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DETECTION OF THE CORNER STRUCTURES IN 3D ARRAYS

USING SCALABLE MASKS

I.G. KAZANTSEV, B.O. MUKHAMETZHANOVA, K.T. ISKAKOV

Abstract. Scalable masks for the selection of angular structures in
three-dimensional (3D) digital images are considered, which are used in
processing with a 3D window sliding over the image and convolved with
image fragments. The model of scalable 3D mask was developed based
on expanding smaller mask along its sides and edges. In this case, the
submatrices remain unchanged, and new elements are added by repeating
the elements of the submatrix, preserving the structure of the corner.
This approach helps to design the hierarchical computations of 3D data.

Keywords: image processing, sliding window, scalable mask, corner
detection.

1. Introduction

The new masks are considered for detecting corners in three-dimensional images
to be used in the traditional method [1] of sliding windows. Interest in creating some
noise-resistant and e�cient corner detection algorithms has existed for decades,
and the sources of the methods being created are many areas of science: from
image processing and optics to di�erential and integral geometry [2], [3], [4]. Recent
surveys can be found in [5], [6], [7], A separate topical problem is face recognition,
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where the method of local binary patterns has a particular application. This appro-
ach is based on a variant of directional derivatives and known as the Kirsch di�erenti-
ating masks [9], [10]. The mathematical aspects of computer vision and regularizati-
on of the solution of the inverse problems of image processing by using a priori
information about sparsity of the corner points on image objects are investigated
in [11], [12].

The vertices of corner structures, or corner points, are an important local feature
of the image and belong to the class of the so-called dominant, characteristic,
singular, or points of interest, etc. Corners are invariant to rotation and changes
in the lighting conditions. They are used as reference points in the work with
stereopairs, as features in face recognition (for example, the corners of the eyes),
�ngerprints and letters in the texts, 3D reconstruction from a collection of a�ne
views, and tracking. Interesting �eld of applications of the detection of corners in 3D
arrays emerges in recent years with wide using the depth cameras and other stereo
vision sensors providing three-dimensional information [13], [14], [15]. Important
applications include camera calibration, robot navigation and machine vision, image
matching, and pattern recognition. In our recent work we have derived scalable
masks for detecting the corners in two-dimensional images [16]. The current paper
considers extension of this approach onto similar masks for �nding corners in images
for use on three-dimensional meshes.

The article is structured as follows. Section 2 shows examples of 2D corner
masks. Section 3 outlines the principles for constructing scalable 3D masks. Section
4 presents algorithms for selecting corners. The article ends with conclusions.

2. Examples of 2D scalable masks

Depending on the applications, the corner itself is also called the vertex of the
angle, that is, a separate point, and a less local object, including, in addition to the
vertex, also the rays propagating from it, as well as the entire angular structure. In
the processing of three-dimensional 3D images, the sides that make up the border
of the corner (generally, a polytop) are added to the straight lines (edges), in
which the dominant changes in brightness are visually observed, characterizing
the di�erence between one area of the image (corner) from another (background).
One of the common approaches to �nding corners consists in boundary detection
and binarization, and subsequent detection procedures on a binary analogue of an
image. This method is based on the studying the brightness of the image in the
vicinity of a point for the equality to zero of the second derivative and a change in
the sign in the direction normal to the boundary.

In this paper we consider the group of algorithms that does not perform edge
selection and binarization, but works directly with a grayscale image, scanning its
elements with a local neighborhood and calculating the correlation of a snapshot
fragment with a mask programming the angular structure model. It is assumed that
the inner region of the corner is approximately a plateau. The size of the mask is
uneven; when the image is scanned, the central element of the mask is placed in the
center of the examined image fragment. For each element of the image, the values of
the convolution of the fragment and the mask are calculated for its various rotations
about the central element. The maximum absolute value of these is retained as a
measure of the presence of a corner at a point.
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Many di�erentiating masks, or discrete kernels of two-dimensional convolution
are known [1]. Among such schemes for constructing masks, the Kirsch mask, which
simulates oriented boundaries, stands out:

