{H})$, then there exists a Dunford-Schwartz operator $T : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ such that the averages $A_n(T)(x)$ do not converge uniformly.

Noncommutative mean ergodic theorem can be stated as follows: if T is an $L^1 - L^{\infty}$ -contraction and $1 , then the averages <math>A_n(T)$ converge strongly in $L^p = L^p(\mathcal{M}, \tau)$, that is, given $x \in L^p$, there exists $\hat{x} \in L^p$ such that $||A_n(T)(x) - \hat{x}||_p \to 0$ as $n \to \infty$. If p = 1 and $\tau(1) = \infty$, this is not true in general. As a consequence, if $\tau(1) = \infty$, mean ergodic theorem may not hold in some noncommutative symmetric spaces. In Yeadon's paper [24], the following mean ergodic theorem was established.

Theorem 3. Let $E = (E(\mathcal{M}, \tau), \|\cdot\|_E)$ be a noncommutative fully symmetric space such that

(i) $L^1(\mathcal{M}, \tau) \cap \mathcal{M}$ is dense in E;

(ii) $||e_n||_E \to 0$ for any sequence of projections $\{e_n\} \subset L^1(\mathcal{M}, \tau) \cap \mathcal{M}$ with $e_n \downarrow 0$; (iii) $||e_n||_E / \tau(e_n) \to 0$ for any increasing sequence of projections $\{e_n\} \subset \mathcal{M}$, $0 < \tau(e_n) < \infty$, with $\tau(e_n) \to \infty$.

Then for any $x \in E$ and a positive $L^1 - L^{\infty}$ -contraction $T : E \to E$ there exists $\widehat{x} \in E$ such that $||A_n(T)(x) - \widehat{x}||_E \to 0$.

In [3], the mean ergodic theorem was established for a noncommutative symmetric space $E(\mathcal{M}, \tau)$ associated with a fully symmetric function space with nontrivial Boyd indices and order continuous norm.

In Section 4, we give the following criterion for the validity of the mean ergodic theorem in a Banach ideal of compact operators in \mathcal{H} .

Theorem 4. The following conditions are equivalent:

(i). For any Dunford-Schwartz operator $T : \mathcal{C}_E \to \mathcal{C}_E$ the averages $A_n(T)$ converge strongly in \mathcal{C}_E ;

(ii). $(E, \|\cdot\|_E)$ is separable and $E \neq l^1$ as sets.

Commutative counterparts of Theorems 2 and 4 were established in [2].

In the end of the article, we give applications of Theorems 2 and 4 to the well-studied Orlicz and Lorentz ideals of compact operators. We note that our noncommutative versions of ergodic theorems are true for any Dunford-Schwarz operators without the assumption that these operators are positive.

2. Preliminaries

2.1. Symmetric sequence spaces. Let l^{∞} (respectively, c_0) be the Banach space of bounded (respectively, converging to zero) sequences $\{\xi_n\}_{n=1}^{\infty}$ of complex numbers equipped with the uniform norm $\|\{\xi_n\}\|_{\infty} = \sup_{n \in \mathbb{N}} |\xi_n|$, where \mathbb{N} is the set of natural numbers If $2^{\mathbb{N}}$ is the set of product of all substances $f_n \in \mathbb{N}$ and $u(\{n\}) = 1$ for each $n \in \mathbb{N}$

numbers. If $2^{\mathbb{N}}$ is the σ -algebra of all subsets of \mathbb{N} and $\mu(\{n\}) = 1$ for each $n \in \mathbb{N}$, then $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ is a σ -finite measure space such that $L^{\infty}(\mathbb{N}, 2^{\mathbb{N}}, \mu) = l^{\infty}$ and

$$L^{1}(\mathbb{N}, 2^{\mathbb{N}}, \mu) = l^{1} = \left\{ \{\xi_{n}\}_{n=1}^{\infty} \subset \mathbb{C} : \|\{\xi_{n}\}\|_{1} = \sum_{n=1}^{\infty} |\xi_{n}| < \infty \right\} \subset l^{\infty},$$

where \mathbb{C} is the field of complex numbers.

For any subset $E \subset l^{\infty}$ we denote $E_h = \{\{\xi_n\}_{n=1}^{\infty} \in E : \xi_n \in \mathbb{R} \text{ for each } n\}$, where \mathbb{R} is the field of real numbers. It is know that $(l_h^{\infty}, \|\cdot\|_{\infty})$ and $((c_0)_h, \|\cdot\|_{\infty})$ are Banach lattices with respect to the natural partial order

$$\{\xi_n\} \leq \{\eta_n\} \iff \xi_n \leq \eta_n \text{ for all } n \in \mathbb{N}.$$

If $\xi = {\xi_n}_{n=1}^{\infty} \in l^{\infty}$, then the non-increasing rearrangement $\xi^* : (0, \infty) \to (0, \infty)$ of ξ is defined by

$$\xi^*(t) = \inf\{\lambda : \mu\{|\xi| > \lambda\} \le t\}, \ t > 0,$$

(see, for example, [1, Ch. 2, Definition 1.5]). As such, the non-increasing rearrangement of a sequence $\{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$ can be identified with the sequence $\xi^* = \{\xi_n^*\}_{n=1}^{\infty}$, where

$$\xi_n^* = \inf \left\{ \sup_{n \notin F} |\xi_n| : F \subset \mathbb{N}, \ |F| < n \right\}.$$

If $\{\xi_n\} \in c_0$, then $\xi_n^* \downarrow 0$; in this case there exists a bijection $\pi : \mathbb{N} \to \mathbb{N}$ such that $|\xi_{\pi(n)}| = \xi_n^*, n \in \mathbb{N}$.

Hardy-Littlewood-Polya partial order in the space l^{∞} is defined as follows:

$$\xi = \{\xi_n\} \prec \prec \eta = \{\eta_n\} \iff \sum_{n=1}^m \xi_n^* \le \sum_{n=1}^m \eta_n^* \text{ for all } m \in \mathbb{N}.$$

A non-zero linear subspace $E \subset l^{\infty}$ with a Banach norm $\|\cdot\|_E$ is called a symmetric (fully symmetric) sequence space if

$$\eta \in E, \ \xi \in l^{\infty}, \ \xi^* \leq \eta^* \ (\text{resp.}, \ \xi^* \prec \eta^*) \implies \xi \in E \ \text{ and } \ \|\xi\|_E \leq \|\eta\|_E.$$

Every fully symmetric sequence space is a symmetric sequence space. The converse is not true in general. At the same time, any separable symmetric sequence space is a fully symmetric space.

If $(E, \|\cdot\|_E)$ is a symmetric sequence space, then

$$\|\xi\|_E = \||\xi|\|_E = \|\xi^*\|_E$$
 for all $\xi \in E$.

Besides, $(E_h, \|\cdot\|_E)$ is a Banach lattice with respect to the partial order induced from l^{∞} .

