СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

FIXED POINTS OF CYCLIC GROUPS ACTING PURELY HARMONICALLY ON A GRAPH

A.D. MEDNYKH

Abstract

Let X be a finite connected graph, possibly with loops and multiple edges. An automorphism group of X acts purely harmonically if it acts freely on the set of directed edges of X and has no invertible edges. Define a genus g of the graph X to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group \mathbb{Z}_{n} acting purely harmonically on a graph X of genus $g>1$ is bounded from above by $2 g+2$. In the present paper, we investigate how many fixed points has an automorphism generating a «large» cyclic group \mathbb{Z}_{n} of order $n \geq 2 g-1$. We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2 g$ and $2 g-1$ it can have one or two fixed points.

Keywords: graph, homological genus, harmonic automorphism, fixed point, Wiman theorem

1. Introduction

Let X be a finite connected graph. Loops and multiple edges are admitted. We provide each edge of X (including loops) by two possible orientations. Define the genus g of the graph X to be the rank of its first homology group. An automorphism group of a graph is said to act harmonically if it acts freely on the set of its directed edges and purely harmonically if it also has no invertible edges.

By [1] and [2], a finite group acting harmonically on a graph of genus g is a discrete analogue of a finite group of automorphisms of a closed Riemann surface

[^0]of genus g. In papers [2, 3], a discrete version of the classical $84(g-1)$ Hurwitz theorem is established. Discrete versions of the Oikawa and the Arakawa theorems that refine the Hurwitz theorem for various classes of groups were obtained in [5].

An automorphism of a graph X is said to be harmonic if it generates a cyclic group acting harmonically on X. In paper [6] a discrete analogue of the Wiman theorem has been established. More precisely, it was shown that the order of a harmonic automorphism of a graph X of genus $g \geq 2$ does not exceed $2 g+2$ and this bound is achieved for any even g. The size of cyclic group acting harmonically on X with given number of fixed points was estimated from the above in [4].

In [7] the following problem for cyclic group \mathbb{Z}_{n} acting purely harmonically on a graph X of genus g with fixed points is solved. Given subgroup $\mathbb{Z}_{d}<\mathbb{Z}_{n}$, the signature of orbifold X / \mathbb{Z}_{d} through the signature of X / \mathbb{Z}_{n} is expressed. As a result, the formulas are given for the number of fixed points for generators of group \mathbb{Z}_{d} and for genus of orbifold X / \mathbb{Z}_{d}. For Riemann surfaces, similar results were obtained earlier by M. J. Moore [8].

In the present paper, we deal with cyclic group \mathbb{Z}_{n} acting purely harmonically on a graph X of genus $g \geq 2$. We investigate on how many fixed points are there for a generator of group \mathbb{Z}_{n} in the case of the three largest possible orders $n=$ $2 g+2,2 g, 2 g-1$. The respective results are given by Theorems 1,2 and 3 . In the last section, we illustrate the obtained results by series of examples.

2. Basic definitions and preliminary facts

In this paper, a graph X is a finite connected multigraph, possibly with loops. We provide each edge of X including loops, by the two possible orientations. Denote by $V(X)$ the set of vertices and by $E(X)$ the set of directed edges of X. Given $e \in$ $E(X)$, by \bar{e} we denote edge e taking with the opposite orientation. Let $G \leq \operatorname{Aut}(X)$ be a group of automorphisms of a graph X. An edge $e \in E(X)$ is called invertible if there is $g \in G$ such that $g(e)=\bar{e}$. Let G act without invertible edges. Define the quotient graph X / G so that its vertices and edges are G-orbits of the vertices and edges of X. Denote by $\varphi: G \rightarrow X / G$ the respective canonical map. Note that if the endpoints of an edge $e \in E(X)$ lie in the same G-orbit then the G-orbit of e is a loop in the quotient graph X / G. We say that the group G acts harmonically on a graph X if it acts freely on the set of directed edges $E(G)$ which simply means that, each element of G that fixes an edge $e \in E(G)$ is the identity. If G acts harmonically and without invertible edges, we say that G acts purely harmonically on X.

