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EQUATIONS
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Abstract. The behavior of solutions for several models of living sys-
tems, presented as the Cauchy problem for nonlinear systems of delay
di�erential equations, is investigated. A set of conditions providing expo-
nentially decreasing estimates of the components of the solutions of the
studied Cauchy problem is established. The parameters of exponential
estimates are found as a solution of a nonlinear system of inequalities,
based on the right part of the system of di�erential equations. Results of
the studies on mathematical models arising in epidemiology, immunology,
and physiology are presented.
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1. Introduction

This article is dedicated to studying of the properties of solutions of mathematical
models for living systems, presented in the form of a Cauchy problem for delay
di�erential equations that have a particular structure. Taking into account the
structure of di�erential equations, we can study the conditions of global solvability
of a Cauchy problem, including non-negativity of solutions provided that the initial
data is non-negative, establish the existence of bounded solutions, �nd the su�cient
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conditions of asymptotic stability of stability positions, and study some other
problems.

One of the important questions connected to practical application of some mathe-
matical models is related to �nding conditions of exponential decreasing of a part
of components of the solution, describing the number of species of some groups or
concentration of substances of a particular kind, which belong to one or another
living system. Exponential decreasing of a part of components in solutions of
mathematical models allows to estimate the speed and time of lowering of these
components from the initial level to some favorable or unfavorable one.

Now we move to the description of the object of our study. Suppose that J =
[a, b] ⊂ R, A ⊆ Rm, m > 2, ||v||Rm is the norm of a vector v ∈ Rm, C(J,A) is the
set of all continuous functions z : J → A with the norm

||z|| = max
θ∈J

(
||z(θ)||Rm

)
, z ∈ C(J,Rm).

For u,w ∈ Rm, the inequalities u < 0, u > 0, u 6 w, u > w are considered
componentwise. If x, y ∈ C(J,A), then for every t ∈ J the inequality x(t) 6 y(t)
is understood as an inequality between the corresponding vectors. We put Iω =
[−ω, 0], where ω > 0 is some real constant. We denote by Bd = {z ∈ C(Iω, Rm) :
||z|| 6 d} a ball in the space C(Iω, R

m).
Consider the Cauchy problem for a system of delay functionally di�erential

equations

(1)
dx(t)

dt
= f(t, xt)− (µ+ g(t, xt))x(t), t > 0,

(2) x(t) = ψ(t), t ∈ Iω,

where

x(t) = (x1(t), . . . , xm(t))T , ψ(t) = (ψ1(t), . . . , ψm(t))T ,

f(t, xt) = (f1(t, xt), . . . , fm(t, xt))
T ,

g(t, xt) = diag
(
g1(t, xt), . . . , gm(t, xt)

)
, µ = diag

(
µ1, . . . , µm

)
, m > 2,

the delayed variable xt : Iω → Rm is de�ned by the following: for every �xed
t > 0 xt(θ) = x(t + θ), θ ∈ Iω, ψ(t) is the initial function, fi(t, xt), gi(t, xt) are
some mappings, µi are constants, 1 6 i 6 m, by dx(t)/dt we mean the right-
hand derivative (componentwise). We assume that the mappings, functions, and
constants, belonging to (1), (2), satisfy for every 1 6 i 6 m the set of conditions
listed below:

1) fi, gi : R+ × C(Iω, Aξ)→ R, where Aξ = {u ∈ Rm : u > ξ}, ξ ∈ Rm, ξ < 0 is
some �xed vector;

2) fi, gi : R+ × C(Iω, Rm+ )→ R+;
3) fi(t, z), gi(t, z) are continuous in (t, z) ∈ R+×C(Iω, Aξ) and locally Lipschitz

in z: for every d ∈ R, d > 0, there exist constants L
(i)
f = L

(i)
f (ξ, d) > 0, L

(i)
g =

L
(i)
g (ξ, d) > 0, such that for all z1, z2 ∈ Bd

⋂
C(Iω, Aξ) and t ∈ [0,∞), the following

inequalities hold:

|fi(t, z1)− fi(t, z2)| 6 L
(i)
f ||z1 − z2||, |gi(t, z1)− gi(t, z2)| 6 L(i)

g ||z1 − z2||;

4) ψi : Iω → R+ is a continuous function;
5) µi > 0.
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Refer as a solution of the Cauchy problem (1), (2) on the interval [0, τ), τ > 0
to a continuous function x = (x1, . . . , xm)T on the interval Iω ∪ [0, τ), continuously
di�erentiable (componentwise) on the interval [0, τ), satisfying the initial conditions
(2) and the equations (1) for all t ∈ [0, τ); with t = 0 for dxi(t)/dt we will use a
right-hand derivative, namely,

dxi(0)

dt
= fi(0, ψ)− (µi + gi(0, ψ)ψi(0), 1 6 i 6 m.

We will say that the Cauchy problem (1), (2) is uniquely solvable on the semi-
axis [0,∞) (globally solvable), whenever it has a unique solution on every �nite
interval [0, τ).

In works [1], [2], a number of conditions providing global solvability of the
problem (1), (2) and non-negativity of all components x(t) are listed, and an
approach to constructing componentwise upper estimates for x(t) is developed.

The goal of this article is to apply and develop this approach to studying of
mathematical models of living systems, proposed in papers [1], [2]. In Section 2, we
brie�y describe the results from [1], [2] that allow to �nd exponentially decreasing
estimates by a part of components of the solution x(t). The mentioned estimates are
constructed in the framework of additional assumptions with respect to components
of the mapping f(t, xt). Section 3 provides examples demonstrating application of
the approach proposed in [2] in the cases when the additional assumptions with
respect to the components of the mapping f(t, xt) are met fully or partially. Each
of the examples represents in detail the way of constructing the parameters of
exponential estimates c e−r t of components of the solution x(t), which are found
as solutions of nonlinear systems of inequalities with respect to the constant r > 0
and the vector c = (c1, . . . , ck)

T , ci > 0, 1 6 i 6 k < m. The emerging nonlinear
systems of inequalities for c and r are written out based on majorant estimates
of components of the mapping f(t, xt) in the form of some constants, linear or
nonlinear mappings.

2. Additional assumptions and exponentially decreasing estimates by

a part of components of the solution.

To study the Cauchy problem (1), (2), we turn to studying the solution of the
system of integral equations

(3) x(t) = e−
∫ t
0
(µ+g(s,xs))dsψ(0) +

∫ t

0

e−
∫ t
a
(µ+g(s,xs))dsf(a, xa) da, t > 0,

complemented with initial data (2). The expression e−
∫ t
a
(µ+g(s,xs))ds, used in (3),

is understood as a diagonal matrix constructed based on the matrix µ + g(s, xs).
The system of equations (3) is obtained from (1) by integrating by the variation of
constants formula with (2) taken into account.