Immediate examples of fully symmetric sequence spaces are $(l^{\infty}, \|\cdot\|_{\infty})$, $(c_0, \|\cdot\|_{\infty})$ and the Banach spaces

$$l^{p} = \left\{ \xi = \{\xi_{n}\}_{n=1}^{\infty} \in l^{\infty} : \|\xi\|_{p} = \left(\sum_{n=1}^{\infty} |\xi_{n}|^{p}\right)^{1/p} < \infty \right\}, \ 1 \le p < \infty.$$

For any symmetric sequence space $(E, \|\cdot\|_E)$ the following continuous embeddings hold [1, Ch. 2, § 6, Theorem 6.6]: $(l^1, \|\cdot\|_1) \subset (E, \|\cdot\|_E) \subset (l^\infty, \|\cdot\|_\infty)$. Besides, $\|\xi\|_E \leq \|\xi\|_1$ for all $\xi \in l^1$ and $\|\xi\|_\infty \leq \|\xi\|_E$ for all $\xi \in E$.

If there is $\xi \in E \setminus c_0$, then $\xi^* \ge \alpha \mathbf{1}$ for some $\alpha > 0$, where $\mathbf{1} = \{1, 1, ...\}$. Consequently, $\mathbf{1} \in E$ and $E = l^{\infty}$. Therefore, either $E \subset c_0$ or $E = l^{\infty}$.

2.2. Symmetric operator spaces. Now, let $(\mathcal{H}, (\cdot, \cdot))$ be an infinite-dimensional Hilbert space over \mathbb{C} , and let $(\mathcal{B}(\mathcal{H}), \|\cdot\|_{\infty})$ be the C^* -algebra of all bounded linear operators in \mathcal{H} . Denote by $\mathcal{K}(\mathcal{H})$ $(\mathcal{F}(\mathcal{H}))$ the two-sided ideal of compact (respectively, finite rank) linear operators in $\mathcal{B}(\mathcal{H})$. It is well known that, for any proper two-sided ideal $\mathcal{I} \subset \mathcal{B}(\mathcal{H})$, we have $\mathcal{F}(\mathcal{H}) \subset \mathcal{I}$, and if \mathcal{H} is separable, then $\mathcal{I} \subset \mathcal{K}(\mathcal{H})$ (see, for example, [19, Proposition 2.1]). At the same time, if \mathcal{H} is a non-separable Hilbert space, then there exists a proper two-sided ideal $\mathcal{I} \subset \mathcal{B}(\mathcal{H})$ such that $\mathcal{K}(\mathcal{H}) \subsetneq \mathcal{I}$.

Denote $\mathcal{B}_h(\mathcal{H}) = \{x \in \mathcal{B}(\mathcal{H}) : x = x^*\}, \mathcal{B}_+(\mathcal{H}) = \{x \in \mathcal{B}_h(\mathcal{H}) : x \ge 0\}$, and let $\tau : \mathcal{B}_+(\mathcal{H}) \to [0, \infty]$ be the *canonical trace* on $\mathcal{B}(\mathcal{H})$, that is,

$$\tau(x) = \sum_{j \in J} (x\varphi_j, \varphi_j), \quad x \in \mathcal{B}_+(\mathcal{H}),$$

where $\{\varphi_j\}_{j\in J}$ is an orthonormal basis in \mathcal{H} (see, for example, [20, Ch. 7, E. 7.5]).

Let $\mathcal{P}(\mathcal{H}) = \{e \in \mathcal{B}(\mathcal{H}) : e = e^2 = e^*\}$ be the lattice of projectors in $\mathcal{B}(\mathcal{H})$. If **1** is the identity of $\mathcal{B}(\mathcal{H})$ and $e \in \mathcal{P}(\mathcal{H})$, we will write $e^{\perp} = \mathbf{1} - e$.

Let $x \in \mathcal{B}(\mathcal{H})$, and let $\{e_{\lambda}(|x|)\}_{\lambda \geq 0}$ be the spectral family of projections for the absolute value $|x| = (x^*x)^{1/2}$ of x, that is, $e_{\lambda}(|x|) = \{|x| \leq \lambda\}$. If t > 0, then the *t*-th generalized singular number of x, or the non-increasing rearrangement of x, is defined as

$$\mu_t(x) = \inf\{\lambda > 0: \ \tau(e_\lambda(|x|)^\perp) \le t\}$$

(see [11]).

A non-zero linear subspace $X \subset \mathcal{B}(\mathcal{H})$ with a Banach norm $\|\cdot\|_X$ is called *symmetric (fully symmetric)* if the conditions

$$x \in X, y \in \mathcal{B}(\mathcal{H}), \mu_t(y) \le \mu_t(x) \text{ for all } t > 0$$

(respectively,

$$x \in X, \ y \in \mathcal{B}(\mathcal{H}), \ \int_{0}^{s} \mu_t(y) dt \le \int_{0}^{s} \mu_t(x) dt \quad \text{for all } s > 0 \ (\text{writing } y \prec \prec x))$$

imply that $y \in X$ and $||y||_X \le ||x||_X$.

The spaces $(\mathcal{B}(\mathcal{H}), \|\cdot\|_{\infty})$ and $(\mathcal{K}(\mathcal{H}), \|\cdot\|_{\infty})$ as well as the classical Banach two-sided ideals

$$C^p = \{x \in \mathcal{K}(\mathcal{H}): \|x\|_p = \tau(|x|^p)^{1/p} < \infty\}, \ 1 \le p < \infty,$$

are examples of fully symmetric spaces.

It should be noted that for every symmetric space $(X, \|\cdot\|_X) \subset \mathcal{B}(\mathcal{H})$ and all $x \in X, a, b \in \mathcal{B}(\mathcal{H})$,

 $||x||_X = ||x|||_X = ||x^*||_X, axb \in X, and ||axb||_X \le ||a||_{\infty} ||b||_{\infty} ||x||_X.$

Remark 1. If $X \subset \mathcal{B}(\mathcal{H})$ is a symmetric space and there exists a projection $e \in \mathcal{P}(\mathcal{H}) \cap X$ such that $\tau(e) = \infty$, that is, dim $e(\mathcal{H}) = \infty$, then $\mu_t(e) = \mu_t(1) = 1$ for every $t \in (0, \infty)$. Consequently, $\mathbf{1} \in X$ and $X = \mathcal{B}(\mathcal{H})$. If $X \neq \mathcal{B}(\mathcal{H})$ and $x \in X$, then $e_{\lambda}(|x|)^{\perp} = \{|x| > \lambda\}$ is a finite-dimensional projection, that is, dim $e_{\lambda}(|x|)^{\perp}(\mathcal{H}) < \infty$ for all $\lambda > 0$. This means that $x \in \mathcal{K}(\mathcal{H})$, hence $X \subset \mathcal{K}(\mathcal{H})$. Therefore, either $X = \mathcal{B}(\mathcal{H})$ or $X \subset \mathcal{K}(\mathcal{H})$.

Thus, if \mathcal{H} is non-separable, then there exists a proper two-sided ideal $\mathcal{I} \subset \mathcal{B}(\mathcal{H})$ such that $\mathcal{K}(\mathcal{H}) \subsetneq \mathcal{I}$ and $(\mathcal{I}, \|\cdot\|_{\infty})$ is a Banach space which is not a symmetric subspace of $\mathcal{B}(\mathcal{H})$.

