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CONNECTIONS BETWEEN QUATERNARY AND BOOLEAN

BENT FUNCTIONS

N.N. TOKAREVA, A.S. SHAPORENKO, P. SOL�E

Abstract. Boolean bent functions were introduced by Rothaus (1976)
as combinatorial objects related to di�erence sets, and have since
enjoyed a great popularity in symmetric cryptography and low correlation
sequence design. In this paper connections between classical Boolean
bent functions, generalized Boolean bent functions and quaternary bent
functions are studied. We also study Gray images of bent functions
and notions of generalized nonlinearity for functions that are relevant
to generalized linear cryptanalysis.

Keywords: Boolean functions, generalized Boolean functions, quaternary
functions, bent functions, semi bent functions, nonlinearity, linear crypt-
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1. Introduction

Boolean bent functions were introduced by Rothaus [23] as combinatorial objects
related to di�erence sets, and have since enjoyed a great popularity in symmetric
cryptography and sequence design. They are, in particular, maps from Zn2 to Z2

with some special spectral properties. Their importance in symmetric cryptography
stems from linear cryptanalysis of stream ciphers [15, 16, 17]. In that context bent
functions are the ones which are the worst approximated by a�ne functions, or,
equivalently have the best possible nonlinearity. More information concerning bent
functions can be found in the monographs [19, 32]. Several researchers [3, 6, 20, 21]
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have explored extensions of linear cryptanalysis to groups other than the usual
elementary abelian 2-groups. In this paper we study a notion of nonlinearity that
seems consistent with their notions. We discuss the connection between two notions
of Z4-bentness introduced from a sequence design viewpoint (for applications in
CDMA systems) and the classical notion of bent function.

The �rst approach is to consider functions from Znq to Zq, q is any integer, see the
paper [10] of Kumar, Scholtz and Welch. We call them q-ary functions. Another,
more recent approach, which is more natural from the viewpoint of cyclic codes
over rings is to consider functions from Zn2 to Zq. This is the approach of Schmidt
in [24]. We call these latter functions generalized Boolean functions. In this
paper we focus on the quaternary case (q = 4), and explore the interplay between
the three types of de�nitions for bentness.

Let us note that there exist other ways to generalize the concept of bent function.
See surveys of distinct generalizations in [31] and [32].

The material is organized as follows. Necessary de�nitions are given in section 2.
In section 3 we prove that a generalized Boolean function f(x, y) = a(x, y)+2b(x, y)
is bent if and only if Boolean functions b and a⊕b are both bent. Section 4 shows that
there is no direct link between notions of Boolean and quaternary bent functions but
we obtain several facts related to bent Boolean and quaternary functions. There is
no direct connection between notions of quaternary and generalized bent functions
either, which is shown in section 5. Then in section 6 we show that quaternary
generalized Boolean bent functions in n variables yield Boolean bent functions
by Gray map, or semi bent functions, depending on the parity of n. Section 7
characterizes bent functions by their nonlinearity. Section 8.1 illustrates our results
by a survey of the known constructions of generalized bent functions and their Gray
images. In section 8.2 we introduce two simple constructions for quaternary bent
functions.

Note that the �rst variant of this paper appeared at ePrint archive [27], see also
[28]. After that several related results were obtained by di�erent authors. Thus,
St�anic�a et al. [29] extended the results of [27] related to generalized Boolean bent
functions by considering functions from Zn2 to Z8. Later the results were extended
for functions from Zn2 to Z16 by Martinsen et al. [13]. Finally, Hod�zi�c et al. [8]
gave a complete characterization of generalized bent functions from Zn2 to Z2k for
k > 1 in terms of both the necessary and su�cient conditions their component
Boolean functions need to satisfy. Two open problems that were mentioned in the
original paper [27] were solved. More speci�cally, in [29] the quaternary analogue of
Dillon's construction was presented. Then Li et al. [11] characterized the functions

in n variables of the form f(x) = Tr(ax + 2bx1+2k) for odd n/gcd(n, k). The
results obtained in the original paper [27] were instrumental in the following works
[4, 5, 11, 18, 22]. The original paper [27] was also mentioned in [14, 26, 30].

2. Definitions and Notation

In what follows by ⊕ we mean addition over Z2 (modulo 2). We will use + for
two types of addition: over Z4 and natural one. It always depends on the context.
We will also use the following two types of inner product:

〈x, y〉 = x1y1 ⊕ ...⊕ xnyn,

x.y = x1y1 + ...+ xnyn.
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Let n, q be integers, q > 2.
We consider the following mappings:

1) f : Zn2 → Z2 � Boolean function in n variables. Its sign function is F :=
(−1)f . The Walsh�Hadamard transform (WHT) of f is

(1) F̂ (x) :=
∑
y∈Zn

2

(−1)f(y)⊕〈x,y〉 =
∑
y∈Zn

2

F (y)(−1)〈x,y〉.

A Boolean function f is said to be bent, i� |F̂ (x)| = 2n/2 for all x ∈ Zn2 . It is semi
bent i� F̂ (x) ∈ {0,±2(n+1)/2} (sometimes such functions are called near bent). This
is a special case of plateaued functions [33]. Note that Boolean bent (resp. semi
bent) functions exist only if the number of variables, n, is even (resp. odd).