Let G be a finite group acting purely harmonically on a graph X. For every $\tilde{v} \in V(X)$ denote by $G_{\tilde{v}}$ the stabilizer of \tilde{v} in the group G and by $\left|G_{\tilde{v}}\right|$ its order. For each vertex $v \in V(X / G)$ we prescribe the number $m_{v}=\left|G_{\tilde{v}}\right|$, where $\tilde{v} \in \varphi^{-1}(v)$. Since G acts transitively on each fibre of φ, these numbers are well-defined. The point v, for which $m_{v} \geq 2$, will be called branch point of order m_{v}.

Define the genus $\gamma=\gamma(X)$ of a graph X as its cyclomatic number or Betti number (equivalently, rank of the first homology group). More precisely,

$$
\gamma(X)=1-|V(X)|+|E(X)|
$$

where $|V(X)|$ and $|E(X)|$ is the number of vertices and edges of X respectively.
We prefer to view the quotient graph X / G as a one-dimensional orbifold. In this case, the notion of signature is very important. If the group G acts purely harmonically on X, the signature of X / G is defined as the sequence $\left(\gamma ; m_{1}, \ldots, m_{r}\right)$,
where γ is genus of X / G and $m_{1}, m_{2}, \ldots, m_{r}$ are branch orders of the covering $\varphi: X \rightarrow X / G$.

The following theorem has been proved in [7].
Theorem A (Moore formula for graphs). Let \mathbb{Z}_{n} be a cyclic group acting harmonically on a graph X and h be an element of order $d, d>1$ in the group \mathbb{Z}_{n}. Denote by $\left(\gamma ; m_{1}, \ldots, m_{r}\right)$ the signature of the orbifold X / \mathbb{Z}_{n}. Then the number of fixed points of h is given by the formula

$$
\sum_{d \mid m_{i}} \frac{n}{m_{i}}
$$

As an important consequence of Theorem A we have the following proposition.

Proposition 1. Let \mathbb{Z}_{n} be a cyclic group acting harmonically on a graph X and $\left(\gamma ; m_{1}, \ldots, m_{r}\right)$ be the signature of the orbifold X / \mathbb{Z}_{n}. Then the number of fixed points of a generator of \mathbb{Z}_{n} coincides with the number of entities m_{i} in the signature which are equal to n.

Let \mathbb{Z}_{n} be a cyclic group acting harmonically a graph X of genus $g \geq 2$. Recall the following results proved in [6]. First of all, we get $n \leq 2 g+2$. The upper bound $n=2 g+2$ is attained for any even g. In this case, the signature of the orbifold X / \mathbb{Z}_{n} is $(0 ; 2, g+1)$, that is X / \mathbb{Z}_{n} is a tree with two branch points of order 2 and $g+1$ respectively. Moreover, if $n<2 g+2$, then $n \leq 2 g$. The upper bound $n=2 g$ is attained when X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 2,2 g)$, and also for $n=12$ when X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 3,4)$. The third largest cyclic group \mathbb{Z}_{n} of order $n=2 g-1$ appeared only in two cases: for $n=3$ and X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 3,3)$, and for $n=15$ and X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 3,5)$.

In the next section, we describe the number of fixed points of an automorphism generating the above group \mathbb{Z}_{n} for the three largest possible values $n=2 g+2,2 g$ and $2 g-1$.

3. Main Results

The main results of the paper are given by the following three theorems.
Theorem 1. Let X be a graph of genus $g \geq 2$ and $\mathbb{Z}_{n}=\left\langle T: T^{n}=1\right\rangle$ be a cyclic group acting purely harmonically on X. Suppose that $n=2 g+2$. Then T acts on the graph X without fixed points.