We refer as a solution of the problem (3), (2) on the interval [0, τ ], τ > 0, to a
function x = (x1, . . . , xm)T , continuous on the interval Iω ∪ [0, τ ], satisfying initial
condition (2) and equation (3) for all t ∈ [0, τ ].

We will say that the problem (3), (2) is uniquely solvable on the semi-axis [0,∞)
(globally solvable), whenever it has a unique solution on every �nite interval [0, τ ].

Resting on results of paper [3], we have that the problems (1), (2) and (3), (2)
are equivalent.
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We �x τ > 0. By Cψ we will mean the set consisting of all functions x ∈
C(Iω ∪ [0, τ ], Rm), such that x(t) = ψ(t), t ∈ Iω. We assume that Cψ,0 is a set
consisting of functions x ∈ Cψ, such that x(t) > 0, t ∈ Iω ∪ [0, τ ]. Let υ = υ(t) =
(υ1(t), . . . , υm(t))T be some function with non-negative components, continuous on
the interval Iω ∪ [0, τ ]. We put that Cψ,0,υ consists of functions x ∈ Cψ, satisfying
the equations 0 6 x(t) 6 υ(t), t ∈ Iω ∪ [0, τ ].

Based on problem (3), (2), we de�ne an operator F , which matches every function
x ∈ Cψ,0 to a function F (x) ∈ Cψ,0 by the formulae

F (x)(t) = ψ(t), t ∈ Iω,

F (x)(t) = e−
∫ t
0
(µ+g(s,xs))dsψ(0) +

∫ t

0

e−
∫ t
a
(µ+g(s,xs))dsf(a, xa) da, t ∈ [0, τ ].

In paper [1], the following results were established.

Lemma 1. If problem (3), (2) has a solution on the interval [0, τ ], τ > 0, then this
solution is unique.

Lemma 2. Suppose that given some τ > 0 there exists a set of functions Cψ,0,υ,
such that F : Cψ,0,υ → Cψ,0,υ. Then problem (3), (2) has a unique solution on the
interval [0, τ ], and this solution x is such that x ∈ Cψ,0,υ.

The study of the problem (3), (2) on the interval [0,∞) is reduced to �nding
the set of functions Cψ,0,υ, invariant for the operator F , under the condition that
the required function υ = υ(t) can be chosen to be de�ned on the whole interval
Iω ∪ [0,∞). In paper [1], υ(t) = c eγ t, where c is a vector with positive components,
γ is a non-negative constant, was taken as such function. The choice of υ(t) of
the mentioned form allowed to prove the global solvability of problem (3), (2) and
non-negativity of the solution, and construct upper estimates of the solution x(t)
on the interval [0,∞).

We will provide the result established in paper [2]. We assume that, given some
1 6 k < m, the components of the mapping

f(t, xt) = (f1(t, xt), . . . , fk(t, xt), fk+1(t, xt), . . . , fm(t, xt))
T

satisfy the following assumptions:
(H1) for all (t, xt) ∈ R+ × C(Iω, Rm+ ), the inequality

(4) (fk+1(t, xt), . . . , fm(t, xt))
T 6 p = (pk+1, . . . , pm)T ,

holds, where pk+1 > 0, . . . , pm > 0 are some constants;
(H2) the vector η = (ηk+1, . . . , ηm)T > 0 with the components

(5) ηj =
pj
µj
, k + 1 6 j 6 m,

and the set Dη = {u ∈ Rm+ : uj 6 ηj , k + 1 6 j 6 m} are such that for all
(t, xt) ∈ R+ × C(Iω, Dη), the estimate

(6) (f1(t, xt), . . . , fk(t, xt))
T 6 L(x

(k)
t )

=

n∑
i=0

Lk,ix
(k)(t− ωi) +

∫ 0

−ω
Lk,n+1(θ)x

(k)(t+ θ) dθ,
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is true, where x(k)(t) = (x1(t), . . . , xk(t))
T , the delays 0 < ωi 6 ω <∞, 1 6 i 6 n,

ω0 = 0, Lk,0, . . . , Lk,n, Lk,n+1(θ) � k × k are non-negative matrices, the elements
Lk,n+1(θ) are Riemmann integrable, and every row of the matrix

(7) L[k] =

n∑
i=0

Lk,i +

∫ 0

−ω
Lk,n+1(θ) dθ

contains at least one positive element.
Resting on assumptions (H1), (H2), we denote

µ[k] = diag
(
µ1, . . . , µk

)
, I[k] = diag(1, . . . , 1),

ψ[k](t) = (ψ1(t), . . . , ψk(t))
T , t ∈ Iω,

and introduce a system of inequalities with respect to the vector c ∈ Rk and the
constant r ∈ R:

(8) c > 0,
(
µ[k] − rI[k] −

n∑
i=0

erωiLk,i −
∫ 0

−ω
e−rθLk,n+1(θ) dθ

)
c > 0,

(9) c > max
t∈Iω

(
ertψ[k](t)

)
, 0 < r < min(µ1, . . . , µk).

In the following statements and arguments we will use the properties of matrices
of a special form. Let G = (gij) � m × m be a real matrix such that gij 6 0,
1 6 i, j 6 m, i 6= j. We will call the matrix G a non-singular M-matrix if it is
non-singular and the matrix G−1 is non-negative [4], [5]. The following statements
are equivalent to [4], [5]: 1) G is a non-singular M-matrix; 2) all eigenvalues of
G have positive real parts; 3) all corner minors of G are positive; 4) there exists
ξ ∈ Rm, ξ > 0, such that Gξ > 0; 5) the matrix (−G) satis�es the criterion of
Sevastyanov�Kotelyanskii. The complete list of equivalent statement is provided
in [4].

Theorem 1. Suppose that the assumptions (H1), (H2) are ful�lled, µ[k] − L[k] is
a non-degenerate M-matrix, and the components of the initial function ψ are such
that

(10) max
t∈Iω

ψj(t) 6 ηj , k + 1 6 j 6 m.

Then the Cauchy problem (1), (2) is uniquely solvable on the semi-axis [0,∞), and
for its solution x = x(t) with all t ∈ Iω ∪ [0,∞), the following componentwise
estimates hold:

(11) 0 6 xi(t) 6 cie
−rt, 1 6 i 6 k,

(12) 0 6 xj(t) 6 ηj , k + 1 6 j 6 m,

where c = (c1, . . . , ck)
T and r satisfy the inequalities (8), (9), the constants ηk+1,

. . . , ηm are de�ned by the formula (5).

The sketch of the proof of Theorem 1 is as follows. We �x τ > 0 and construct
a set of functions Cψ,0,υ, in which

υ(t) = (υ1(t), . . . , υk(t), υk+1(t), . . . , υm(t))T ,

υ(k)(t) = (υ1(t), . . . , υk(t)) = (c1e
−rt, . . . , cke

−rt),

(υk+1(t), . . . , υm(t)) = (ηk+1, . . . , ηm), t ∈ R,
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where c = (c1, . . . , ck)
T , r and ηk+1, . . . , ηm are mentioned in the statement of

this theorem. Based on relations (4)�(9), we get that for every function x ∈ Cψ,0,υ
it is true that F (x) ∈ Cψ,0,υ. The parameters υ(t) do not depend on τ . Applying
Lemmas 1, 2, we establish that problem (3), (2) has on the interval [0,∞) a unique
solution x(t), and inequalities (11), (12) hold.