If $x \in \mathcal{K}(\mathcal{H})$, then $|x| = \sum_{n=1}^{m(x)} s_n(x)p_n$ (if $m(x) = \infty$, the series converges uniformly), where $\{s_n(x)\}_{n=1}^{m(x)}$ is the set of singular values of x, that is, the set of eigenvalues of the compact on creater $\frac{1}{2}$ is the set of singular values of x, that is, the set

uniformly), where $\{s_n(x)\}_{n=1}^{m(x)}$ is the set of singular values of x, that is, the set of eigenvalues of the compact operator |x| in the decreasing order, and p_n is the projection onto the eigenspace corresponding to $s_n(x)$. Consequently, the non-increasing rearrangement $\mu_t(x)$ of $x \in \mathcal{K}(\mathcal{H})$ can be identified with the sequence $\{s_n(x)\}_{n=1}^{\infty}$, $s_n(x) \downarrow 0$ (if $m(x) < \infty$, we set $s_n(x) = 0$ for all n > m(x)).

2.3. Duality between symmetric sequence and operator spaces. Let $(X, \|\cdot\|_X) \subset \mathcal{K}(\mathcal{H})$ be a symmetric space. Fix an orthonormal basis $\{\varphi_j\}_{j\in J}$ in \mathcal{H} and choose a countable subset $\{\varphi_{j_n}\}_{n=1}^{\infty}$. Let p_n be the one-dimensional projection on the subspace $\mathbb{C} \cdot \varphi_{j_n} \subset \mathcal{H}$. It is clear that the set

$$E(X) = \left\{ \xi = \{\xi_n\}_{n=1}^{\infty} \in c_0 : \ x_{\xi} = \sum_{n=1}^{\infty} \xi_n p_n \in X \right\}$$

(the series converges uniformly), is a symmetric sequence space with respect to the norm $\|\xi\|_{E(X)} = \|x_{\xi}\|_X$. Consequently, each symmetric subspace $(X, \|\cdot\|_X) \subset \mathcal{K}(\mathcal{H})$ uniquely generates a symmetric sequence space $(E(X), \|\cdot\|_{E(X)}) \subset c_0$. The converse is also true: every symmetric sequence space $(E, \|\cdot\|_E) \subset c_0$ uniquely generates a symmetric space $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \subset \mathcal{K}(\mathcal{H})$ by the following rule (see, for example, [17, Ch. 3, Section 3.5]):

$$\mathcal{C}_E = \{ x \in \mathcal{K}(\mathcal{H}) : \{ s_n(x) \} \in E \}, \ \|x\|_{\mathcal{C}_E} = \|\{ s_n(x) \}\|_E.$$

In addition,

$$E(\mathcal{C}_{E}) = E, \ \|\cdot\|_{E(\mathcal{C}_{E})} = \|\cdot\|_{E}, \ \mathcal{C}_{E(\mathcal{C}_{E})} = \mathcal{C}_{E}, \ \|\cdot\|_{\mathcal{C}_{E(\mathcal{C}_{E})}} = \|\cdot\|_{\mathcal{C}_{E}}.$$

We will call the pair $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ a Banach ideal of compact operators (cf. [12, Ch. III]). It is known that $(\mathcal{C}^p, \|\cdot\|_p) = (\mathcal{C}_{l^p}, \|\cdot\|_{\mathcal{C}_{l^p}})$ for all $1 \leq p < \infty$ and $(\mathcal{K}(\mathcal{H}), \|\cdot\|_{\infty}) = (\mathcal{C}_{c_0}, \|\cdot\|_{\mathcal{C}_{c_0}}).$

Hardy-Littlewood-Polya partial order in the Banach ideal $\mathcal{K}(\mathcal{H})$ is defined by

$$x \prec \prec y, \ x, y \in \mathcal{K}(\mathcal{H}) \iff \{s_n(x)\} \prec \prec \{s_n(y)\}.$$

We say that a Banach ideal $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is *fully symmetric* if conditions $y \in \mathcal{C}_E$, $x \in \mathcal{K}(\mathcal{H}), x \prec \prec y$ entail that $x \in \mathcal{C}_E$ and $\|x\|_{\mathcal{C}_E} \leq \|y\|_{\mathcal{C}_E}$. It is clear that $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$

is a fully symmetric ideal if and only if $(E, \|\cdot\|_E)$ is a fully symmetric sequence space.

Examples of fully symmetric ideals include $(\mathcal{K}(\mathcal{H}), \|\cdot\|_{\infty})$ as well as the Banach ideals $(\mathcal{C}^p, \|\cdot\|_p)$ for all $1 \leq p < \infty$. It is clear that $\mathcal{C}^1 \subset \mathcal{C}_E \subset \mathcal{K}(\mathcal{H})$ for every symmetric sequence space $E \subset c_0$ with $\|x\|_{\mathcal{C}_E} \leq \|x\|_1$ and $\|y\|_{\infty} \leq \|y\|_{\mathcal{C}_E}$ for all $x \in \mathcal{C}^1$ and $y \in \mathcal{C}_E$.

Remark 2. If $x, y, y_k \in \mathcal{K}(\mathcal{H})$ are such that $y_k \prec \prec x$ for all $k \in \mathbb{N}$ and $||y_k - y||_{\infty} \rightarrow 0$ as $k \rightarrow \infty$, then $y \prec \prec x$.

Indeed, since $y_k \prec \prec x$, it follows that $\sum_{n=1}^m s_n(y_k) \leq \sum_{n=1}^m s_n(x)$ for all $m, k \in \mathbb{N}$. By [12, Ch.II, § 2, Sec. 3, Corollary 2.3], $|s_n(y_k) - s_n(y)| \leq ||y_k - y||_{\infty} \to 0$, hence $\sum_{n=1}^m s_n(y_k) \to \sum_{n=1}^m s_n(y)$ as $k \to \infty$ for every $m \in \mathbb{N}$. Therefore

$$\sum_{n=1}^{m} s_n(y) = \lim_{k \to \infty} \sum_{n=1}^{m} s_n(y_k) \le \sum_{n=1}^{m} s_n(x)$$

for all m.

2.4. Dunford-Schwartz operators and conditional expectation. A linear operator $T: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is called a *Dunford-Schwartz operator* if

 $||T(x)||_1 \le ||x||_1$ for all $x \in \mathcal{C}^1$ and $||T(x)||_{\infty} \le ||x||_{\infty}$ for all $x \in \mathcal{B}(\mathcal{H})$.

In what follows, we will write $T \in DS$ to indicate that T is a Dunford-Schwartz operator.

Any fully symmetric ideal C_E is an exact interpolation space in the Banach pair $(\mathcal{C}^1, \mathcal{B}(\mathcal{H}))$ (see [7, Theorem 2.4]), in particular, $T(\mathcal{C}_E) \subset \mathcal{C}_E$ and $||T||_{\mathcal{C}_E \to \mathcal{C}_E} \leq 1$ for all $T \in DS$. Hence $T(\mathcal{K}(\mathcal{H})) \subset \mathcal{K}(\mathcal{H})$, and the restriction of T on $\mathcal{K}(\mathcal{H})$ is a linear contraction (also denoted by T). We note that if $T \in DS$, then $A_n(T) \in DS$; also, $T(x) \prec \prec x$ and $A_n(T)(x) \prec \prec x$ for any $x \in \mathcal{K}(\mathcal{H})$ and $n \in \mathbb{N}$.