2) f : Zn2 → Zq � generalized Boolean function in n variables. Its sign

function is F := ωf , with ω a primitive complex root of unity of order q, i. e.
ω = e2πi/q. When q = 4, we write ω = i. Its WHT is given as

(2) F̂ (x) :=
∑
y∈Zn

2

ωf(y)(−1)〈x,y〉 =
∑
y∈Zn

2

F (y)(−1)〈x,y〉.

As above, a generalized Boolean function f is bent, i� |F̂ (x)| = 2n/2 for all x ∈ Zn2 .
In comparison to the previous case it does not follow that n should be even if f is
bent. Such functions for q = 4 were studied by K.-U. Schmidt (2006) in [24]. Here
we consider only this partial case q = 4.

3) f : Znq → Zq � q-ary function in n variables. Its sign function is given by

F := ωf as in the previous case. Its WHT is de�ned by

(3) F̂ (x) :=
∑
y∈Zn

q

ωf(y)+x.y =
∑
y∈Zn

q

F (y)ωx.y.

Here + and x.y are addition and inner product over Zq. Note that the matrix of this
transform is no longer a Sylvester type Hadamard matrix as in the previous case,
but a generalized (complex) Hadamard matrix. A q-ary function f is called bent, i�

|F̂ (x)| = qn/2 for all x ∈ Znq . Notice that again it does not follow from the de�nition
that q-ary bent functions do not exist if n is odd. P. V. Kumar, R. A. Scholtz
and L. R. Welch [10] studied q-ary bent functions in 1985. They proved that such
functions exist for any even n and q 6= 2(mod 4). Later S. V. Agievich [1] proposed
an approach to describe regular q-ary bent functions in terms of bent rectangles. If
q = 4 we call f a quaternary function. Here we study such functions only. Note
that in 1994 A. S. Ambrosimov [2] studied another type of q-ary bent functions
de�ned over the �nite �eld.

A bent function f : Znq → Zq is called regular if each of its Walsh�Hadamard

coe�cients can be expressed as F̂ (z) = qn/2ω h(z) for every z ∈ Znq and some q-ary
function h. From [10] it is known that for quaternary (q = 4) case all bent functions
are regular.

3. Connections between Boolean and generalized Boolean bent

functions

Let f : Z2n
2 → Z4 be a generalized Boolean function. Represent it as f(x, y) =

a(x, y) + 2b(x, y), for any x, y ∈ Zn2 where a, b : Z2n
2 → Z2 are Boolean functions.
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In this section we study connection between properties of bentness of generalized
Boolean and Boolean functions.

Here and further by Â ·B we mean WHT of a ⊕ b. It is natural, since A · B =
(−1)a⊕b. In this section and in what follows, by x.y we mean the inner product
over Z4: x.y = x1y1 + ...+ xnyn mod 4.

Lemma 1. Between Walsh�Hadamard transforms of f , a⊕b, b, there is the relation

|F̂ (x, y)|2 =
1

2

(
B̂2(x, y) + Â ·B

2
(x, y)

)
.

Proof. Let us study the Walsh�Hadamard transform of f . According to (2) we have

F̂ (x, y) =
∑
x′,y′

(−1)〈x,x
′〉⊕〈y,y′〉⊕b(x′,y′) i a(x

′,y′).

Applying the formula is = 1+(−1)s
2 + 1−(−1)s

2 i for s = a(x′, y′) we get

F̂ (x, y) =
1

2

(
B̂(x, y) + Â ·B(x, y)

)
+
i

2

(
B̂(x, y)− Â ·B(x, y)

)
.

From this we directly get what we need. �

Note that Lemma 1 holds for any (not only even) number of variables of the
function f .

Theorem 1. The following statements are equivalent:
(i) the generalized Boolean function f is bent in 2n variables;
(ii) the Boolean functions in 2n variables b and a⊕ b are both bent.

Proof. By Lemma 1 we have |F̂ (x, y)|2 = 1
2

(
B̂2(x, y) + Â ·B

2
(x, y)

)
. If a⊕ b and

b are bent functions then |F̂ (x, y)|2 = 1
2 (22n + 22n) = 22n and f is a bent function.

Conversely, if f is bent, then it holds B̂2(x, y) + Â ·B
2
(x, y) = 22n+1. Since WHT

coe�cients of a Boolean function are integer, this equality has the unique solution

B̂2(x, y) = Â ·B
2
(x, y) = 22n (see [9] for details). So, functions a ⊕ b and b are

bent. �

Note that there are some intersections between Lemma 1, the part (i)→(ii) of
Theorem 1 and results of the last version of [24].

4. Connections between Boolean and quaternary bent functions

De�ne a quaternary function g : Zn4 → Z4 as g(x + 2y) = a(x, y) + 2b(x, y), for
any x, y ∈ Zn2 where a, b : Z2n

2 → Z2 are Boolean functions. In this section we study
connection between properties of bentness of quaternary and Boolean functions.

4.1. Preliminaries and necessary statements. In this section we present several
facts that will be instrumental in what follows.

Lemma 2. Let x, y ∈ Zn2 . If x.y 6= 〈x, y〉 then x.y = 〈x, y〉+ 2.
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Proof. There are four possible values for x.y : 0, 1, 2 and 3. For x.y = 0 or 1, it is
obvious that x.y = 〈x, y〉. For two remaning cases, we have

x.y = 2→ 〈x, y〉 = 0→ x.y = 〈x, y〉+ 2,

x.y = 3→ 〈x, y〉 = 1→ x.y = 〈x, y〉+ 2.

�

The following fact is well known for Boolean functions.