Note that Theorem 1 does not cover all possible variants of the studied Cauchy
problem (1), (2). This is due to the fact that the assumptions (H1), (H2) can be met
not for all the components of the mapping f(t, xt). Moreover, some components of
f(t, xt) can admit estimates which do not e�ect the construction of exponentially
decreasing estimates of a part of the components of the solution x(t). The examples
of such Cauchy problems are provided in the next section.

3. Examples of studying of concrete models of living systems.

EXAMPLE 1. Consider a mathematical model describing the spread of tubercu-
losis among adult population of a separate region (individuals older than 16). Let
X1 be a group of latently infected individuals, X2 a group of individuals sick with
tuberculosis,X3 a group of individuals susceptible to the disease. We denote the size
of the mentioned groups at the moment of time t by x(t) = (x1(t), x2(t), x3(t))

T .
The equations of the model are as follows:

(13)
dx1(t)

dt
= f1(t, xt)− (λ1 + γ)x1(t),

(14)
dx2(t)

dt
= f2(t, xt)− (λ2 + α)x2(t), t > 0,

(15)
dx3(t)

dt
= f3(t, xt)− (λ3 + βx2(t))x3(t),

(16) x1(0) = x01, x3(0) = x03, x2(t) = ψ2(t), t ∈ Iω = [−ω, 0].

The components f(t, xt) = (f1(t, xt), f2(t, xt), f3(t, xt))
T have the form:

f1(t, xt) = (1− δ)βx2(t)x3(t) + αx2(t)

+ ρ(t− ω)
(
1− exp

(
−
∫ 0

−ω
ϕ(θ)x2(t+ θ) dθ

))
,

f2(t, xt) = δβx2(t)x3(t) + γx1(t),

f3(t, xt) = ρ(t− ω) exp
(
−
∫ 0

−ω
ϕ(θ)x2(t+ θ) dθ

)
.

All parameters in equations (13)�(15) are positive, δ < 1. The function ϕ(θ), θ ∈ Iω
is continuous, non-negative, and is not identically equal to zero. The function ρ(s)
is continuous, non-negative, and is not identically equal to zero, s ∈ Iω ∪ [0,∞) and
is bounded from above by a positive constant:

sup
t>0

ρ(t− ω) 6 ρ∗.

The initial data in (16) are such that x01 > 0, x03 > 0, the function ψ2(t) is non-
negative and continuous.
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The system of equations (13)�(15) with the initial data (16) corresponds to the
Cauchy problem (1), (2). Moreover, we can write that

ψ1(t) = x01, ψ3(t) = x03, t ∈ Iω.
We turn to the assumptions (H1), (H2). Let x1(t), x2(t), x3(t) be non-negative

continuous functions, −ω 6 t < ∞. Based on the structure of the components
f(t, xt), we obtain that for all t > 0 it is true that f3(t, xt) 6 p3 = ρ∗, and if

(17) x3(t) 6 η3 =
ρ∗

λ3
, t > 0,

then the following inequalities hold:

f1(t, xt) 6
(
(1− δ)βη3 + α

)
x2(t) + ρ∗

∫ 0

−ω
ϕ(θ)x2(t+ θ) dθ,

f2(t, xt) 6 δβη3x2(t) + γx1(t), t > 0.

Denote Jϕ =
∫ 0

−ω ϕ(θ) dθ. We will write out the matrices Lk,i, L[k], µ[k] − L[k]

that emerge in the assumptions (H1), (H2) with m = 3, k = 2, k + 1 = 3, n = 0:

µ[2] =

(
λ1 + γ 0

0 λ2 + α

)
, L2,0 =

(
0 (1− δ)βη3 + α
γ δβη3

)
,

L2,1(θ) =

(
0 ρ∗ϕ(θ)
0 0

)
, L[2] =

(
0 (1− δ)βη3 + α+ ρ∗Jϕ
γ δβη3

)
,

µ[2] − L[2] =

(
λ1 + γ −(1− δ)βη3 − α− ρ∗Jϕ
−γ λ2 + α− δβη3

)
.

Additionally, we assume that

(18) x03 6 η3.

Applying Theorem 1, we require that µ[2] −L[2] is a non-singular M-matrix. We
will use the criterion which requires all main minorsM1,M2 of the matrix µ[2]−L[2]

to be positive. The mentioned minors are as follows: M1 = λ1 + γ > 0,

M2 = det (µ[2] − L[2]) = (λ1 + γ)(λ2 + α− δβη3)− γ
(
(1− δ)βη3 + α+ ρ∗Jϕ

)
.

Transforming the inequality M2 > 0, we arrive at the relation

(19) R0,1 =
δβη3
λ2 + α

+
γ
(
(1− δ)βη3 + α+ ρ∗Jϕ

)
(λ1 + γ)(λ2 + α)

< 1,

which means that µ[2] − L[2] is a non-singular M-matrix. Following the common
terminology [6], [7], we will call the constant R0,1 the basic reproductive number.
The �rst term in the right-hand side of the formula for R0,1 means the coe�cient
of producing sick individuals due to the transitions X3 → X2, and the second term
due to the transitions X3 → X1 → X2 ↔ X1.

Hence, if inequalities (18), (19) are ful�lled, then due to Theorem 1, the component
x3(t) of the studied model is non-negative and satis�es the estimate (17), and the
components x1(t), x2(t) of the solution admit the exponentially decreasing estimates

(20) 0 6 xi(t) 6 cie
−rt, i = 1, 2, t ∈ Iω ∪ [0,∞),

where the positive constants c1, c2, r are obtained from the system of inequalities
of the form (8), (9). We turn to �nding these constants.
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We denote: c[2] = (c1, c2)
T , ψ[2](t) = (x

(0)
1 , ψ2(t))

T , t ∈ Iω,

H(r) = (hij(r)) = µ[2] − rI[2] − L2,0 −
∫ 0

−ω
e−rθL2,1(θ) dθ, r ∈ R.

We obtain that

H(r) =

(
λ1 + γ − r −(1− δ)βη3 − α− ρ∗

∫ 0

−ω e
−rθϕ(θ) dθ

−γ λ2 + α− δβη3 − r

)
, r ∈ R,

It is easy to see that H(0) = µ[2] −L[2] and detH(0) > 0. Inequalities (8), (9) lead
to the following relations:

(21) c[2] > 0, H(r)c[2] > 0,

(22) c[2] > max
t∈Iω

(
ertψ[2](t)

)
, 0 < r < min(λ1 + γ, λ2 + α).

We will �nd the constant r as the root of the equation

(23) detH(r) = 0, 0 < r < min(λ1 + γ, λ2 + α).