We need the following Theorem on the existence of conditional expectation from $\mathcal{B}(\mathcal{H})$ into von Neumann subalgebra $\mathcal{N} \subset \mathcal{B}(\mathcal{H})$ (see, for example, [21], [22]).

Theorem 5. Let \mathcal{N} be a von Neumann subalgebra in $\mathcal{B}(\mathcal{H})$ such that the restriction of the canonical trace τ on \mathcal{N} is a semifinite trace. Then there exists a unique positive linear map $U : \mathcal{B}(\mathcal{H}) \to \mathcal{N}$ (conditional expectation on \mathcal{N}), having the following properties:

(i) $\tau(x) = \tau(U(x))$ for all $x \in C^1$; (ii) U(x) = x for all $x \in \mathcal{N}$; (iii) $||U||_{\mathcal{B}(\mathcal{H}) \to \mathcal{N}} = 1$.

Moreover, the conditional expectation U is projection of norm one from $(L^p(\mathcal{B}(\mathcal{H}), \tau), \|\cdot\|_p) = (\mathcal{C}^p, \|\cdot\|_p)$ onto $(L^p(\mathcal{N}, \tau), \|\cdot\|_p), \ 1 \le p < \infty.$

Thus, the conditional expectation $U : \mathcal{B}(\mathcal{H}) \to \mathcal{N} \subset \mathcal{B}(\mathcal{H})$ is a positive Dunford-Schwartz operator.

3. Individual ergodic theorem in fully symmetric ideals of compact operators

Let $\mathcal{H}, \tau : \mathcal{B}_+(\mathcal{H}) \to [0,\infty]$, and \mathcal{C}^1 be as above. Below we give a proof of Theorem 2 (i).

Proof. Since $T(\mathcal{C}^2) \subset \mathcal{C}^2$, $||T||_{\mathcal{C}^2 \to \mathcal{C}^2} \leq 1$ and the Banach space \mathcal{C}^2 is reflexive, by the mean ergodic theorem [6, Ch. VIII, § 5, Corollary 4], the sequence $\{A_n(T)(x)\}$ converges strongly in \mathcal{C}^2 , that is, for every $x \in \mathcal{C}^2$ there exists $\hat{x} \in \mathcal{C}^2$ such that $||A_n(T)(x) - \hat{x}||_2 \to 0$. As $||\xi||_{\infty} \leq ||\xi||_2$ for all $\xi \in l^2$, it follows that $||x||_{\infty} \leq ||x||_2$ for all $x \in \mathcal{C}^2$. Consequently,

$$||A_n(T)(x) - \hat{x}||_{\infty} \to 0$$
 for every $x \in \mathcal{C}^2$.

Let now $x \in \mathcal{K}(\mathcal{H})$ and $\varepsilon > 0$. Then there exists $x_{\varepsilon} \in \mathcal{F}(\mathcal{H}) \subset \mathcal{C}^2$ such that $||x - x_{\varepsilon}||_{\infty} < \varepsilon/4$. Since the sequence $A_n(T)(x_{\varepsilon})$ converges uniformly, there exists $N = N(\varepsilon)$ such that

$$||A_m(T)(x_{\varepsilon}) - A_n(T)(x_{\varepsilon})||_{\infty} < \frac{\varepsilon}{2}$$
 whenever $m, n \ge N$.

Therefore,

$$\begin{aligned} \|A_m(T)(x) - A_n(T)(x)\|_{\infty} &\leq \|A_m(T)(x - x_{\varepsilon}) - A_n(T)(x - x_{\varepsilon})\|_{\infty} \\ &+ \|A_m(T)(x_{\varepsilon}) - A_n(T)(x_{\varepsilon})\|_{\infty} \leq 2\|x - x_{\varepsilon}\|_{\infty} + \frac{\varepsilon}{2} < \varepsilon. \end{aligned}$$

for all $m, n \geq N$. Thus, since $\mathcal{C}_E \subset \mathcal{K}(\mathcal{H})$ and the space $(\mathcal{K}(\mathcal{H}), \|\cdot\|_{\infty})$ is complete, it follows that for any $x \in \mathcal{C}_E$ there exists $\hat{x} \in \mathcal{K}(\mathcal{H})$ such that $\|A_n(T)(x) - \hat{x}\|_{\infty} \to 0$. Using Remark 2, we obtain that $\hat{x} \prec \prec x$, hence $\hat{x} \in \mathcal{C}_E$.

Now we give a proof of the part (ii) of Theorem 2. We begin with a Dunford-Schwartz operator acting in $(l^{\infty}, \|\cdot\|_{\infty})$, that is, when a linear operator $T : l^{\infty} \to l^{\infty}$ is such that $\|T(\xi)\|_1 \leq \|\xi\|_1$ for all $\xi \in l^1$ and $\|T(\xi)\|_{\infty} \leq \|\xi\|_{\infty}$ for all $\xi \in l^{\infty}$ (writing $T \in DS$). The following Theorem is a commutative version of Theorem 2 (ii) (proof see in [2, Theorem 3.3]).

Theorem 6. If $\xi \in l^{\infty} \setminus c_0$, then there exists $T \in DS$ such that the averages $A_n(T)(\xi)$ do not converge coordinate-wise, hence uniformly.

Assume first that $(\mathcal{H}, (\cdot, \cdot))$ is a separable infinite-dimensional complex Hilbert space. Fix an orthonormal basis $\{\varphi_n\}_{n\in\mathbb{N}}$ in \mathcal{H} . Let p_n be the one-dimensional projection on the linear subspace $\mathbb{C} \cdot \varphi_n \subset \mathcal{H}$. It is clear that $p_m p_n = 0$ for all $m, n \in \mathbb{N}, n \neq m$.

For any
$$\xi = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}$$
 and $h = \sum_{n=1}^{\infty} (h, \varphi_n) \varphi_n \in \mathcal{H}$ we set
$$x_{\xi}(h) = \sum_{n=1}^{\infty} \xi_n(h, \varphi_n) \varphi_n = \sum_{n=1}^{\infty} \xi_n p_n(h).$$

It is clear that $x_{\xi} \in \mathcal{B}(\mathcal{H})$ and $x_{\xi} = (wo) - \sum_{n=1}^{\infty} \xi_n p_n$, where (wo) stands for the weak operator topology. In addition,

$$\mathcal{N} = \{ x_{\xi} \in \mathcal{B}(\mathcal{H}) : \xi = \{ \xi_n \}_{n=1}^{\infty} \in l^{\infty} \}$$

is the smallest commutative von Neumann subalgebra in $\mathcal{B}(\mathcal{H})$ containing all projections p_n . Besides, the restriction of the trace τ on \mathcal{N} is a semifinite trace.

Define the linear map $\Phi : (\mathcal{N}, \|\cdot\|_{\infty}) \to (l^{\infty}, \|\cdot\|_{\infty})$ by setting $\Phi(x_{\xi}) = \xi$. By definition of Φ , we have $\Phi(\mathcal{N}) = l^{\infty}$. Using [17, Ch. 1, § 1.1, E. 1.1.11], we see that $\|x_{\xi}\|_{\infty} = \|\xi\|_{\infty} = \|\Phi(x_{\xi})\|_{\infty}$, that is, Φ is a linear surjective isometry. Since $\xi = \{\xi_n\}_{n=1}^{\infty} \ge 0$ whenever $x_{\xi} \in \mathcal{N}_+$, the map Φ is positive. Therefore, Φ is a positive linear surjective isometry.