Lemma 3. Let f be a linear Boolean function in n variables. Then there are two
possible values of WHT coe�cients of f : 0 and 2n.

Proof. Any linear Boolean function f in n variables can be represented for some
a ∈ Zn2 as f(x) = 〈a, x〉. Therefore, by (1)

F̂ (x) =
∑
y∈Zn

2

(−1)〈a,y〉⊕〈x,y〉 =
∑
y∈Zn

2

(−1)〈a⊕x,y〉.

Using the well-known fact that∑
b∈Zn

2

(−1)〈b,c〉 =

{
2n, if c = 0,
0, otherwise.

the result follows. �

Proposition 1. (see, for instance, [32]) All quadratic Boolean functions in two
variables, i.e. f : Z2

2 → Z2 such that f(x, y) = xy ⊕ c, where x, y, c ∈ Z2, are bent.

Proposition 2. (Rothaus, [23]) The degree of Boolean bent function f in n ≥ 4
variables is not more than n/2.

Proposition 3. (Rothaus, [23]) Let x ∈ Zr2 and y ∈ Zk2 , where r, k > 2 and even. A
Boolean function f(x, y) = f1(x)⊕ f2(y) is a bent function in r+k variables if and
only if the functions f1 and f2 are bent functions in r and k variables respectively.

Proposition 4. (Singh et al., [25]) Let x ∈ Zr4 and y ∈ Zk4 for r, k > 1. A
quaternary function g(x, y) = g1(x)⊕ g2(y) is a bent function in r + k variables if
and only if functions g1 and g2 are quaternary bent functions in r and k variables
respectively.

Note that results of Propositions 3 and 4 can be easily extended to sums with
more than two functions.

4.2. Quaternary bent functions in small number of variables. Here we
present results on connections between notions of quaternary bent functions in one
and two variables and Boolean bent functions. Using computer search we obtain
the following facts.

Statement 1. For every quaternary function g(x+ 2y) = a(x, y) + 2b(x, y) in one
variable with x, y ∈ Z2, it is true that g is a quaternary bent function if and only
if b is bent and a does not depend on y, i.e. a(x, y) is equal to 0, 1, x or x ⊕ 1.
Moreover, if g is bent then b and a⊕ b are bent functions too.
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Number of quaternary bent functions

Cases for b and a⊕ b Types of a in the case For each type of a Total in the case

b and a⊕ b a is bent 49152
are nonlinear a is linear (not constant) 3072 147456
(not bent) a is nonliear (not bent) 95232

a is bent 16384
b and a⊕ b a is linear (not constant) 2304
are bent a is constant 768

53248

a is nonlinear (not bent) 33792

Table 1. Classi�cation of functions b and a⊕ b for quaternary bent functions in 2 variables.

Computer search shows that the number of quaternary bent functions in one
variable is equal to 32.

There are 200704 quaternary bent functions in 2 variables. Among them there
are 98304 fuctions such that none of Boolean functions a, b and a ⊕ b is bent but
for 3072 of them a is a linear Boolean function. There are 36864 quaternary bent
functions such that b and a ⊕ b are bent functions, while for 33792 of them a is a
nonlinear function, and for 2304 and 768 functions a is a linear function or constant
respectively. The number of quaternary bent functions in 2 variables with each of
a, b and a ⊕ b being bent is equal to 16384. For the remaining 49152 quaternary
functions, a is bent and b and a⊕ b are nonlinear Boolean functions. We summarize
the data described above in Table 1.

For functions in three and more variables an exhaustive search is unfeasible (there
are 2128 quaternary functions in three variables).

4.3. Possibilities for bentness. From Statement 1, we know that for n = 1 if g is
quaternary bent then b and a⊕ b are bent functions too. In the previous section we
showed that it does not hold for quaternary functions in 2 variables. Let us prove
that it does not hold for arbitrary n > 2.

Proposition 5. For every n > 2 there exists a quaternary bent function g(x+2y) =
a(x, y) + 2b(x, y) in n variables, with b and a⊕ b being not bent in 2n variables.

Proof. In what follows, '+' denotes the addition over Z4 excepting summation of
indices. Any quaternary function g in n variables can be uniquely represented as
follows: g(x1+2xn+1, ..., xn+2x2n) = a(x1, ..., x2n)+2b(x1, ..., x2n). Let b(x1, .., x2n) =
n⊕
i=3

xixi+n⊕x1xn+2⊕x2xn+1⊕x1x2xn+1,a(x1, .., x2n) = x1xn+1. One can see that

b can be divided into sum of n − 2 Boolean functions in two variables and one
Boolean function in four variables like this:

b(x1, ..., x2n) = b1(x1, x2, xn+1, xn+2)⊕ b2(x3, xn+3)⊕ ...⊕ bn−1(xn, x2n),

b1(x1, x2, xn+1, xn+2) = x1xn+2 ⊕ x2xn+1 ⊕ x1x2xn+1,

bi(xi+1, xn+i+1) = xi+1xn+i+1, i = 2, ..., n− 1.

From Proposition 3, we know that b is bent if and only if all bi are bent. According
to Proposition 2, we get that function b1 in four variables is not bent since its degree
is equal to three. Therefore, b is not bent.

It is easy to check that

2b(x1, .., x2n) = (2x3xn+3 + ...+ 2xnx2n) + 2x1xn+2 + 2x2xn+1 + 2x1x2xn+1.