We have that

detH(r) = (λ1+γ−r)(λ2+α−δβη3−r)−γ
(
(1−δ)βη3+α+ρ∗

∫ 0

−ω
e−rθϕ(θ) dθ

)
.

Relation (19) yields the inequality λ2+α > δβη3. Taking into account this inequality,
we will �nd the root r of equation (23) based on the following relation:

(24) (λ1 + γ − r)(λ2 + α− δβη3 − r) = γ
(
(1− δ)βη3 + α+ ρ∗

∫ 0

−ω
e−rθϕ(θ) dθ

)
,

(25) 0 < r < rH = min(λ1 + γ, λ2 + α− δβη3).
Putting r ∈ R, 0 6 r 6 rH , we introduce the functions

ϕ1(r) = (λ1 + γ − r)(λ2 + α− δβη3 − r),

ϕ2(r) = γ
(
(1− δ)βη3 + α+ ρ∗

∫ 0

−ω
e−rθϕ(θ) dθ

)
.

We have that ϕ1(0) > ϕ2(0), because detH(0) > 0 and ϕ1(rH) = 0 < ϕ2(rH).
The function ϕ1(r) is strictly monotonously decreasing, and the function ϕ2(r) is
strictly monotonously increasing on the interval r ∈ (0, rH). Therefore, equation
(24), taking into account (25), has exactly one root r = r∗ ∈ (0, rH). Putting that
r = r∗, we con�rm that equation (23) has a solution.

To �nd the vector c[2], we will do the following. Based on (23), consider the

equation H(r∗)u = 0, where u = (u1, u2)
T ∈ R2:

h11(r∗)u1 + h12(r∗)u2 = 0,

h21(r∗)u1 + h22(r∗)u2 = 0.

Since detH(r∗) = 0 and h11(r∗) = λ1 + γ − r∗ 6= 0, then

u = (u1, u2)
T = ν u∗ = ν (u∗1, 1)

T ,

where ν ∈ R is an arbitrary constant, and the component u∗1 is as follows:

u∗1 =
(1− δ)βη3 + α+ ρ∗

∫ 0

−ω e
−r∗θϕ(θ) dθ

λ1 + γ − r∗
.
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Assuming that ν > 0, we establish that r∗ and the vector c[2] = νu∗ satisfy (21).
Now we take that c[2] = ν∗u

∗, where the constant ν∗ > 0 is chosen to satisfy the
�rst of the inequalities from (22), and depends on the components of the initial
function ψ[2](t).

We turn to formula (19). Note that the value of R0,1 depends signi�cantly on
βη3, ρ

∗Jϕ. Indeed, for all parameters γ, α, λ1, λ2, the following inequality holds:
γα

(λ1 + γ)(λ2 + α)
< 1.

Hence, the inequality R0,1 < 1 will be ful�lled for su�ciently small βη3 and ρ∗Jϕ.
The parameters βη3, ρ

∗Jϕ re�ect the speeds of emerging of new sick and infected
individuals per one existing sick individual as a result of contacts of sick individuals
with susceptible adult individuals and growing individuals of the age of around
16. Therefore, in the framework of the considered model, the restriction of the
possibility of contacts between the mentioned groups of individuals can lead to
eradication of the disease in the area.

EXAMPLE 2. Consider the mathematical model describing production of some
substances Y1, Y2, Y3 under the in�uence of the feedback from the stimulant Y4 and
the inhibitor Y5. The variables y1(t), y2(t), y3(t), y4(t), y5(t) stand for the number
(in conventional units) of Y1, Y2, Y3, Y4, Y5 at the moment of time t. We will study
the Cauchy problem for the system of di�erential equations

dy1(t)

dt
=

1

1 + γy5(t− ω1)
− λ1y1(t),

dy2(t)

dt
=
αy4(t− ω2) y1(t)

1 + βy4(t− ω2)
− λ2y2(t),

dy3(t)

dt
= y2(t)− λ3y3(t), t > 0,

dy4(t)

dt
= y3(t)− λ4y4(t),

dy5(t)

dt
= y4(t)− λ5y5(t),

y1(0) = y01 , y2(0) = y02 , y3(0) = y03 ,

y4(t) = ψ4(t), y5(t) = ψ5(t), t ∈ Iω = [−max{ω1, ω2}, 0],
where λi, 1 6 i 6 5, γ, α, β, ω1, ω2 are positive parameters, the initial values
y01 , y

0
2 , y

0
3 are non-negative constants, the initial functions ψ4(t), ψ5(t) are non-

negative and continuous. Up to notation, the mentioned equations and initial data
correspond to the Cauchy problem (1), (2).

For further investigation, we will write these equations and initial data in the
form that is more convenient. We re-letter the variables of the studied model:

x1(t) = y2(t), x2(t) = y3(t), x3(t) = y4(t), x4(t) = y5(t), x5(t) = y1(t).

We put x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))
T and consider the Cauchy problem

for the components of x(t):

(26)
dx1(t)

dt
=
αx3(t− ω2)x5(t)

1 + βx3(t− ω2)
− λ2x1(t),

(27)
dx2(t)

dt
= x1(t)− λ3x2(t),
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(28)
dx3(t)

dt
= x2(t)− λ4x3(t), t > 0,

(29)
dx4(t)

dt
= x3(t)− λ5x4(t),

(30)
dx5(t)

dt
=

1

1 + γx4(t− ω1)
− λ1x5(t),

(31) x1(0) = y02 , x2(0) = y03 , x5(0) = y01 , x3(t) = ψ4(t), x4(t) = ψ5(t), t ∈ Iω.
We assume that xi(t) are non-negative continuous functions,

1 6 i 6 5, t ∈ Iω ∪ [0,∞).

Based on the structure of the components f(t, xt) of the system (26)�(30), we obtain
that

(32) f5(t, xt) =
1

1 + γx4(t− ω1)
6 p5 = 1, t > 0,

and, if the inequality

(33) x5(t) 6 η5 =
p5
λ1
, t > 0,

holds, then for all t > 0 the following relations are true:

(34) f1(t, xt) =
αx3(t− ω2)x5(t)

1 + βx3(t− ω2)
6 αη5x3(t− ω2),

(35) f2(t, xt) = x1(t), f3(t, xt) = x2(t),

(36) f4(t, xt) = x3(t).

From (32)�(36) it is easy to see that the variable x4(t) is not present in (34)�(36).
Below, two ways to construct exponentially decreasing estimates for a part of

the components x(t), based on the assumptions (H1), (H2), Theorem 1, and their
modi�cation, are provided.

First way. This way corresponds to the approach presented in Section 2 and
described in Example 1. Here, to perform supplementary transformations, we intro-
duce the constant ε > 0 and strengthen the estimate for f1(t, xt): instead of (34),
we will use the inequality

(37) f1(t, xt) 6 αη5x3(t− ω2) + εx4(t), t > 0.