If $(E, \|\cdot\|_E) \subset c_0$ is a symmetric sequence space and $\mathcal{N}_E = \mathcal{N} \cap \mathcal{C}_E$, then for any $x_{\xi} = \sum_{n=1}^{\infty} \xi_n p_n \in \mathcal{N}_E$ we have that $\{s_n(x_{\xi})\}_{n=1}^{\infty} = \{\xi_n^*\} \in E$, hence $\{\xi_n\} \in E$. In addition, $\|x_{\xi}\|_{\mathcal{C}_E} = \|\{\xi_n^*\}\|_E = \|\{\xi_n\}\|_E$. Consequently, the restriction $\Phi|_{\mathcal{N}_E}$: $(\mathcal{N}_E, \|\cdot\|_{\mathcal{C}_E}) \to (E, \|\cdot\|_E)$ is a positive linear surjective isometry (we denote this restriction also by Φ).

Below we give a proof of Theorem 2 (ii).

Proof. Let $0 \leq x \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}(\mathcal{H})$. Assume first that \mathcal{H} is separable. Since $x \notin \mathcal{K}(\mathcal{H})$, it follows that there exists a spectral projection $e_{\lambda}(|x|)$, $\lambda > 0$, such that $\tau(e_{\lambda}(|x|)^{\perp}) = \infty$. Choose an orthonormal basis $\{\varphi_n\}_{n=1}^{\infty}$ in \mathcal{H} such that $e_{\lambda}(|x|)^{\perp} \geq p_{n_i}$ for some sequence $\{n_i\}_{i=1}^{\infty}$, where p_n is the one-dimensional projection on the subspace $\mathbb{C} \cdot \varphi_n \subset \mathcal{H}$.

Let $\mathcal{N} = \{x_{\xi} \in \mathcal{B}(\mathcal{H}) : \xi = \{\xi_n\}_{n=1}^{\infty} \in l_{\infty}\}$ be the smallest commutative von Neumann subalgebra in $\mathcal{B}(\mathcal{H})$ containing all projections p_n . Since the restriction of the trace τ on \mathcal{N} is a semifinite trace, it follows by Theorem 5 that there exists a conditional expectation $U : \mathcal{B}(\mathcal{H}) \to \mathcal{N}$ such that

$$0 \le y = U(x) \ge U(\lambda e_{\lambda}(|x|)^{\perp}) \ge \lambda U(p_{n_i}) = \lambda p_{n_i} \text{ for all } i \in \mathbb{N}.$$

Consequently, $y \notin \mathcal{K}(\mathcal{H})$ and $y = x_{\xi} \in \mathcal{N}$, where $0 \leq \xi = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty} \setminus c_0$. Besides, by definition of Φ , we have $\Phi(y) = \xi$.

Next, by Theorem 6, there exists an operator $S: l^{\infty} \to l^{\infty}, S \in DS$, such that the sequence $\{A_n(S)(\xi)\}$ does not converge uniformly. Consider the operator

$$T = \Phi^{-1}S\Phi U : \mathcal{B}(\mathcal{H}) \to \mathcal{N} \subset \mathcal{B}(\mathcal{H}).$$

It is clear that $T \in DS$. Since $U : \mathcal{B}(\mathcal{H}) \to \mathcal{N}$ is a conditional expectation and y = U(x), it follows that U(y) = y, $U\Phi^{-1} = \Phi^{-1}$, and $T^k(y) = \Phi^{-1}S^k\Phi(y)$ for each $k \in \mathbb{N}$.

Since Φ^{-1} is an isometry and

$$A_n(T)(y) = \frac{1}{n+1} \sum_{k=0}^n T^k(y) = \Phi^{-1}\left(\frac{1}{n+1} \sum_{k=0}^n S^k \Phi(y)\right) = \Phi^{-1}(A_n(S)(\xi)),$$

for all $n \in \mathbb{N}$, it follows that the sequence $\{A_n(T)(y)\}_{n=1}^{\infty}$ does not converge uniformly.

Now, as above, $y = U(x) \in \mathcal{N}$ entails $T^k(x) = \Phi^{-1}S^k\Phi(y) = T^k(y)$ for all $k \in \mathbb{N}$. Therefore, we have

$$A_n(T)(x) - A_n(T)(y) = \frac{1}{n+1}(x-y),$$

and it follows that the sequence $\{A_n(T)(x)\}_{n=1}^{\infty}$ also does not converge uniformly.

Let now \mathcal{H} be non-separable, and let $0 \leq x \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}(\mathcal{H})$. Since $x \notin \mathcal{K}(\mathcal{H})$, it follows that there exists a spectral projection $e_{\lambda}(|x|), \lambda > 0$, such that $\tau(e_{\lambda}(|x|)^{\perp}) = \infty$. Choose an orthonormal basis $\{\varphi_j\}_{j\in J}$ in \mathcal{H} such that $e_{\lambda}(|x|)^{\perp} \geq p_{j_n}$ for some sequence $\{j_n\}_{n=1}^{\infty}$, where p_j is the one-dimensional projection on the subspace $\mathbb{C} \cdot \varphi_j \subset \mathcal{H}$. If $p = \sup_{n \in \mathbb{N}} p_{j_n}$, then $\mathcal{H}_0 = p(\mathcal{H})$ is a separable infinite-dimensional Hilbert subspace in \mathcal{H} such that $\mathcal{K}(\mathcal{H}_0) = p\mathcal{K}(\mathcal{H})p$.

Since $z = pxp \in \mathcal{B}_+(\mathcal{H}_0)$ and $z \ge \lambda pe_\lambda(|x|)^{\perp}p \ge \lambda p$, it follows that $z \in \mathcal{B}_+(\mathcal{H}_0) \setminus \mathcal{K}(\mathcal{H}_0)$. In view of the above, there exists a Dunford-Schwartz operator

 $D_0: \mathcal{B}(\mathcal{H}_0) \to \mathcal{B}(\mathcal{H}_0)$ such that the sequence $\{A_n(D_0)(z)\}_{n=1}^{\infty}$ does not converge uniformly.

It is clear that $D(y) = D_0(pyp)$, $y \in \mathcal{B}(\mathcal{H})$, is a Dunford-Schwartz operator in $\mathcal{B}(\mathcal{H})$ such that $D^k(x) = D_0^k(z)$ for each $k \in \mathbb{N}$. Then

$$A_n(D)(x) - A_n(D_0)(z) = \frac{1}{n+1}(x-z),$$

and we conclude that the sequence $\{A_n(D)(x)\}_{n=1}^{\infty}$ does not converge uniformly. \Box

Note that the commutative version of Theorem 2 (ii) for symmetric spaces of measurable functions was obtained in [5].

4. Mean ergodic theorem in fully symmetric ideals of compact operators

In this section, our goal is to prove Theorem 4. So, let $(E, \|\cdot\|_E) \subset c_0$ be a fully symmetric sequence space, and let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a fully symmetric ideal generated by $(E, \|\cdot\|_E)$. Let us show that the mean ergodic theorem, generally speaking, is not true in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$, in the cases when $E = l^1$ as sets, or when $(E, \|\cdot\|_E)$ is non-separable space.