CONNECTIONS BETWEEN QUATERNARY AND BOOLEAN BENT FUNCTIONS 567

Moreover, g can be divided into sum of n− 2 quaternary functions in one variable
and one quaternary function in two variables

g(x1 + 2xn+1, ..., xn + 2x2n) = g1(x1 + 2xn+1, x2 + 2xn+2)+

+g2(x3 + 2xn+3) + ...+ gn−1(xn + 2x2n),

where

g1(x1 + 2xn+1, x2 + 2xn+2) = x1xn+1 + 2x1xn+2 + 2x2xn+1 + 2x1x2xn+1,

gi(xi+1 + 2xn+i+1) = 2xi+1xn+i+1, i = 2, ..., n− 1.

From Proposition 1, we know that all xi+1xn+i+1 are bent, i = 2, ..., n. Therefore,
according to Statement 1 functions gi are quaternary bent functions, i = 2, ..., n− 1.
It was checked that the quaternary function g1 is also bent according to the de�nition:
its WHT coe�cients are the following:

x ∈ Z2
4 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Ĝ1(x) 4 4i 4 4 4 4i −4 4 4 −4i 4 −4 4 −4i −4 −4

From Proposition 4, g is a quaternary bent function if and only if all gi are
quaternary bent functions, i = 1, ..., n− 1. This completes the proof. �

The next result shows that bentness of a quaternary function does not follow
from bentness of Boolean functions in general.

Proposition 6. For every n > 1, there exists a quaternary function g(x + 2y) =
a(x, y) + 2b(x, y) in n variables that is not bent, while b and a⊕ b are Boolean bent
functions in 2n variables.

Proof. Any quaternary function g in n variables can be uniquely represented as
g(x1 + 2xn+1, ..., xn + 2x2n) = a(x1, ..., x2n) + 2b(x1, ..., x2n).

Let b(x1, .., x2n) =
n⊕
i=1

xixi+n,a(x1, .., x2n) = xn+1. It is easy to check that

2b(x1, .., x2n) = 2x1xn+1 + ... + 2xnx2n. Note that g can be divided into sum of n
quaternary functions in one variable:

g(x1 + 2xn+1, ..., xn + 2x2n) = g1(x1 + 2xn+1) + ...+ gn(xn + 2x2n),

where

gi(xi + 2xn+i) = ai(xi, xn+i) + 2bi(xi, xn+i), i = 1, .., n,

bi(xi, xn+i) = xixn+i, i = 1, .., n,

a1(x1, xn+1) = xn+1,

ai(xi, xn+i) = 0, i = 2, .., n.

From Proposition 4, we know that g is a quaternary bent function if and only if all
gi are quaternary bent functions, i = 1, ..., n. From Statement 1 and by the choice
of a and b, we get that g1 is not quaternary bent. This completes the proof. �

From Propositions 5 and 6, we conclude that there is no direct link between
notions of Boolean and quaternary bent functions. Additionally, Proposition 5
shows that if b and a ⊕ b are not bent, it does not imply that g is not bent.
According to Proposition 6, it is also true that if g is not bent, it does not imply
that b and a⊕ b are not bent.
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From the previous section, we can see that for quaternary bent functions in one
and two variables, a Boolean function b is bent if and only if a ⊕ b is also bent.
Whether this statement is true for arbitrary n remains an open problem.

4.4. Nonlinearity of component Boolean functions. Let g(x+2y) = a(x, y)+
2b(x, y) be a quaternary function in n variabes, where x, y ∈ Zn2 and a, b are Boolean
functions in 2n variables.

Let us represent WHT coe�cients of quaternary functions in terms of the coe�cients
of Boolean functions b and a ⊕ b as we did for generalized functions in section 4.

Here by Â ·B we mean the WHT of a⊕ b.

Lemma 4. Between the WHT coe�cients of g, a⊕ b, b there is the relation

Ĝ(x+ 2y) =
1

2

(
B̂(x⊕ y, x) + Â ·B(y, x)− 2c b(x⊕ y, x)− 2c a⊕b(y, x)

)
+

+
i

2

(
B̂(y, x)− Â ·B(x⊕ y, x)− 2c b(y, x) + 2c a⊕b(x⊕ y, x)

)
,

with

c f (u, x) =
∑

x′∈Vx,y′

(−1)f(x
′,y′)⊕〈(u,x),(x′,y′)〉,

where f is a Boolean function in 2n variables, Vx = { x′ ∈ Zn2 | 〈x, x′〉 6= x.x′ }, and
u ∈ Zn2 .

Proof. Let us study the Walsh�Hadamard transform of g. By (3) we know that

Ĝ(x+ 2y) =
∑
x′,y′

i (x+2y).(x′+2y′)+a(x′,y′)+2b(x′,y′).

From the fact that for any x′′, x′′′ ∈ Zn2 it holds 2〈x′′, x′′′〉 mod 4 = 2x′′.x′′′ and
Lemma 2, we have

(x+ 2y).(x′ + 2y′) =

{
〈x, x′〉+ 2〈x, y′〉+ 2〈y, x′〉, if x.x′ = 〈x, x′〉,
〈x, x′〉+ 2〈x, y′〉+ 2〈y, x′〉+ 2, if x.x′ 6= 〈x, x′〉.