Proof. By Theorem 3 from [6], we know that if T is an automorphism of order $n=2 g+2$ then the signature of the orbifold X / \mathbb{Z}_{n} is $(0 ; 2, g+1)$. Note that by Proposition 1 if the signature of orbifold X / \mathbb{Z}_{n} is equal to $\left(\gamma ; m_{1}, \ldots, m_{r}\right)$, then the number of fixed points of a generator of \mathbb{Z}_{n} coincides with the number of entities m_{i} in the signature which are equal to n.

In our case, $\gamma=0, r=2, m_{1}=2, m_{2}=g+1$. Since $n=2 g+2>m_{1}=2$ and $n=2 g+2>m_{2}=g+1$, there are no numbers m_{i} equal to n. Hence, automorphism T of the largest possible order $2 g+2$ acts on a graph X of genus g without fixed points.

Theorem 2. Let X be a graph of genus $g \geq 2$ and $\mathbb{Z}_{n}=\left\langle T: T^{n}=1\right\rangle$ be a cyclic group acting purely harmonically on X. Suppose that $n=2 g$. Then for $n \neq 12$ automorphism T acts on the graph X with one fixed point. If $n=12$, then either T has one fixed point or acts fixed point free on the graph X.

Proof. Now, by virtue of Theorem 4 from [6], we get either (i) $\left(\gamma ; m_{1}, \ldots, m_{r}\right)=$ $(0 ; 2,2 g)$, where $g \geq 2$, or (ii) $\left(\gamma ; m_{1}, \ldots, m_{r}\right)=(0 ; 3,4)$, where $g=6$. In the first case, exactly one of the numbers m_{i} is equal to $n=2 g$. By Proposition 1 , automorphism T has one fixed point. In the second case, all the numbers m_{i} are differ from n, that is T has no fixed points.

Theorem 3. Let X be a graph of genus $g \geq 2$ and $\mathbb{Z}_{n}=\left\langle T: T^{n}=1\right\rangle$ be a cyclic group acting purely harmonically on X. Suppose that $n=2 g-1$. Then either T has two fixed points or acts fixed point free on the graph X. In the first case, $g=2$; in the second $g=8$.

Proof. By ([6], Theorem 4), the cyclic group \mathbb{Z}_{n} of order $n=2 g-1$ appears only in the following two cases:
(iii) $n=3$ and X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 3,3), g=2$;
(iv) $n=15$ and X / \mathbb{Z}_{n} is an orbifold of the signature $(0 ; 3,5), g=8$.

In case (a), $\gamma=0, r=2, m_{1}=3, m_{2}=3$. Hence $m_{1}=m_{2}=n$ and we get exactly two fixed points for automorphism T.

In case (b), $\gamma=0, r=2, m_{1}=3, m_{2}=5$. Now $n>m_{1}, m_{2}$. By Proposition 1 automorphism T has no fixed points.

In the next section, we illustrate all the obtained results by examples.

4. Examples

Example 1. To illustrate Theorem 1 consider the complete bipartite graph $X=K_{2, g+1}$ of genus g with vertices $u_{1}, u_{2}, v_{1}, v_{2}, \ldots, v_{g+1}$ and edges $u_{i} v_{j}, i=$ $1,2, j=1,2, \ldots, g+1$. Let g be even and cyclic group $\mathbb{Z}_{2 g+2}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{g+1}$ acts on $K_{2, g+1}$ by substitution $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}, \ldots, v_{g+1}\right)$. Then the orbifold $X / \mathbb{Z}_{2 g+2}$ is a path graph with vertices that are branched points of order 2 and $g+1$ respectively.