From here, we can write the vector p and the matrices Lk,i, L[k], µ[k] − L[k],
emerging in the assumptions (H1), (H2) with m = 5, k = 4, k + 1 = 5, n = 2, in
particular: p = p5 = 1, L4,1 ≡ 0, L4,3(θ) ≡ 0, θ ∈ Iω,

µ[4] =


λ2 0 0 0
0 λ3 0 0
0 0 λ4 0
0 0 0 λ5

 , L4,0 =


0 0 0 ε
1 0 0 0
0 1 0 0
0 0 1 0

 ,

L4,2 =


0 0 αη5 0
0 0 0 0
0 0 0 0
0 0 0 0

 , L[4] =


0 0 αη5 ε
1 0 0 0
0 1 0 0
0 0 1 0

 ,
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µ[4] − L[4] =


λ2 0 −αη5 −ε
−1 λ3 0 0
0 −1 λ4 0
0 0 −1 λ5

 .

In addition, we assume that

(38) x5(0) = y01 6 η5.

Turning to the conditions of Theorem 1, we require that µ[4] − L[4] was a non-
singular M-matrix. We obtain the positivity conditions for all main minors of the
matrix µ[4] − L[4]. The mentioned minors are as follows:

M1 = λ2 > 0, M2 = λ2 λ3 > 0, M3 = λ2 λ3 λ4 − αη5, M4 = λ5M3 − ε.

Assume that the following inequality holds:

(39) λ2 λ3 λ4 − αη5 > 0.

Then we can choose ε = ε∗ > 0, such that µ[4] −L[4] was a non-singular M-matrix.
Therefore, if the inequalities (38) and (39) are ful�lled, then for the variables

x1(t), x2(t), x3(t), x4(t), the estimates

(40) 0 6 xi(t) 6 cie
−rt, 1 6 i 6 4, t ∈ Iω ∪ [0,∞),

are true, where the positive constants c1, c2, c3, c4, r are found from the system of
inequalities of the form (8), (9). We move on to �nding these constants.

We denote:

c[4] = (c1, c2, c3, c4)
T ,

ψ[4](t) = (y02 , y
0
3 , ψ4(t), ψ5(t))

T , t ∈ Iω,
H[4](r) = µ[4] − rI[4] − L4,0 − erω2L4,2, r ∈ R.

We obtain that

H[4](r) =


λ2 − r 0 −erω2αη5 −ε∗
−1 λ3 − r 0 0
0 −1 λ4 − r 0
0 0 −1 λ5 − r

 ,

H[4](0) = µ[4] − L[4], detH[4](0) > 0.

Turning to inequalities (8), (9), we arrive at the following relations:

(41) c[4] > 0, H[4](r)c[4] > 0,

(42) c[4] > max
t∈Iω

(
ertψ[4](t)

)
, 0 < r < min(λ2, λ3, λ4, λ5).

We will �nd the constant r as a root of the equation

(43) detH[4](r) = 0, 0 < r < rλ = min(λ2, λ3, λ4, λ5).

We have that

detH[4](r) = (λ5 − r)
(
(λ2 − r)(λ3 − r)(λ4 − r)− erω2αη5

)
− ε∗,

and equation (43) can be written in the form

(44) (λ2 − r)(λ3 − r)(λ4 − r) =
ε∗

λ5 − r
+ erω2αη5, 0 < r < rλ.
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Introduce the functions

ϕ1(r) = (λ2 − r)(λ3 − r)(λ4 − r), ϕ2(r) =
ε∗

λ5 − r
+ erω2αη5, r ∈ R, 0 6 r < rλ.

We have that ϕ1(0) > ϕ2(0) due to (39). The function ϕ1(r) is strictly monotonously
decreasing, and the function ϕ2(r) is strictly monotonously increasing on the interval
r ∈ (0, rλ), and, moreover, ϕ2(r)→ +∞ given r → λ5, r < λ5. Therefore, equation
(44) along with equation (43) have on the interval r ∈ (0, rλ) exactly one root
r = r∗.

Now, we will �nd the vector c[4]. Based on (41), consider the equationH[4](r∗)u =

0, where u = (u1, u2, u3, u4)
T ∈ R4. From (44) it follows that the rank of H[4](r∗)

equals 3. We will write the required solution u = u∗ = (u∗1, u
∗
2, u
∗
3, u
∗
4)
T in the form

u∗1 = (λ3 − r∗)(λ4 − r∗)(λ5 − r∗)u∗4,

u∗2 = (λ4 − r∗)(λ5 − r∗)u∗4, u∗3 = (λ5 − r∗)u∗4.
where u∗4 is an arbitrary constant. The constant u∗4 is chosen in a way that the
vector c[4] = c∗[4] = u∗ > 0 satis�es the inequality

(45) c∗[4] > max
t∈Iω

(
er∗tψ[4](t)

)
.

It is obvious that for every initial function ψ[4](t) there is a positive constant u∗4
that guarantees the ful�llment of inequality (45).

Note that the vector c∗[4] and the constant r∗ depend on the constant ε∗. If we do

not use in (37) the term εx4(t), that is, if we put ε = 0, then �nding the solutions
of system (41), (42) will become signi�cantly more complicated.

Second way. This way is based on a modi�cation of the approach proposed in
Section 2. The modi�cation is based on another variant of constructing of the set
of functions Cψ,0,υ, invariant for the operator F with every �xed τ > 0. Here, it
is signi�cantly important that for the studied Cauchy problem, the variable x4(t)
does not belong to relations (34)�(36).

Assume that inequality (38) is ful�lled. Following the sketch of a proof of Theorem
1, we consider the function

υ(t) = (c1e
−rt, c2e

−rt, c3e
−rt, x04(t), η5)

T , t ∈ Iω ∪ [0,∞),

where the constant η5 is mentioned in (33), c1, c2, c3, r are the required positive
constants, the function x04(t) is found via c3e

−rt and the integral relation

x4(t) = e−λ5t
(
ψ5(0) +

∫ t

0

eλ5s x3(s) ds
)
, t > 0,

for the variable x4(t), which follows from (29) and is complemented with the initial
data x4(t) = ψ5(t), t ∈ Iω. We denote

(46) ψ0
5 = max

t∈Iω
ψ5(t).

Assume that given some c3 > 0, r > 0, the following relations are true:

0 6 x3(t) 6 c3e
−rt, t ∈ [0,∞).

Then for the variable x4(t), the a priori estimates

0 6 x4(t) 6 ψ0
5 , t ∈ Iω,

0 6 x4(t) 6 e−λ5t ψ0
5 + h4(t), t ∈ [0,∞),
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hold, where h4(t) = c3
(
e−λ5t − e−rt

)
/(r − λ5), if r 6= λ5, and h4(t) = c3 t e

−rt, if
r = λ5. Further, we put that

(47) x04(t) = ψ0
5 , t ∈ Iω, x04(t) = e−λ5t ψ0

5 + h4(t), t ∈ [0,∞).