Proposition 1. There exists $T \in DS$ such that the averages $A_n(T)$ do not converge strongly in $(\mathcal{C}^1, \|\cdot\|_1)$.

Proof. Let $S: l^{\infty} \to l^{\infty}$ be the Dunford-Schwartz operator defined by

$$S(\{\xi_n\}_{n=1}^{\infty}) = \{0, \xi_1, \xi_2, \dots\}, \ \{\xi_n\}_{n=1}^{\infty} \in l^{\infty}.$$

If $\xi = \{1, 0, 0, \dots\} \in l^1$, then

$$\|A_{2n-1}(S)(\xi) - A_{n-1}(S)(\xi)\|_{1}$$

= $\left\|\frac{1}{2n}\{\underbrace{1, 1, \dots, 1}_{2n}, 0, 0, \dots\} - \frac{1}{n}\{\underbrace{1, 1, \dots, 1}_{n}, 0, 0, \dots\}\right\|_{1} = 1.$

Consequently, the sequence $\{A_n(S)(\xi)\}$ does not converge in the norm $\|\cdot\|_1$. Let $p_n, \ p = \sup_{n \in \mathbb{N}} p_n, \ \mathcal{H}_0 = p(\mathcal{H}),$

$$\mathcal{N}(\mathcal{H}_0) = \left\{ x_{\xi} = (wo) - \sum_{n=1}^{\infty} \xi_n p_n \in \mathcal{B}(\mathcal{H}_0) : \xi = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty} \right\},\$$

 $\Phi : \mathcal{N}(\mathcal{H}_0) \to l^{\infty}$ and $U : \mathcal{B}(\mathcal{H}_0) \to \mathcal{N}(\mathcal{H}_0)$ be the same as in the proof of Theorem 2 (*ii*). Then

$$T = \Phi^{-1}S\Phi U : \mathcal{B}(\mathcal{H}_0) \to \mathcal{N}(\mathcal{H}_0) \subset \mathcal{B}(\mathcal{H}_0)$$

is a positive Dunford-Schwartz operator. In addition, for $\xi = \{1, 0, 0, ...\} \in l^1$ and $x_{\xi} = \Phi^{-1}(\xi)$ we have that $x_{\xi} \in \mathcal{N}(\mathcal{H}_0) \cap \mathcal{C}^1$ and $U(x_{\xi}) = x_{\xi}$ (see proof of Theorem 2 (*ii*)). Consequently,

$$T(x_{\xi}) = \Phi^{-1}S\Phi U(x_{\xi}) = \Phi^{-1}S\Phi(x_{\xi}).$$

Now, repeating the proof of Theorem 2 (ii), we conclude that the averages

$$\{A_n(T)(x_{\xi})\}$$

do not converge in the norm $\|\cdot\|_1$.

Proposition 2. If $(E, \|\cdot\|_E) \subset c_0$ is non-separable fully symmetric sequence space, then there exists $T \in DS$ such that the averages $A_n(T)$ do not converge strongly in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$.

Proof. If $(E, \|\cdot\|_E) \subset c_0$ is a non-separable fully symmetric sequence space, then there exists $\xi = \{\xi_n\}_{n=1}^{\infty} = \{\xi_n^*\}_{n=1}^{\infty} \in E$ such that $\xi_n \downarrow 0$ and

(1)
$$\|\{\underbrace{0,0,\ldots,0}_{n+1},\xi_{n+2},\ldots\}\|_E \downarrow \alpha > 0.$$

Let the operator $S \in DS$ be defined as in the proof of Proposition 1. Then $S^k(\xi) = \{0, 0, \dots, 0, \xi_1, \xi_2, \dots\}$ and

$$\overline{k}$$

$$\sum_{k=0}^n S^k(\xi) = \{\eta_m^{(n)}\}_{m=1}^\infty,$$

where

$$\eta_m^{(n)} = \xi_1 + \xi_2 + \ldots + \xi_m \quad \text{for} \quad 1 \le m \le n+1$$

 and

$$\eta_m^{(n)} = \xi_{m-n} + \xi_{m-n+1} + \dots + \xi_m \text{ for } m > n+1.$$

Since $\xi_n \downarrow 0$, given $1 \le m \le n+1$, we have

$$0 \le \frac{1}{n+1} \eta_m^{(n)} \le \frac{1}{n+1} \sum_{k=1}^{n+1} \xi_k \to 0 \text{ as } n \to \infty,$$

implying that $A_n(S)(\xi) \to 0$ coordinate-wise.

Assume that there exists $\hat{\xi} \in E$ such that $||A_n(S)(\xi) - \hat{\xi}||_E \to 0$. Then we have $||A_n(S)(\xi) - \hat{\xi}||_{\infty} \to 0$; in particular, $A_n(S)(\xi) \to 0$ coordinate-wise, hence $\hat{\xi} = 0$. On the other hand, as $\xi_n \downarrow 0$, we obtain

$$A_n(S)(\xi) = \left\{ \frac{\xi_1}{n+1}, \frac{\xi_1 + \xi_2}{n+1}, \dots, \frac{\xi_1 + \xi_2 + \dots + \xi_{n+1}}{n+1}, \frac{\xi_2 + \xi_3 + \dots + \xi_{n+2}}{n+1}, \frac{\xi_3 + \xi_4 + \dots + \xi_{n+3}}{n+1}, \dots, \frac{\xi_{m-n} + \xi_{m-n+1} + \dots + \xi_m}{n+1}, \dots \right\}$$
$$\geq \{\underbrace{0, 0, \dots, 0}_{n+1}, \xi_{n+2}, \dots \}.$$

Therefore, in view of (1), $||A_n(S)(\xi)||_E \ge \alpha$, implying that the sequence $\{A_n(S)(\xi)\}$ does not converge in the norm $\|\cdot\|_E$.

Now, if we define the Dunford-Schwartz operator $T \in DS$ as in the proof of Proposition 1, then repeating its proof for $x = \Phi^{-1}(\xi)$, we conclude that the sequence $\{A_n(T)(x)\}$ does not converge in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$.

Fix $T \in DS$. By Theorem 2 (i), for every $x \in \mathcal{K}(\mathcal{H})$ there exists $\hat{x} \in \mathcal{K}(\mathcal{H})$ such that $||A_n(T)(x) - \hat{x}||_{\infty} \to 0$ as $n \to \infty$. Therefore, one can define a linear operator $P_T : \mathcal{K}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ by setting $P_T(x) = \hat{x}$. Then we have

$$\|P_T(x)\|_{\infty} = \lim_{n \to \infty} \|A_n(T)(x)\|_{\infty} \le \|x\|_{\infty}$$

Besides, since the unit ball in $(\mathcal{C}^1, \|\cdot\|_1)$ is closed in measure topology [8, Proposition 3.3] and $\|A_n(T)(x)\|_1 \leq \|x\|_1$ for all $x \in \mathcal{C}^1$, it follows that $\|P_T(x)\|_1 \leq \|x\|_1, x \in \mathcal{C}^1$. Consequently, $\|P_T\|_{\mathcal{C}^1 \to \mathcal{C}^1} \leq 1$, and, according to [3, Proposition 1.1], there exists a unique operator $\widehat{P} \in DS$ such that $\widehat{P}(x) = P_T(x)$ whenever $x \in \mathcal{K}(\mathcal{H})$. In what follows, we denote \widehat{P} by P_T .