Example 2. (i) To describe an automorphism of order $n=2 g$ with one fixed point acting purely harmonically on a graph of genus g consider a graph X on $g+1$ vertices $u, v_{j}, j=1,2, \ldots, g$ such that for each j it has two edges e_{j}, e_{j+g} between the vertices u, and v_{j} (see Fig. 1). Let T be an automorphism of X of order n fixing u and sending v_{i} to v_{i+1} and e_{j} to e_{j+g}, where the indices i and j are taken modulo g and $2 g$ respectively. To see the action of $\mathbb{Z}_{2 g}$ on X one can imagine X as a star graph with $2 g$ edges whose opposite vertices are identified. Then the factor-graph $X / \mathbb{Z}_{2 g}$ is an orbifold of signature $(0 ; 2,2 g)$ consisting of two vertices and one edge between them.
(ii) To construct an automorphism T of order $n=12$ acting fixed point free on a graph X of genus 6 we set $X=K_{3,4}$. Here $K_{3,4}$ is the complete bipartite graph with vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}$ and edges $u_{i} v_{j}, i=1,2,3, j=1,2,3,4$. The action of automorphism T on vertices of X is given by the order 12 substitution $T=\left(u_{1}, u_{2}, u_{3}\right)\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. If $\mathbb{Z}_{12}=\langle T\rangle$, then the respective orbifold X / \mathbb{Z}_{12} has signature $(0 ; 3,4)$.

Fig. 1. Genus g graph X with $\mathbb{Z}_{2 g}$ harmonic action.

Example 3. (iii) Let X be the theta graph consisting of two vertices u and v joined by three edges e_{1}, e_{2}, e_{3}. Let T be an order three automorphism of X circularly permutated edges e_{1}, e_{2}, e_{3} and leaving vertices u and v fixed. Then the group $\mathbb{Z}_{3}=\langle T\rangle$ acts purely harmonically on X and the factor graph X / \mathbb{Z}_{3} is an orbifold of signature $(0 ; 3,3)$.
(iv) Let $K_{3,5}$ be the complete bipartite graph with vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and edges $u_{i} v_{j}, i=1,2,3, j=1,2,3,4,5$. We note that $K_{3,5}$ is a graph of genus eight and define an automorphism T of X by the order 15 substitution $T=\left(u_{1}, u_{2}, u_{3}\right)\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Then T acts fixed point free on X and the orbifold $X /\langle T\rangle$ has signature $(0 ; 3,5)$.

References

[1] M. Baker, S. Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Notes 15 (2009), 2914-2955. MR2525845
[2] S. Corry, Genus bounds for harmonic group actions on finite graphs, Inter. Math. Res. Not. 19 (2011), 4515-4533. MR2838048
[3] S. Corry, Maximal harmonic group actions on finite graphs, Discrete Math. 338 (2015), 784-792. MR3303857
[4] G. Gromadzki, A.D. Mednykh, I.A. Mednykh, On automorphisms of graphs and Riemann surfaces acting with fixed points, Anal. Math. Phys. 9 (2019), 2021-2031. MR4038121
[5] A.D. Mednykh, I.A. Mednykh, R. Nedela, On the Oikawa and Arakawa Theorems for Graphs, Proc. Steklov Inst. Math. 304:1 (2019), 133-140. MR3758063
[6] A. Mednykh, I. Mednykh, On Wiman's theorem for graphs, Discrete Math. 338 (2015), 1793-1800. MR3351702
[7] A. Mednykh, I. Mednykh, Two Moore's theorems for graphs, Rend. Istit. Mat. Univ. Trieste 52 (2020), 469-476. MR4207647
[8] M.J. Moore, Fixed points of automorphisms of a compact Riemann surfaces, Canad. J. Math. 22 (1970), 922-932. MR265584

Aleksandr Dmitrievich Mednykh
Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Novosibirsk State University,
1, Pirogova str.,
Novosibirsk, 630090, Russia
Email address: smedn@mail.ru

[^0]: Mednykh, A.D., Fixed points of cyclic groups acting purely harmonically on a graph.
 (C) 2021 Mednykh A.D.

 The study of the author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0007).

 Received April, 6, 2021, published June, 2, 2021.