Based on inequalities (32)�(35), we denote:

c[3] = (c1, c2, c3)
T ,

ψ[3](t) = (y02 , y
0
3 , ψ4(t))

T , t ∈ Iω,
H[3](r) = µ[3] − rI[3] − L3,0 − erω2L3,2, r ∈ R,

where

µ[3] =

 λ2 0 0
0 λ3 0
0 0 λ4

 , L3,0 =

 0 0 0
1 0 0
0 1 0

 ,

L3,2 =

 0 0 αη5
0 0 0
0 0 0

 , L[3] =

 0 0 αη5
1 0 0
0 1 0

 ,

µ[3] − L[3] =

 λ2 0 −αη5
−1 λ3 0
0 −1 λ4

 .

Assume that inequality (39) is ful�lled and �nd a solution of the inequalities

(48) c[3] > 0, H[3](r)c[3] > 0,

(49) c[3] > max
t∈Iω

(
ertψ[3](t)

)
, 0 < r < min(λ2, λ3, λ4).

We will �nd the constant r as the root of the equation

(50) detH[3](r) = (λ2−r)(λ3−r)(λ4−r)−erω2αη5 = 0, 0 < r < min(λ2, λ3, λ4).

Omitting the details, we establish that equation (50) has a unique root r = r0 on
the mentioned interval. Turning to (48), (49), we put that the required

c[3] = c0[3] = u0 = (u01, u
0
2, u

0
3)
T ,

where
u01 = (λ3 − r0)(λ4 − r0)u03, u02 = (λ4 − r0)u03,

u03 is a positive constant such that c0[3] satis�es the inequality

(51) c0[3] > max
t∈Iω

(
er0tψ[3](t)

)
.

It is clear that for every initial function ψ[3](t) there exists a constant u03 > 0 that
provides the ful�llment of inequality (51).

Assume that inequalities (38) and (39) are ful�lled. We �x the function

υ = υ(t) = (c01e
−r0t, c02e

−r0t, c03e
−r0t, x04(t), η5)

T , t ∈ Iω ∪ [0,∞).

Based on works [1], [2] and following the lines of the sketch of a proof of Theorem
1, we establish that for every �xed τ > 0 the set of functions Cψ,0,υ is invariant for
the operator F . Then for the solution x(t) of the Cauchy problem (26)�(31), the
following estimates are true:

0 6 xi(t) 6 c0i e
−r0t, i = 1, 2, 3,

0 6 x4(t) 6 x04(t), 0 6 x5(t) 6 η5, t ∈ Iω ∪ [0,∞).
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Note that the constants c01, c
0
2, c

0
3, r0 do not depend on λ5, and the form of the

upper estimate x04(t) of the variable x4(t) is more complicated than the one of the
estimate c∗4e

−r∗t that was established within the framework of the �rst way.
We return to the initial notation. We will rewrite the di�erential equation for

y1(t), taking into account the initial data, in the form of the Cauchy problem

(52) y1(0) = y01 ,
dy1(t)

dt
= 1 +

( 1

1 + γy5(t− ω1)
− 1
)
− λ1y1(t), t > 0,

assuming that the function y5(t) is known. Based on the obtained estimates, we have
that y5(t) ≡ x4(t) → 0 given t → +∞. Using the standard approaches to solving
the Cauchy problem for non-uniform linear di�erential equation and applying to
(52) the results of work [8], we obtain that y1(t)→ 1/λ1 given t→ +∞.

We express the inequality (39) in the following form:

R0,2 =
α

λ1λ2λ3λ4
< 1.

The constant R0,2 will be called a basic reproductive number. This number shows
the relation of intensity of production of the substance Y2 (the constant α) to
the product of intensities of decomposition of the substances Y1, Y2, Y3, Y4 (the
constant λ1λ2λ3λ4). From the mentioned results, it follows that in the case when
the inequalities R0,2 < 1 and y01 6 1/λ1 are ful�lled, the amount of the substances
Y2, Y3, Y4, Y5 decreases to zero over time, while the amount of the substance Y1
gets to the level 1/λ1.

EXAMPLE 3. Consider a mathematical model, describing development of HIV-1
infection in a human organism. We will study the dynamics of HIV-1 infection in
terms of the following populations of viral particles and cells:
V � virions (viral particles leading to contamination with HIV-1 infection);
I � productively infected cells that produce the virions V ;
T � target cells for the virions V ;
E � lymphocytes-e�ectors that destroy the cells I;
Q � precursor cells of the lymphocytes-e�ectors E.

Let x1(t), x2(t), x3(t), x4(t), x5(t) be the sizes of populations of the virions V
and the cells I, T , E, Q at the moment of time t,

x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))
T .

The equations of the model have the following form:

(53)
dx1(t)

dt
= νx2(t)− (µ1 + γ1,3x3(t))x1(t),

(54)
dx2(t)

dt
= δ2γ1,3x1(t− ω1)x3(t− ω1) + δ2γ2,3x2(t− ω1)x3(t− ω1)

− (µ2 + γ2,4x4(t))x2(t),

(55)
dx3(t)

dt
= ρ3(t)− (µ3 + γ1,3x1(t) + γ2,3x2(t))x3(t), t > 0,

(56)
dx4(t)

dt
= n4βx5(t− ω2)x3(t− ω2)x1(t− ω2)− (µ4 + δ4γ2,4x2(t))x4(t),

(57)
dx5(t)

dt
= ρ5(t)+n5βx5(t−ω2)x3(t−ω2)x1(t−ω2)− (µ5+βx3(t)x1(t))x5(t),
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(58) xi(t) = ψi(t), i = 1, 2, 3, 5, t ∈ Iω = [−max{ω1, ω2}, 0], x4(0) = x04.

All the parameters in equations (53)�(57) are positive and, moreover, δ2 < 1,
δ4 < 1. The functions ρ3(t), ρ5(t) are continuous, non-negative, not identically zero,
t ∈ [0,∞), and bounded from above by the positive constants:

sup
t>0

ρ3(t) 6 ρ∗3, sup
t>0

ρ5(t) 6 ρ∗5.

The initial data in (58) is such that x04 > 0, the functions ψi(t) are non-negative
and continuous, i = 1, 2, 3, 5, t ∈ Iω. We denote ψ4(t) = x04, t ∈ Iω. The system
(53)�(58) corresponds to the Cauchy problem (1), (2).