Let Ux = { x′ ∈ Zn2 |x.x′ = 〈x, x′〉 } and Vx = { x′ ∈ Zn2 |x.x′ 6= 〈x, x′〉 }. Therefore,
we get Ux ∩ Vx = ∅ and Ux ∪ Vx = Zn2 . Note that |Ux| 6= |Vx| in general. Then

Ĝ(x+ 2y) =
∑

x∈Ux,y′

(−1)〈x,y
′〉⊕〈y,x′〉⊕b(x′,y′)i 〈x,x

′〉+a(x′,y′)−

−
∑

x′∈Vx,y′

(−1)〈x,y
′〉⊕〈y,x′〉⊕b(x′,y′)i 〈x,x

′〉+a(x′,y′).

Here we use the standard maps β, γ : Z4 → Z2 de�ned as

β : 0, 1→ 0 and β : 2, 3→ 1;

γ : 0, 2→ 0 and γ : 1, 3→ 1.

For any t ∈ Z4 it holds

it = (−1)β(t)
(

1 + (−1)γ(t)

2
+

1− (−1)γ(t)

2
i

)
.

Using this formula for t = x.x′ + a(x′, y′) and the fact that γ(〈x, x′〉+ a(x′, y′)) =
〈x, x′〉 ⊕ a(x′, y′) we get

Ĝ(x+ 2y) =
1

2
(S1 + S2 − S3 − S4) +

i

2
(S1 − S2 − S3 + S4) ,
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where

S1 =
∑

x′∈Ux,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕β(〈x,x′〉+a(x′,y′)),

S2 =
∑

x′∈Ux,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉⊕β(〈x,x′〉+a(x′,y′)),

S3 =
∑

x′∈Vx,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕β(〈x,x′〉+a(x′,y′)),

S4 =
∑

x′∈Vx,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉⊕β(〈x,x′〉+a(x′,y′)).

Let Mδ,x = { x′ ∈ Zn2 | 〈x, x′〉 = δ } for δ ∈ Z2. Note that M0,x ∪M1,x = Zn2 and
|M0,x| = |M1,x| = 2n−1. Let us divide every sum S1, S2, S3 and S4 into two sums∑
x′∈M0,x,y′

and
∑
x′∈M1,x,y′

. Note that β(a(x′, y′)+〈x, x′〉) is equal to 0 or a(x′, y′)

for x′ ∈M0,x and x′ ∈M1,x respectively. Thus, we have

S1 =
∑

x′∈Ux∩M0,x,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉+

+
∑

x′∈Ux∩M1,x,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕a(x′,y′),

S2 =
∑

x′∈Ux∩M0,x,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉+

+
∑

x′∈Ux∩M1,x,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉⊕a(x′,y′),

S3 =
∑

x′∈Vx∩M0,x,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉+

+
∑

x′∈Vx∩M1,x,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕a(x′,y′),

S4 =
∑

x′∈Vx∩M0,x,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉+

+
∑

x′∈Vx∩M1,x,y′

(−1)a(x
′,y′)⊕b(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉a(x′,y′).

After grouping terms we obtain

S1 + S2 − S3 − S4 =

=
∑

x′∈Ux,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉+

+
∑

x′∈Ux,y′

(−1)b(x
′,y′)⊕a(x′,y′)⊕〈x,y′〉⊕〈y,x′〉−

−
∑

x′∈Vx,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉−

−
∑

x′∈Vx,y′

(−1)b(x
′,y′)⊕a(x′,y′)⊕〈x,y′〉⊕〈y,x′〉.
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Then
S1 − S2 − S3 + S4 =

=
∑

x′∈Ux,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉−

−
∑

x′∈Ux,y′

(−1)b(x
′,y′)⊕a(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉−

−
∑

x′∈Vx,y′

(−1)b(x
′,y′)⊕〈x,y′〉⊕〈y,x′〉+

+
∑

x′∈Vx,y′

(−1)b(x
′,y′)⊕a(x′,y′)⊕〈x,y′〉⊕〈y,x′〉⊕〈x,x′〉.

Since
c f (u, x) =

∑
x′∈Vx,y′

(−1)f(x
′,y′)⊕〈(u,x),(x′,y′)〉,

where f is a Boolean function in 2n variables and u ∈ Zn2 , then one can see that

S1 + S2 − S3 − S4 =

= (B̂(x⊕ y, x)− cb(x⊕ y, x)) + (Â ·B(y, x)− ca⊕b(y, x))− cb(x⊕ y, x)− ca⊕b(y, x)

and
S1 − S2 − S3 + S4 =

= (B̂(y, x)− cb(y, x))− (Â ·B(x⊕ y, x)− ca⊕b(x⊕ y, x))− cb(y, x) + ca⊕b(x⊕ y, x).

After rearranging, the result follows. �

We can see that WHT coe�cients of a quaternary function g do not directly
depend on WHT coe�cients of Boolean functions b and a ⊕ b. This result will be
used in proof of the next theorem and also in section 8.2.

Theorem 2. Let g(x+ 2y) = a(x, y) + 2b(x, y) be a quaternary bent function with
x, y ∈ Zn2 and a, b be Boolean functions in 2n variables. Then b and a ⊕ b are
nona�ne functions for any n > 1.

Proof. According to Lemma 3 there are two possible values of WHT coe�cients of
a linear Boolean function in 2n variables: 0 and 22n.

From Lemma 4, we get

Ĝ(2y) =
1

2
(B̂(y, 0) + Â ·B(y, 0)) +

i

2
(B̂(y, 0)− Â ·B(y, 0)), where y ∈ Zn2 .