(1) K1 =
5 5 5
−3 0 −3
−3 −3 −3

, K2 =

−3 5 5
−3 0 5
−3 −3 −3

, K3 =

−3 −3 5
−3 0 5
−3 −3 5

, . . . , K8,

where three of eight rotated versions are shown. The considered detectors have
property of non-scalability, which creates problems for organizing fast computations.
For example, scanned data with a 3× 3 mask is problematic to use in calculations
with large masks. Calculations with masks of sequentially increasing sizes contain
information about the linear and areal parameters and the moment of the corner
transition to the background area. In comparison with the Kirsh masks (1), a
scalable masks are obtained under the assumption that the border between the
corner structure and the background passes inside a certain pixel through its center,
and not between two adjacent pixels along their sides or edges. Scalable 3×3 masks
are shown for comparison with (1):

(2) W 1
2 =

1 3 1
−1 0 −1
−1 −1 −1

,W 2
2 =

−1 1 3
−1 0 1
−1 −1 −1

,W 3
2 =

−1 −1 1
−1 0 3
−1 −1 1

, . . . ,W 8
2 ,

where W r
n denotes the r−th rotated version of the mask (r = 1, . . . , R) of N ×N

size with N = 2n − 1. Let us outline in short the main priciples of scalable masks
modeling. Firstly, the matrix is introduced with a possibility of expanding it to
larger sizes. The vertex (0) is centered in the middle of the mask, the corner edges
(a−s) embrace the angular body (c−s):

(3) W 1
3 =

a c c c a
d a c a d

d 0 d
d

,W 2
3 =

d a c c
d a c c
d 0 a a
d d d d

,W 3
3 =

1
1 3

0 3 3
1 3

1

, . . . ,

where empty cells are assigned with background values (d−s). We need some
de�nitions.

De�nition 1. The matrices Wn of the odd size (2n − 1)2, n = 2, . . . with zero
central entry Wn(n, n) = 0 and non central entries a, c, and d are called scalable
masks of angular structures provided the following conditions are satis�ed:

(i) A set of entries An = {a} simulating the sides of the corner consists of
two digital hal�ines starting at zero point O = {0} and spreading from it
either along a column and a row, or along a column/row and one of the
four diagonals, or along two diagonals.

(ii) A set of entries Cn = {c} of the matrix enclosed by the sides of the corner
is called a body of the corner.

(iii) The remaining entries form a set Dn = Wn \ (On ∪ An ∪ Cn), called a
background.

The model of the corner mask includes the principle of self-similarity consisting
in the fact that, as the number n increases, the values a of the corner sides are
extended along a given propagation line (rows, columns, diagonals). Moreover, the
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(a) (b)

Fig. 1. A general view of 3D arrays of two corner models with
O as the corner vertex at the array center. (a) The frustum-wise
corner OKLMN . (b) The octant-wise corner OABCDEF .

values c of the internal elements of the corner body are spreading from the center
of the mask to its periphery, whereas the background values d �ll the mask region
complementary to the corner elements. The central entry of the mask is chosen to
be zero, as well as the sum of all mask entries. This explains the di�erentiating e�ect
on the image, produced by convolution with a sliding mask of this type. Denote
by |An|, |Cn|, |Dn|, and |On| ≡ 1 the number of mask entries with the values
a, c, d, and 0, respectively. The number of all mask entries Wn (for convenience,
the superscripts are omitted) equals |Wn| = (2n − 1)2. Let us calculate the values
|An|, |Cn|, |Dn| and write down the di�erential mask condition as follows. We can
express the values |An|, |Cn|, |Dn| in the general form

(4) |An| = 2(n− 1), |Cn| = (n− 1)2, |Dn| = (n− 1)(3n− 1),

and write down the di�erential mask condition as follows

(5) |An| a+ |Cn| c+ |Dn| d = 0.

Then we arrive at the di�erential condition (5) in the form:

(6) 2 a+ (n− 1) c+ (3n− 1) d = 0.