Assume that xi(t) are non-negative continuous functions, 1 6 i 6 5, t ∈ Iω ∪
[0,∞). Based on the structure of the components f(t, xt) of the system (53)�(57),
we obtain that

(59) f3(t, xt) = ρ3(t) 6 p3 = ρ∗3, t > 0,

and, if the inequality

(60) x3(t) 6 η3 =
p3
µ3
, t ∈ Iω ∪ [0,∞),

is ful�lled, then for every t > 0 the following relations are true:

(61) f1(t, xt) = νx2(t),

(62) f2(t, xt) = δ2γ1,3x1(t− ω1)x3(t− ω1) + δ2γ2,3x2(t− ω1)x3(t− ω1)

6 δ2γ1,3η3x1(t− ω1) + δ2γ2,3η3x2(t− ω1),

(63) f4(t, xt) = n4βx5(t− ω2)x3(t− ω2)x1(t− ω2) 6 n4βη3x5(t− ω2)x1(t− ω2),

(64) f5(t, xt) = ρ5(t) + n5βx5(t− ω2)x3(t− ω2)x1(t− ω2)

6 ρ∗5 + n5βη3x5(t− ω2)x1(t− ω2).

From (59)�(64), it is clear that for the Cauchy problem (53)�(58), the assumptions
(H1) and (H2) are partially met. Thus, if we only consider the equations for
x1(t), x2(t), x3(t), then they meet the mentioned assumptions, since x4(t) and
x5(t) are not present in relations (59)�(62). Therefore, along with the estimate
0 6 x3(t) 6 η3, t ∈ Iω ∪ [0,∞), we can formally construct the estimates

(65) 0 6 x1(t) 6 c1e
−rt, 0 6 x2(t) 6 c2e

−rt, t ∈ Iω ∪ [0,∞),

where the positive constants c1, c2, r are found from the system of inequalities of
the form (8), (9) given m = 3, k = 2, k+1 = 3, n = 1. The values of the mentioned
constants do not depend on the values of the variables x4(t), x5(t), t ∈ Iω ∪ [0,∞).

We turn to �nding c1, c2, r. Keeping the lettering of the variables and using
(59)�(62), we consider the auxiliary Cauchy problem

(66)
dx1(t)

dt
= νx2(t)− µ1x1(t), t > 0,

(67)
dx2(t)

dt
= δ2γ1,3η3x1(t− ω1) + δ2γ2,3η3x2(t− ω1)− µ2x2(t),

(68) x1(t) = ψ1(t), x2(t) = ψ2(t), t ∈ Iω.
Based on (66)�(68), we denote:

c[2] = (c1, c2)
T , ψ[2](t) = (ψ1(t), ψ2(t))

T , t ∈ Iω,
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µ[2] =

(
µ1 0
0 µ2

)
, L2,0 =

(
0 ν
0 0

)
,

L2,1 =

(
0 0

δ2γ1,3η3 δ2γ2,3η3

)
, L[2] =

(
0 ν

δ2γ1,3η3 δ2γ2,3η3

)
,

µ[2] − L[2] =

(
µ1 −ν

−δ2γ1,3η3 µ2 − δ2γ2,3η3

)
,

H[2](r) = µ[2] − rI[2] − L2,0 − erω1L2,1, r ∈ R.
Performing elementary transformations, we �nd that

H[2](r) =

(
µ1 − r −ν

−erω1δ2γ1,3η3 µ2 − r − erω1δ2γ2,3η3

)
, r ∈ R.

Assume that the following inequality holds:

(69) µ1(µ2 − δ2γ2,3η3) > νδ2γ1,3η3.

Then µ[2]−L[2] is a non-singular M-matrix and there exists a solution of the system

(70) c[2] > 0, H[2](r)c[2] > 0,

(71) c[2] > max
t∈Iω

(
ertψ[2](t)

)
, 0 < r < min(µ1, µ2).

The solution of the system of inequalities (70), (71) is constructed the following
way. We put that r = r∗, where r∗ is the unique root of the equation

µ2 − r − erω1δ2γ2,3η3 =
erω1νδ2γ1,3η3

µ1 − r
on the interval 0 < r < min(µ1, µ2), c1 = c∗1 = νc∗2/(µ1 − r∗), where the constant
c∗2 > 0 is chosen in a way that the vector c∗[2] = (c∗1, c

∗
2)
T satis�es the inequality

c∗[2] > max
t∈Iω

(
er∗tψ[2](t)

)
.

We return to relations (63), (64) and the variables x4(t), x5(t). Turning to (60)
and (65), we set that

(72) 0 6 x3(t) 6 η3, 0 6 x1(t) 6 x∗1 = c∗1e
r∗ω, t ∈ Iω ∪ [0,∞),

where ω = max{ω1, ω2}. Keeping the lettering of the variables and using (63), (64),
we consider the auxiliary Cauchy problem

(73)
dx4(t)

dt
= n4βη3x

∗
1x5(t− ω2)− µ4x4(t),

(74)
dx5(t)

dt
= ρ∗5 + n5βη3x

∗
1x5(t− ω2)− µ5x5(t), t > 0,

(75) x4(t) = ψ4(t), x5(t) = ψ5(t), t ∈ Iω.
We reformulate the problem (73)�(75) as an equivalent problem in the form of the
system of linear integral equations

(76) x4(t) = e−µ4t
(
ψ4(0) +

∫ t

0

eµ4s n4βη3x
∗
1x5(s− ω2) ds

)
,

(77) x5(t) = e−µ5t
(
ψ5(0) +

∫ t

0

eµ5s (ρ∗5 + n5βη3x
∗
1x5(s− ω2))ds

)
, t > 0,
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complemented with the initial data (75). Using the sketch of a proof of Lemma 5
and Theorem 1 from work [1], we get that there exists a function

w(t) = (w4(t), w5(t))
T = (q4e

γt, q5e
γt)T , t ∈ Iω ∪ [0,∞),

containing positive constants q4, q5, γ and satisfying the inequalities

(78) e−µ4t
(
ψ4(0) +

∫ t

0

eµ4s n4βη3x
∗
1w5(s− ω2) ds

)
6 w4(t),

(79) e−µ5t
(
ψ5(0) +

∫ t

0

eµ5s (ρ∗5 + n5βη3x
∗
1w5(s− ω2))ds

)
6 w5(t), t ∈ [0,∞),

(80) ψ4(t) 6 w4(t), ψ5(t) 6 w5(t), t ∈ Iω.
Putting together the estimates and inequalities that follow from (59)�(80), we

introduce the function

υ(t) = (c∗1e
−r∗t, c∗2e

−r∗t, η3, q4e
γt, q5e

γt)T , t ∈ Iω ∪ [0,∞).

Using works [1], [2] and following the lines of the sketch of a proof of Theorem 1,
we establish that for every �xed τ > 0, the set of functions Cψ,0,υ is invariant for
the operator F . Then for the solution x(t) of the Cauchy problem (53)�(58), the
following estimates are true:

0 6 x1(t) 6 c∗1e
−r∗t, 0 6 x2(t) 6 c∗2e

−r∗t, 0 6 x3(t) 6 η3,

0 6 x4(t) 6 q4e
γt, 0 6 x5(t) 6 q5e

γt, t ∈ Iω ∪ [0,∞).