Note that Vx is empty for x = 0, hence c b(x ⊕ y, x), c b(y, x), c a⊕b(x ⊕ y, x) and
c a⊕b(y, x) are zero too.

As it was mentioned in section 2 all quaternary bent functions are regular. It

means that there is only real or imaginary part of Ĝ(2y). Thus, we get that there
are two possible cases {

(B̂(y, 0) + Â ·B(y, 0))2 = 0,

(B̂(y, 0)− Â ·B(y, 0))2 = 4 · 4n.
or {

(B̂(y, 0) + Â ·B(y, 0))2 = 4 · 4n,
(B̂(y, 0)− Â ·B(y, 0))2 = 0.

From the �rst system we get
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B̂(y, 0) = −Â ·B(y, 0),

(2 · B̂(y, 0))2 = 4 · B̂(y, 0)2 = 4 · 4n.

Hence,

B̂(y, 0) = −Â ·B(y, 0) = ±2n.

By solving the second system one can get

B̂(y, 0) = Â ·B(y, 0) = ±2n.

Therefore, b and a⊕ b are nona�ne functions. �

5. Connections between quaternary and generalized Boolean bent

functions

Let g(x+ 2y) = f(x, y), where g : Zn4 → Z4, f : Zn2 → Z4 and x, y ∈ Zn2 .
In this section, we show that the approach of Kumar et al. and that of Schmidt

are not equivalent.

Proposition 7. For every n > 1, there exists a generalized bent function f(x, y)
in 2n variables such that a quaternary function g(x+ 2y) in n variables de�ned as
g(x+ 2y) = f(x, y) for all x, y ∈ Zn2 is not bent.

Proof. From Proposition 6, there exists a quaternary function g(x+2y) = a(x, y)+
2b(x, y) which is not bent, while b and a⊕b are both bent. Now from Theorem 1 we
know that if b and a⊕b are both bent then f(x, y) is a generalized bent function. �

Proposition 8. For every n > 2, there exists a quaternary bent function g(x+ 2y)
in n variables such that a generalized function f(x, y) in 2n variables de�ned as
f(x, y) = g(x+ 2y) for all x, y ∈ Zn2 is not bent.

Proof. From Proposition 5 there exists a quaternary bent function g(x + 2y) =
a(x, y) + 2b(x, y) in n > 1 variables such that both b and a⊕ b are not bent. From
Theorem 1 we know that a generalized function f(x, y) is bent i� b and a ⊕ b are
both bent. Hence, f(x, y) is not bent. �

6. Gray images of bent functions

Let f be a generalized Boolean function from Zn2 to Z4. Write f = a + 2b with
a, b Boolean functions in n variables. Its Gray map φ(f) is the Boolean function in
variables (x, z) with x ∈ Zn2 and z ∈ Z2 de�ned as a(x)z + b(x). The proof of the
next result is implicit in the proof of [24, Th. 3.5] and is omitted.

Proposition 9. For the WHTs of functions f and φ(f) it holds

(4) Φ̂(f)(u, v) = 2<(i−vF̂ (u)) = B̂(u) + (−1)vÂ ·B(u), where u ∈ Zn2 , v ∈ Z2.

Here < denotes real part of a complex number. As far as the left side of equation (4)
is a WHT coe�cient of a Boolean function, we easily get

Corollary 1. For any generalized Boolean function f in n variables it holds

max
u∈Zn

2 ,v∈Z2

|<(i−vF̂ (u))| > 2(n−1)/2.

Corollary 2. If f is generalized bent in n variables then φ(f) is either bent (n
odd) or semi bent (n even).
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Proof. Write F̂ (u) = X + iY with X,Y integers. We know that 2n = X2 + Y 2. We
know that the solution to that diophantine equation in X > 0 and X > Y > 0 is
unique, see e.g. [9]. The obvious solutions for n odd are {|X| = |Y | = 2(n−1)/2},
{Y = 0, X = ±2n/2} and {Y = ±2n/2, X = 0} for n even.

Thus, if n is odd it holds Φ̂(f)(u, v) = ±2(n+1)/2 for all u, v, and hence φ(f) is

bent in n + 1 variables. If n is even we see that Φ̂(f)(u, v) equals 0 or ±2(n+2)/2,
so φ(f) is semi bent in n+ 1 variables. �

There is a partial converse to Corollary 2. The proof is immediate.

Proposition 10. Let n be odd. If φ(f) is a Boolean bent function in n+1 variables
then f is a generalized Boolean bent function in n variables.

Proof. Let F̂ (u) = X + iY with X,Y integers. We know that for all u, v it holds

Φ̂(f)(u, v) = ±2(n+1)/2. Therefore, from Proposition 9

Φ̂(f)(u, 0) = 2<(F̂ (u)) = 2X = ±2(n+1)/2,

and

Φ̂(f)(u, 1) = 2<(i−1F̂ (u)) = 2Y = ±2(n+1)/2.

Hence, |F̂ (u)|2 = X2 + Y 2 = 2n. �

This fact has also been obtained in the last variant of [24].

7. Notions of nonlinearity

It is well-known that Boolean bent functions are characterized by their maximal
distance to the �rst order Reed�Muller code. This fact is generalized in this section
to their quaternary analogues.