Due to the scalability of matrices, we have another similar equation for an arbitrary
m

(7) 2 a+ (m− 1) c+ (3m− 1) d = 0,

and, subtracting (7) from (6), obtain

(8) c+ 3d = 0.

Then we substitute c = −3d into (6) and �nd the solution in terms of d:

(9) (a, c, d) = (−d,−3d, d) = d(−1,−3, 1) = −d(1, 3,−1).

Relatively prime weights (a, c, d) = (1, 3,−1) constitute a scalable mask of the
angles of 90 degrees. Scalable masks, their derivation and numerical experiments
with test 2D images are given in [16]. In what follows we try to design a 3D masks
that have similar constructive properties of scalability.
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3. The 3D Scalable Masks

In the case of a three-dimensional array Wn of (2n − 1)3 size, we focus on the
two models of angular structures: frustums (pyramids) (Fig. 1 (a)) and octants
(Fig. 1 (b)) with a vertex at the center (n, n, n) of the 3D array. The cube has six
frustums and eight octants by the number of cube sides and vertices, respectively.
The frustums and octants have opening solid angles 4π/6 and 4π/8, respectively. We
should note that further central sectioning of the frustum corner OKLMN leads
to �ner angular structure, the pyramid OKLM , for example, with the solid angle
OKLM . In this paper we do not consider such a decomposition into subangles. Let
us summarize the principles of designing scalable masks from the two-dimensional
case to the three-dimensional one with the following de�nitions.

De�nition 2. The matrices Wn of the size (2n−1)×(2n−1)×(2n−1), n = 2, . . . ,
with a zero central entryWn(n, n) = 0 and non central entries a, b, c and d are called
scalable masks of angular structures provided the following conditions are satis�ed
for all n = 2, . . .:

(i) A set of entries An = {a} simulating the edges of the corner consists of
digital hal�ines starting at zero point O = {0} and spreading from it either
along coordinates, or along a coordinate(s) and a diagonal(s), or along
diagonals.

(ii) A set of entries Bn = {b} of the matrix �enclosed�by the edges of the corner
is called a side of the corner.

(iii) A set of entries Cn = {c} of the matrix �enclosed� by the edges and the
sides of the corner is called a body of the corner.

(iiii) The remaining entries form a set Dn = Wn \ (On ∪ An ∪ Bn ∪ Cn), are
called a background.

Denote by |An|, |Bn|, |Cn|, |Dn| and |On| ≡ 1 the number of mask entries
with the values a, b, c, d and 0, respectively. The number of all mask entries |Wn|
equals |Wn| = (2n− 1)3. The di�erential mask condition in the general form is the
following:

(10) |An|a+ |Bn|b+ |Cn|c+ |Dn|d = 0.

3.1. Frustum Corners. One of the six rotated versions of a frustum corner is
shown in Fig. 1 (a). The frustum corner OKLMN has four edges OK, OL, OM ,
ON and four sides OKL, OLM , OMN , ONK.

The weights a, b, c within the frustum corner model OKLMN are illustrated in
Fig. 2 (a), slice QPRS. Examples of slices are shown in Fig. 2 (b),(c) for (n =
2, N = 3) and (n = 3, N = 5), respectively. We enumerate the slices according
to the number n, the second and the third slices of the corner are shown in Fig. 2
(b),(c), respectively. We supply the reader with other graphical explanatory pictures
of the frustum corner structure in Fig. 3.

Omitting the details of derivation, we calculate the entities |An|, |Bn|, |Cn|, |Dn|
in equation (10):

(11) |An| = 4(n− 1), |Bn| = 4(n− 1)2, |Cn| =
(n− 1)(2n− 1)(2n− 3)

3
.

Then

(12) |Dn| = |Wn| − |An| − |Bn| − |Cn| − |On| =
(n− 1)(2n− 1)(10n− 1)

3
.
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(a) (b) (c)

Fig. 2. Visualization of several slices of the frustum corner model
with scalable weights. (a) General notations within the frustum
corner: a stands for the frustum edges voxels except the vertex O,
b is the weight for frustum sides except edges, c is the weight of
the corner body. (b) The slice ABCD with a part of the 33 mask.
(c) The slice QPRS with a part of the 53 mask.