More functional upper estimates for x4(t), x5(t) can be constructed based on the
Cauchy problem for the auxiliary variables y4(t), y5(t):

(81)
dy4(t)

dt
= n4βη3c

∗
1e
−r∗(t−ω2)y5(t− ω2)− µ4y4(t),

(82)
dy5(t)

dt
= ρ∗5 + n5βη3c

∗
1e
−r∗(t−ω2)y5(t− ω2)− µ5y5(t), t > 0,

(83) y4(t) = ψ4(t), y5(t) = ψ5(t), t ∈ Iω.
Due to linearity of di�erential equations, the Cauchy problem (81)�(83) is globally
solvable, and its solution y4(t), y5(t) can be found with the help of the so-called
method of steps. Applying this method, we assume that the variable t takes values
on the intervals [0, ω2], [ω2, 2ω2] and so on. Each of the equations of the Cauchy
problem (81)�(83) is solved as a linear non-uniform di�erential equation with a
given initial condition. Non-negativity of y4(t), y5(t) follows from the form of the
right-hand sides of equations (81), (82) and the non-negativity of the initial data
(83). From the structure of the initial equations for x4(t), x5(t), written in integral
form, and the estimates (63), (64), it follows that x4(t) 6 y4(t), x5(t) 6 y5(t) for
all t ∈ Iω ∪ [0,∞).

To study the asymptotics of y4(t), y5(t) given t → +∞, we turn to the Cauchy
problem for equation (82). We put y5(t) = ρ∗5/µ5 + e−µ5tw(t). The variable w(t)
represents the solution of the Cauchy problem

(84)
dw(t)

dt
− b1e−r∗tw(t− ω2) = b2e

(µ5−r∗)t, t > 0,

(85) w(t) = w0(t) = eµ5t(ψ5(t)− ρ∗5/µ5), t ∈ [−ω2, 0],
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where

b1 = n5βη3c
∗
1e

(r∗+µ5)ω2 > 0, b2 = ρ∗5n5βη3c
∗
1e
r∗ω2/µ5 > 0.

We use the Cauchy representation formula for solutions of linear di�erential equation
and systems of delay equations [9] (Ch. 2, pp. 64�69), [10] (P. 2, pp. 29; appendix
B, pp. 465, 466, 480).

We denote: w̃0(s) = w0(s − ω2), 0 6 s 6 ω2, w̃0(s) = 0, s > ω2. Applying the
mentioned Cauchy formula to problem (84), (85), we obtain that

w(t) = C(t, 0)w(0) + b2

∫ t

0

C(t, s)e(µ5−r∗)sd s+ b1

∫ t

0

C(t, s)e−r∗sw̃0(s)d s, t > 0,

where C(t, s) is the Cauchy function. Given �xed 0 6 s 6 t < ∞, for the Cauchy
function, the estimate

|C(t, s)| 6 exp
(∫ t

s

b1e
−r∗ad a

)
6 exp

(∫ ∞
0

b1e
−r∗ad a

)
= exp

(
b1/r∗

)
= Ĉ <∞

is true, hence, the function C(t, s) is bounded. Then for the solution w(t) of problem
(84), (85), the following estimate is true:

|w(t)| 6 Ĉ|w(0)|+ Ĉ b2

∫ t

0

e(µ5−r∗)sd s+ Ĉ b1

∫ ω2

0

|w0(s− ω2)|d s, t > 0.

Estimating separate terms in the formula for the solution w(t) and omitting the
details, we establish the following relations: if µ5 < r∗, then |w(t)| 6 N1, if µ5 = r∗,
then |w(t)| 6 N2+N3t, if µ5 > r∗, then |w(t)| 6 N4+N5e

(µ5−r∗)t, t ∈ [0,∞), where
N1, . . . , N5 are positive constants. For each of the three listed cases, e−µ5tw(t)→ 0
given t→ +∞. Then y5(t)→ ρ∗5/µ5, and from (81) it directly follows that y4(t)→ 0
given t→ +∞.

Based on the mentioned estimate |w(t)|, it is easy to write out the upper estimates
for y5(t), y4(t) and, therefore, the upper estimates for the variables x4(t), x5(t) of
the studied model. Moreover, we directly obtain that x4(t)→ 0 given t→ +∞ and
lim supt→+∞ x5(t) 6 ρ∗5/µ5.

Concluding the study of the model, we represent the inequality (69) in the form

R0,3 =
δ2η3(µ1γ2,3 + νγ1,3)

µ1µ2
< 1.

We will call the constant R0,3 a basic reproductive number, which re�ects the
reproduction of viral particles and productively infected cells. Note that the expres-
sion for R0,3 does not contain any constants, taking into account the e�ect of a
speci�c immune response (of cells E and Q) on HIV-1 infection. The inequality
R0,3 < 1 is ful�lled due to particular relations between the constants, re�ecting the
dynamics of a non-speci�c immune response and other protective factors.

In the framework of the considered model, we establish that in the case when
the inequalities R0,3 < 1, ψ3(t) 6 η3, t ∈ Iω, hold, the size of the populations of the
virions V and productively infected cells I decrease to zero levels over time. We will
say that the eradication of HIV-1 infection happens at the moment of time t∗, if
x1(t) < 1, x2(t) < 1 for all t > t∗. Based on the exponentially decreasing estimates
of the variables x1(t), x2(t), we obtain that

(86) t∗ =
1

r∗
max{ln c∗1, ln c∗2}.
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We assume, in particular, that ψ2(t) ≡ 0, t ∈ Iω, and ψ1(t) is nonzero and
strictly monotonously increasing up to the value ψ1(0) = V0 > 1 in some small left
neighbourhood of t = 0. We can interpret the constant V0 as the initial number of
virions, which get into the organism of a healthy person. Omitting the intermediate
layouts, we �nd that for the mentioned initial functions, we can de�ne the constants
c∗1, c

∗
2 in the following way:

(87) c∗1 = V0 > 0, c∗2 =
µ1 − r∗

ν
V0 > 0.

The formulas (86), (87) show the dependence of t∗ of the initial number of virions
V0, which infect the organism of a healthy person.

An important practical result of studying the examples 1, 2, 3 is that we obtain
the formula for the basic reproductive number R0. The values of R0 < 1, R0 > 1
signi�cantly e�ect the dynamics of number of components of solutions in one studied
model or another. The case R0 < 1 provides exponential decreasing of a part
of components of solution of the models and allows to evaluate the time interval
until the decreasing of these components from the initial level to some favorable or
unfavorable one. The ways to study the considered systems of di�erential equations
are transferred to equations that are close in structure to the former ones, that
emerge in models of epidemiology and immunology, see, for example, [11], [12].

The author would like to thank V. V. Malygina, who pointed at the way to �nd
the estimates of the solution of the Cauchy problem (84), (85) and the speci�c
formulae for these estimates. Note that the Cauchy formula for delay di�erential
equations is widely used in problems of studying stability of solutions of the mentio-
ned equations. Thus, [13], [14] provides criteria of asymptotic stability and instability
of a trivial solution of a number of equations and mathematical models of living
systems, for which the use of the estimates of the Cauchy functions is signi�cant.
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