Lemma 1. If $T \in DS$ and $x \in \mathcal{K}(\mathcal{H})$, then

$$P_T T(x) = P_T(x) = T P_T(x).$$

Proof. We have

$$\|(I-T)A_n(T)(x)\|_{\infty} = \left\|\frac{(I-T^{n+1})(x)}{n+1}\right\|_{\infty} \longrightarrow 0 \quad \text{as} \quad n \to \infty.$$

On the other hand,

$$TA_n(T)(x) = \frac{1}{n+1} \sum_{k=0}^n T^k(Tx) \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} P_T(T(x)),$$

implying that

$$(I-T)A_n(T)(x) = A_n(T)(x) - TA_n(T)(x) \xrightarrow{\parallel \cdot \parallel_{\infty}} P_T(x) - P_TT(x),$$

hence $P_T T(x) = P_T(x)$.

Now, as $||A_n(T)(x) - P_T(x)||_{\infty} \to 0$, we have $||T(A_n(T)(x)) - T(P_T(x))||_{\infty} \to 0$ as $n \to \infty$, and the result follows.

Corollary 1. If $T \in DS$ and $x \in \mathcal{K}(\mathcal{H})$, then

 $T^k(P_T(x)) = P_T(x)$ for all $k \in \mathbb{N}$, and $P_T^2(x) = P_T(x)$.

We need the following property of separable symmetric sequence spaces [9, Proposition 2.2].

Proposition 3. Let $(E, \|\cdot\|_E)$ be a separable symmetric sequence space and $E \neq l^1$ as sets. If $\mathcal{C}_E \ni y_n \prec \prec x \in \mathcal{C}_E$ for every $n \in \mathbb{N}$ and $\|y_n\|_{\infty} \to 0$ as $n \to \infty$, then $\|y_n\|_{\mathcal{C}_E} \to 0$ as $n \to \infty$.

Now we can finalize the proof of Theorem 4:

Proof. (i) \Rightarrow (ii): Proposition 2 implies that *E* is separable. If $E = l^1$ as sets, then the norms $\|\cdot\|_E$ and $\|\cdot\|_1$ are equivalent [18, Part II, Ch. 6, § 6.1]. Therefore, in view of Proposition 1, we would have that item (*i*) in Theorem 4 is not true.

(ii) \Rightarrow (i): Let $(E, \|\cdot\|_E)$ be separable, $E \neq l^1$ as sets, and let $T \in DS$. If $x \in \mathcal{C}_E$ and $y = x - P_T(x)$, then $P_T(y) = 0$, which, by Theorem 2 (i), implies $\|A_n(T)(y)\|_{\infty} \to 0$. Since E is a separable symmetric sequence space, $E \neq l^1$ as sets, and $A_n(T)(y) \prec \prec y \in \mathcal{C}_E$, it follows from Proposition 3 that

(2)
$$||A_n(T)(y)||_{\mathcal{C}_E} \to 0.$$

Since $P_T(z) \prec \prec z$ for all $z \in \mathcal{K}(\mathcal{H})$, it follows that $A_n(T)(P_T(x)) \prec \prec P_T(x) \prec \prec x$, hence $A_n(T)(P_T(x)) - P_T(x) \prec \prec 2x$. Next, as $A_n(T)(P_T(x)) \xrightarrow{\|\cdot\|_{\infty}} P_T(x)$, Proposition 3 entails

(3)
$$||A_n(T)(P_T(x)) - P_T(x)||_{\mathcal{C}_E} \to 0.$$

Now, utilizing (2) and (3), we obtain

$$\begin{aligned} \|A_n(T)(x) - P_T(x)\|_{\mathcal{C}_E} &= \|A_n(T)(x) - A_n(T)(P_T(x)) + A_n(T)(P_T(x)) - P_T(x)\|_{\mathcal{C}_E} \\ &\leq \|A_n(T)(y)\|_{\mathcal{C}_E} + \|A_n(T)(P_T(x)) - P_T(x)\|_{\mathcal{C}_E} \to 0 \end{aligned}$$

as $n \to \infty$.

544

Now we give applications of Theorems 2 and 4 to Orlicz and Lorentz ideals of compact operators.

1. Let Φ be an Orlicz function, that is, $\Phi: [0,\infty) \to [0,\infty)$ is convex, continuous at 0, $\Phi(0) = 0$ and $\Phi(u) > 0$ if u > 0 (see, for example, [10, Ch. 2, § 2.1], [15, Ch. 4]). Let

$$l^{\Phi}(\mathbb{N}) = \left\{ \xi = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty} : \sum_{n=1}^{\infty} \Phi\left(\frac{|\xi_n|}{a}\right) < \infty \text{ for some } a > 0 \right\}$$

be the Orlicz sequence space, and let

$$\|\xi\|_{\Phi} = \inf\left\{a > 0: \sum_{n=1}^{\infty} \Phi\left(\frac{|\xi_n|}{a}\right) \le 1\right\}$$

be the Luxemburg norm in $l^{\Phi}(\mathbb{N})$. It is well-known that $(l^{\Phi}(\mathbb{N}), \|\cdot\|_{\Phi})$ is a fully symmetric sequence space.

Since $\Phi(u) > 0$, u > 0, it follows that $\sum_{n=1}^{\infty} \Phi(a^{-1}) = \infty$ for each a > 0, hence $\mathbf{1} = \{1, 1, ...\} \notin l^{\Phi}(\mathbb{N})$ and $l^{\Phi}(\mathbb{N}) \subset c_0$. Therefore, we can define Orlicz ideal of compact operators

$$\mathcal{C}^{\Phi} = \mathcal{C}_{l^{\Phi}(\mathbb{N})}, \quad \|x\|_{\Phi} = \|x\|_{\mathcal{C}_{l^{\Phi}(\mathbb{N})}}, \ x \in \mathcal{C}^{\Phi}.$$

By Theorem 2 (i) we obtain that given Dunford-Schwartz operator T and $x \in \mathcal{C}^{\Phi}$, there exists $\widehat{x} \in \mathcal{C}^{\Phi}$ such that $||A_n(T)(x) - \widehat{x}||_{\infty} \to 0$ as $n \to \infty$ (cf. Theorem 3.2) [4]).

It is said that an Orlicz function Φ satisfies (Δ_2) -condition at 0 if there exist $u_0 \in (0,\infty)$ and k > 0 such that $\Phi(2u) < k \Phi(u)$ for all $0 < u < u_0$. It is well known that an Orlicz function Φ satisfies (Δ_2) -condition at 0 if and only if $(l^{\Phi}(\mathbb{N}), \|\cdot\|_{\Phi})$ is separable (see [10, Ch. 2, §2.1, Theorem 2.1.17], [15, Ch. 4, Proposition 4.a.4]). In addition, $l^{\Phi}(\mathbb{N}) = l^1$ as sets, if and only if $\limsup_{u \to 0} \frac{\Phi(u)}{u} > 0$ (see [15, Ch. 4, Proposition 4.a.5], [18, Ch. 16, §16.2]).