Proposition 1. The values of the frustum masks are (a, b, c, d) = (1, 2, 5,−1).

Proof. Calculating |An|, |Bn|, |Cn|, |Dn| using (11), (12), with values n = 2, 3, 4, 5
and inserting them into (10), we arrive at the system

(13)


4 4 1 17
8 16 10 90
12 36 35 259
16 64 84 564




a
b
c
d

 =


0
0
0
0

 .

Application of the Gauss-Jordan elimination technique [17] gives us

(14)


1 0 0 1
0 1 0 2
0 0 1 5
0 0 0 0




a
b
c
d

 =


0
0
0
0

 .

We �nd a solution in terms of d:

(15) (a, b, c, d) = (−d,−2d,−5d, d) = −d(1, 2, 5,−1).

Relatively prime weights (a, b, c, d) = (1, 2, 5,−1) constitute a scalable mask of 3D
frustum corners. The proof is completed. �

3.2. Octant Corners. One of the eight rotated versions of the octant corner is
shown in Fig. 1 (b). The octant corner OAFEDCB has three edges OA, OE, OC,
and three sides OAFE, OEDC, OCBA. The weights a, b, c within the octant corner
model OAFEDCB can be seen in Fig. 4 (a), the slice GHIJ . Examples of sides
and slices of the octant corner are shown in Fig. 4 (b),(c) for n = 4 and N = 7
respectively.
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d

d

d

d
d

d

d

d

d

1 2 1

52
2

1 2 1d
d

d d

dd

d

d

A

B

D

C

E

O

(a)

E 1 2 1

2 11
2 5 2

1 2 2 2 1
2

2
1 2 2 2

5 25 5
5 5 52
5 5 5

2
2
1

0

A B

CD

K L

MN

(b)

Fig. 3. Examples of the frustum corner matrices of N × N × N
size. (a) N = 3, frustum OABCD. (b) N = 5, frustum OKLMN .

Omitting the details of derivation, we calculate the entities |An|, |Bn|, |Cn|, |Dn|
for the octant corner model in equation (10):

(16) |An| = 3(n− 1), |Bn| = 3(n− 1)2, |Cn| = (n− 1)3.

Then

(17) |Dn| = |Wn| − |An| − |Bn| − |Cn| − |On| = (2n− 1)3 − n3.

Proposition 2. The weights of the octant corners are (a, b, c, d) = (1, 3, 7,−1).

Proof. Calculating |An|, |Bn|, |Cn|, |Dn| using (16), (17), with values n = 2, 3, 4, 5
and inserting them into (10), we arrive at the system

(18)


3 3 1 19
6 12 8 98
9 27 27 279
12 48 64 604




a
b
c
d

 =


0
0
0
0

 .

Application of the Gauss-Jordan elimination technique reduces system (18):

(19)


1 0 0 1
0 1 0 3
0 0 1 7
0 0 0 0




a
b
c
d

 =


0
0
0
0

 .

We �nd a solution in terms of d:

(20) (a, b, c, d) = (−d,−3d,−7d, d) = −d(1, 3, 7,−1).

Relatively prime weights (a, b, c, d) = (1, 3, 7,−1) constitute a scalable mask of 3D
octant corners. The proof is completed. �

4. Computational scheme of corner detection

Let F denote the part of the larger image f , (i.e., a fragment) ofN×N size (in 2D
case) and N ×N ×N (in 3D case), on which the sliding window Wn (N = 2n− 1)
of the same size as F has stopped. A measure of similarity of a fragment and a
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(a) (b) (c)

Fig. 4. Visualization of the octant corner model. (a) The notations
within the octant corner, the slice GHIJ : a stands for the frustum
edges (OE, OC, OA) voxels except vertex O (not shown), b is the
weight for frustum sides except edges, c is the weight of the corner
body. (b) Slices OCBA, OAFE and OEDC are the sides of corner
OAFEDCB within the 73 mask. (c) Slice GHIJ is a part of corner
within the 73 mask.

rotational version W r
n , r = 1, . . . , R of the mask Wn can be obtained from the

well-known identity

(21) ‖F −W r
n‖2 = ‖F‖2 − 2〈F,W r

n〉+ ‖W r
n‖2

in the chosen norm of the Hilbert space. It follows from this relation that the
fragment F is best approximated by the ideal corner W by �nding a maximum of
the inner product 〈F,W r

n〉, due to ‖W r
n‖2 = const. Then the criterion for detecting

a corner can be formulated in the form

(22) Q = max
r,n
〈F,W r

n〉.