7.1. Generalized Boolean functions. Let RM(r, k) be the Reed�Muller code
of length 2k and of order r, see [12]. De�ne, for 0 6 r 6 m the quaternary code
ZRM(r,m) = φ−1(RM(r,m + 1)). This code is spanned by vectors of values for
functions of degree at most r − 1 together with twice functions of degree at most
r, see [7] for details. We introduce the nonlinearity N(f) of a generalized bent
Boolean function f in n variables as

(5) N(f) := 2n − 1

2
max

u∈Zn
2 ,v∈Z2

|Φ̂(f)(u, v)|.

The Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1, respectively, and the Lee weight
wtL(a) of a ∈ ZN4 is the rational sum of the Lee weights of its components. This
weight function de�nes a distance dL(f, g) = wt(f − g) between two generalized
functions on ZN4 called the Lee distance. Analogously, let dH(·, ·) be the Hamming
distance on Z2N

2 . According to Corollary 1 we have

Proposition 11. For any generalized Boolean function f in n variables, it is true
N(f) 6 2n − 2(n−1)/2.

Proposition 12. With the above notation, for any generalized Boolean function in
n variables f we have

N(f) = dL(f, ZRM(1, n)) = dH(Φ(f), RM(1, n+ 1)).
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Proof. Let x, y be arbitrary vectors of ZN4 . Denote by ix the vector (ix1 , . . . , ixN ).
Recall �rst the well-known identities

d2E(ix, iy) = 2dL(x, y) = 2(N −<(

N∑
j=1

ixj−yj )),

where dE stands for the Euclidean distance. Observe that ZRM(1, n) is spanned

by the all-one vector, along with twice the binary linear functions, and that F̂ (u) =∑
y∈Zn

2

if(y)+2u.y. The second equality holds by the isometry property of the Gray

map [7]. �

Hence, using Propositions 11 and 12 we can reformulate one partial case from
Corollary 2 and Proposition 10 as follows.

Corollary 3. Let n be odd. A generalized function f is bent if and only if N(f)
attains the maximal possible value 2n − 2(n−1)/2.

The case of even n is more complicated. We have

Corollary 4. Let n be even. If a function f is bent then N(f) = 2n − 2n/2.

Proof. By Corollary 2 the Boolean function φ(f) is semi bent in n + 1 variables.

Hence the maximum value of |Φ̂(f)(u, v)| is equal to 2(n+2)/2. Then by Proposition 9
and de�nition (5) we get N(f) = 2n − 2n/2. �

The converse statement is not right in general as far as from the equality

max
u∈Zn

2 ,v∈Z2

|Φ̂(f)(u, v)| = 2(n+2)/2

it does not follow that |F̂ (u)| = 2n/2 for any u ∈ Zn2 . Actually, it is not clear what
is the maximum possible value of N(f) if n is even. To know it one should �nd the
value of covering radius of the code RM(1, n + 1) when n + 1 is odd. But it is a
hard old problem without analogy to the easy case of even n+ 1.

7.2. Quaternary functions. Let g be a quaternary function in n variables. In this
case, an immediate reduction to the preceding subsection (namely, passing from g
to f in the notations of section 5) yields the de�nition

N(g) := 22n − 1

2
max

u,v∈Zn
2 ,w∈Z2

|Φ̂(g)(u, v, w)|.

The following analogue of Proposition 12 is immediate.

Proposition 13. For any quaternary function g in n variables we have

N(g) = dL(g, ZRM(1, 2n)) = dH(φ(g), RM(1, 2n+ 1)).

In particular if g is bent then N(g) = 22n − 2n. As it was mentioned above the
maximal possible value of N(g) is not known yet.



574 N.N. TOKAREVA, A.S. SHAPORENKO, P. SOL�E

8. Examples of Constructions

De�ne algebraic normal form (ANF) of generalized Boolean function f in n
variables as follows:

f(x1, ..., xn) =

n∑
k=1

∑
i1,...,ik

ai1,...,ikxi1 · · · xik + a0,

where for each k indices i1, ..., ik are pairwise distinct and sets {i1, ..., ik} are exactly
all di�erent nonempty subsets of the set {1, ..., n}; coe�cients ai1,...,ik , a0 take values
from Z4. The number of variables in the longest item of its ANF is called the degree
of a generalized function and is denoted by deg(f). For computing degrees we require
the following lemma.

Lemma 5. For a generalized Boolean function f the degree of φ(f) is at most the
degree of f .

Proof. Follows by de�nition of the ZRM(r,m) code by its generators [7]. �

8.1. Generalized Boolean bent functions. In [24, Th. 4.3] �gures a natural
generalization of the classical Maiorana�McFarland construction.

Proposition 14. (Schmidt, [24]) The generalized Boolean function f in 2n variables
de�ned for x, y in Zn2 by f(x, y) = 2x.π(y) + τ(y), with τ an arbitrary generalized
Boolean function in n variables and π an arbitrary permutation of Zn2 is bent.

By Corollary 2 the Gray map of this function is a binary Boolean semi bent
function in 2n+ 1 variables. By Lemma 5 its degree is max(2, deg(τ)).

It is well-known that the binary Kerdock code contains bent functions. We
assume the reader has some familiarity with Galois rings as can be gained in, e.g. [7].

For completeness, the next result from [24] we present with the proof.

Proposition 15. (Schmidt, [24]) Let n > 3 denote an integer. Let Rn denote the
Galois ring of characteristic 4 and size 4n. Let Rxn denote Rn \ 2Rn. Let Tn denote
the Teichmuller set of Rn, and Tr the trace function of Rn. The generalized Boolean
function in n variables de�ned for x ∈ Tn by

f(x) = ε+ Tr(sx)

for constants ε, s ranging in Z4, R
x
n is bent. Its Gray image is either bent (n odd)

or semi bent (n even).