Thus, using Theorem 4, we obtain that the averages $A_n(T)$ converge strongly in \mathcal{C}^{Φ} for any Dunford-Schwartz operator T if and only if Φ satisfies (Δ_2)-condition at 0 and $\lim_{u\to 0} \frac{\Phi(u)}{u} = 0$. 2. Let ψ be a concave function on $[0,\infty)$ with $\psi(0) = 0$ and $\psi(t) > 0$ for all

t > 0, and let

$$\Lambda_{\psi}(\mathbb{N}) = \left\{ \xi = \{\xi_n\}_{n=1}^{\infty} \in l^{\infty} : \|\xi\|_{\psi} = \sum_{n=1}^{\infty} \xi_n^*(\psi(n) - \psi(n-1)) < \infty \right\},\$$

the Lorentz sequence space. The pair $(\Lambda_{\psi}(\mathbb{N}), \|\cdot\|_{\psi})$ is a fully symmetric sequence space (see, for example, [14, Ch. II, §5], [18, Part III, Ch. 9, §9.1]). Besides, if $\psi(\infty) = \infty$, then $\mathbf{1} \notin \Lambda_{\psi}(\mathbb{N})$ and $\Lambda_{\psi}(\mathbb{N}) \subset c_0$. In this case we can define Lorentz ideal of compact operators

 $\mathcal{C}_{\psi} = \mathcal{C}_{\Lambda_{\psi}(\mathbb{N})}, \quad \|x\|_{\psi} = \|x\|_{\mathcal{C}_{\Lambda_{\psi}(\mathbb{N})}}, \quad x \in \mathcal{C}_{\psi},$

for which is true Theorem 2 (i).

It is well known that $(\Lambda_{\psi}(\mathbb{N}), \|\cdot\|_{\psi})$ is separable if and only if $\psi(+0) = 0$ and $\psi(\infty) = \infty$ (see, for example, [14, Ch. II, §5, Lemma 5.1], [18, Ch. 9, §9.3, Theorem 9.3.1]). In addition, $\lim_{t\to\infty}\frac{\psi(t)}{t}>0$ if and only if the norms $\|\cdot\|_{\psi}$ and $\|\cdot\|_1$

are equivalent on $\Lambda_{\psi}(\mathbb{N})$, that is, $\Lambda_{\psi}(\mathbb{N}) = l^1$ as sets. Therefore, by Theorem 4, we obtain that the averages $A_n(T)$ converge strongly in \mathcal{C}_{ψ} for any Dunford-Schwartz operator T if and only if $\psi(+0) = 0$, $\psi(\infty) = \infty$ and $\lim_{t\to\infty} \frac{\psi(t)}{t} = 0$.

References

- C. Bennett, R. Sharpley, Interpolation of operators, Academic Press Inc., Boston etc., 1988. Zbl 0647.46057
- [2] V. Chilin, A. Azizov, Ergodic theorems in symmetric sequences spaces, Colloq. Math., 156:1 (2019), 57-68. Zbl 1454.37011
- [3] V. Chilin, S. Litvinov, Ergodic theorems in fully symmetric spaces of τ-measurable operators, Stud. Math., 288:2 (2015), 177–195. Zbl 1350.47008
- [4] V. Chilin, S. Litvinov, Individual ergodic theorems in noncommutative Orlicz spaces, Positivity, 21:1 (2017), 49-59. Zbl 06731871
- [5] V. Chilin, S. Litvinov, The validity space of Dunford-Schwartz pointwise ergodic theorem, J. Math. Anal. Appl., 461:1 (2018), 234-247. Zbl 1386.37006
- [6] N. Dunford, J.T. Schwartz, *Linear Operators, Part I: General theory*, John Willey and Sons, New York etc., 1988. Zbl 0635.47001
- P.G. Dodds, T.K. Dodds, B. de Pagter, Fully symmetric operator spaces, Integral Equations Oper. Theory., 15:6 (1992), 942-972. Zbl 0807.46028
- [8] P.G. Dodds, T.K. Dodds, B. de Pagter, Noncommutative Köthe duality, Trans. Am. Math. Soc., 339:2 (1993), 717-750. Zbl 0801.46074
- [9] P.G. Dodds, T.K. Dodds, F.A. Sukochev, Banach-Saks properties in symmetric spaces of measurable operators, Stud. Math., 178:2 (2007), 125–166. Zbl 1118.46056
- [10] G.A. Edgar, L. Sucheston, Stopping times and directed processes, Cambridge University Press, Cambridge, 1992. Zbl 0779.60032
- [11] T. Fack, H. Kosaki, Generalized s-numbers of τ -measurable operators, Pac. J. Math., 123 (1986), 269–300. Zbl 0617.46063
- [12] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs 18, Amer. Math. Soc., Providence, RI, 1969. Zbl 0181.13504
- [13] M. Junge, Q. Xu, Noncommutative maximal ergodic theorems, J. Am. Math. Soc., 20:2 (2007), 385-439. Zbl 1116.46053
- [14] S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, 1982. Zbl 0493.46058
- [15] J. Lindenstrauss, L. Tsafriri, Classical Banach spaces I-II, Springer-Verlag, Berlin etc., 1977-1979. Zbl 0362.46013 - 0403.46022
- [16] S. Litvinov, Uniform equicontinuity of sequences of measurable operators and noncommutative ergodic theorems, Proc. Amer. Math. Soc., 140:7 (2012), 2401-2409. Zbl 1279.46048
- [17] S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, de Gruyter, Berlin, 2013. Zbl 1275.47002
- [18] B.A. Rubshtein, G.Ya. Grabarnik, M.A. Muratov, Yu.S. Pashkova, Foundations of symmetric spaces of measurable functions. Lorentz, Marcinkiewicz and Orlicz spaces, Springer, Cham, 2016. Zbl 1361.42001
- [19] B. Simon, Trace ideals and their applications, American Mathematical Society, Providence, 2005. Zbl 1074.47001
- [20] S. Stratila, L. Zsido, Lectures on von Neumann algebras, Editura Academiei, Bucharest, 1979. Zbl 0391.46048
- [21] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal., 9 (1972), 306-321. Zbl 0245.46089
- [22] H. Umegaki, Conditional expectation in operator algebras, II, Tohoku Math. J., II Ser., 8 (1956), 86-100. Zbl 0072.12501
- [23] F.J. Yeadon, Ergodic theorems for semifinite von Neumann algebras I, J. Lond. Math. Soc., II Ser., 16 (1977), 326-332. Zbl 0369.46061
- [24] F.J. Yeadon, Ergodic theorems for semifinite von Neumann algebras. II, Math. Proc. Camb. Philos. Soc., 88 (1980), 135-147. Zbl 0466.46056

Azizkhon Nodirovich Azizov National University of Uzbekistan, 4, Universitet str., Tashkent, 100174, Uzbekistan Email address: azizov.07@mail.ru

VLADIMIR IVANOVICH CHILIN NATIONAL UNIVERSITY OF UZBEKISTAN, 4, UNIVERSITET STR., TASHKENT, 100174, UZBEKISTAN Email address: vladimirchil@gmail.com, VladimirChilin@micros.uz