When the fragment F of N3 size, centered in the pixel with the current coordinates
(i, j, k) moves over the image �eld f , the scalar product of the fragment F with the
matrix of the mask W r

n , r = 1, . . . , R is computed:

(23) urn(i, j, k) = 〈F,W r
n〉.

We calculate the image of the maximum responses among the rotations

(24) UR
n (i, j, k) = max

r=1,...,R
|urn(i, j, k)|.

It is expected that the maximum response occurs with the orientation of the mask
that is in the best agreement with the rotation of the corner observed in the
fragment. The spatial extension of the corner along its sides can be evaluated by
varying another parameter, the mask size n. To this end, we choose the integer M
as an estimate of the maximum size of the corner encountered, and calculate the
image of maximum responses to the mask growth:

(25) V R
M (i, j, k) = max

n=1,...,M
UR
n (i, j, k).
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It is assumed that, with increasing the tested corner size, the response grows to
the limits of the corner extension, and upon reaching them, some saturation of the
response or a more complex event occurs due to the mask capturing the non-corner
areas. While studying the visual properties of the image V R

M , we observe a version
of the original image with increased brightness at the corner points.

Now the corner points themselves can be obtained by introducing a classi�cation
threshold, which leaves the signi�cant, or dominant, points in the image. Many
threshold search methods are available, including the dynamic, locally adapted
thresholds [1]. The problem of normalization of the detection criterion remains
challenging because the corners in images have di�erent intensities. As a consequence,
the scatter in the range of the response values V R

M in (25) forms the basis for the
terms of �strong� and �weak� corners. One of the options for selecting corners is
to choose a given number of strong (weak) corners. It appears that the solution to
these problems requires a complete description of the corner features in the domain
of the parameters (r, n,M) and time-consuming operations with local extremes.

It is known that some information is lost while performing the algorithm steps in
(23)�(25). The hierarchical scalable approach we are developing suggests preserving
results at these stages as features and examining the data as a whole, not only by
the coordinate search for maxima over r and n. The algorithm allows us to sort the
corner structures and then to analyze them according to various characteristics, for
example, in terms of distributions of orientations of the corners.

The sum of the entries of the mask boundary equals zero. It means that, in
addition to the property of masks to have a di�erentiating character in general (the
sum of the entries is zero), the mask boundary also possesses this property. When
the size of the growing mask exceeds the corner region and the boundaries of the
mask reach the non-corner areas of the image with arbitrary values, the contribution
of these regions to the criterion values can change, and a discord is observed. It is
di�cult to choose in advance the size of a mask in proportion to the size of the
desired corner structures, and we encounter the problem of detecting the moment
[18], [19] of a signi�cant event (jump, disorder, saturation, etc.) and changing the
criterion.

5. Conclusion

We have presented the matrices of masks for detecting the corners, convenient
for constructing scalable detectors. The structures potentially identi�ed by the
approach proposed include the cones in the form of octants and frustums with
vertices at the center of a three-dimensional array. These constructions do not
require a sliding window to re-pass the image array, since combination takes place
at the next level of the scale or the hierarchy, based on the basic procedures of
the lower level, operating with borders. The method can be used along with the
traditional masks for analyzing images, but without restrictions on the choice of
the size of the masks. We expect that computer time would be saved using the
fast Fourier transform in multiple computations of convolutions. Comprehensive
numerical experiments and comparative studies including other e�cient corner
detection algoritms are the subject of the near future research.
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