Proof. The �rst assertion follows by [24, Construction 5.2] upon observing that
ZRM(1, n) is described by functions f(x) = ε + 2Tr(sx). The second assertion
follows by Corollary 2. �

A monomial construction of a bent generalized Boolean function is presented in
[24, Th. 5.3]. Intuitively it detects the generalized bent functions in the dual of the
Goethals code.

Proposition 16. (Schmidt, [24]) Keep the notation of Proposition 15. Let µ denote
the "reduction mod 2"map from Rn to F2n . The generalized Boolean function in n
variables de�ned for x ∈ Tn by f(x) = ε+Tr(sx+2tx3) for constants ε, s, t ranging
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in Z4, Rn, Tn \ {0} is bent if µ(s) = 0 and the equation µ(t)z3 + 1 = 0 has no
solutions in F2n , or if µ(s) 6= 0 and the equation

z3 + z +
µ(t)2

µ(t)6
= 0

has no solutions in F2n .

By Corollary 2 the Gray map of this function is a binary Boolean function in
n+ 1 variables which is semi bent if n is even or bent if n is odd. It is quadratic by
Lemma 5.

In the original paper [27] it was mentioned that it would be interesting, for
instance, to replace the exponent 3 in Proposition 16 by a Gold exponent 2k + 1.
Then Li et al. [11] characterized the functions in n variables of the form f(x) =

Tr(ax+ 2bx1+2k) for odd n/gcd(n/k).

8.2. Quaternary bent functions.

Proposition 17. For every n a quaternary function

g(x1 + 2xn+1, ..., xn + 2x2n) = c1x1 + ...+ cnxn + 2(x1xn+1 + ...+ xnx2n)

is a quaternary bent function with ci ∈ Z2 and '+' is addition over Z4.

Proof. One can see that g can be divided into sum of n quaternary functions in one
variable g(x1 + 2xn+1, ..., xn + 2x2n) = g1(x1 + 2x1+n) + ...+ gn(xn + 2x2n),

gi(xi + 2xi+n) = cixi + 2xixi+n.

From Proposition 1, we know that all xixi+n are bent, i = 1, ..., n. From Statement 1
each of gi is a quaternary bent function in one variable, therefore, from Proposition 4
g is also a quaternary bent function. �

Proposition 18. Let g(x + 2y) = a(x, y) + 2b(x, y) and g′(x + 2y) = a(x, y) +
2(a(x, y) ⊕ b(x, y)) be quaternary functions with x, y ∈ Zn2 and a, b be Boolean
functions in 2n variables. Then g is bent if and only if g′ is bent.

Proof. Study the Walsh�Hadamard transform of g and g′. From Lemma 4, we have

Ĝ(x+ 2y) =
1

2

(
B̂(x⊕ y, x) + Â ·B(y, x)− 2c b(x⊕ y, x)− 2c a⊕b(y, x)

)
+

+
i

2

(
B̂(y, x)− Â ·B(x⊕ y, x)− 2c b(y, x) + 2c a⊕b(x⊕ y, x)

)
and

Ĝ′(x+ 2(x⊕ y)) =
1

2

(
Â ·B(y, x) + B̂(x⊕ y, x)− 2c a⊕b(y, x)− 2c b(x⊕ y, x)

)
+

+
i

2

(
Â ·B(x⊕ y, x)− B̂(y, x) + 2c b(y, x)− 2c a⊕b(x⊕ y, x)

)
,

with
c f (u, x) =

∑
x′∈Vx,y′

(−1)f(x
′,y′)⊕〈(u,x),(x′,y′)〉,

where f is a Boolean function in 2n variables, Vx = { x′ | 〈x, x′〉 6= x.x′ }, and
u ∈ Zn2 .

Let < and = be real and imaginary parts of a complex number respectively. Then

<(Ĝ(x+ 2y)) = <(Ĝ′(x+ 2(x⊕ y))), =(Ĝ(x+ 2y)) = −=(Ĝ′(x+ 2(x⊕ y))).
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As it was mentioned in section 2 all quaternary bent functions are regular.
Therefore, each of Walsh�Hadamard coe�cients of a quaternary bent function

has only real or imaginary part. Hence, if g is bent then |Ĝ′(x + 2(x ⊕ y))| =

|Ĝ(x+2y)| = 4n/2. By the same way we can prove that if g′ is bent then |Ĝ(x+2y)| =
|Ĝ′(x+ 2(x⊕ y))| = 4n/2. This completes the proof. �

9. Conclusion and open problems

In the present work we have shown how generalizations of the notion of bent
functions involving the ring Z4 could produce, by Gray map or by base 2 expansion,
bent Boolean functions in the classical sense. We have proved that the approach of
Kumar et al. and that of Schmidt are not equivalent at least in quaternary case.
Schmidt's de�nition �ts better Z4-cyclic codes constructions. Conversely classical
binary bent functions (but perhaps not semi bent functions) can yield generalized
bent functions by inverse Gray map. These results motivate to explore further
algebraic constructions of generalized bent functions. Although the results show
that there is no direct connection between quaternary and Boolean bent functions
it is still might be possible to connect these notions if we will ask for additional
conditions. For instance, it would be interesting to solve the problem that we
mentioned at the end of section 4.3. It is also possible that notions of q-ary and
Boolean bent functions are more connected for q > 4.
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