S@©MR ISSN 1813-3304

CUBNPCKHNE SJIEKTPOHHDBIE
MATEMATUYECKHUE U3BECTUA

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Tom 18, N1, cmp. 617-621 (2021) VK 519.175.3,519.172
DOI 10.33048/semi.2021.18.044 MSC 05C30, 39A10

FIXED POINTS OF CYCLIC GROUPS ACTING PURELY
HARMONICALLY ON A GRAPH

A.D. MEDNYKH

ABSTRACT. Let X be a finite connected graph, possibly with loops and
multiple edges. An automorphism group of X acts purely harmonically if
it acts freely on the set of directed edges of X and has no invertible edges.
Define a genus g of the graph X to be the rank of the first homology
group. A discrete version of the Wiman theorem states that the order of a
cyclic group Z, acting purely harmonically on a graph X of genus g > 1
is bounded from above by 2g + 2. In the present paper, we investigate
how many fixed points has an automorphism generating a «large» cyclic
group Z, of order n > 2g — 1. We show that in the most cases, the
automorphism acts fixed point free, while for groups of order 2g and
2g — 1 it can have one or two fixed points.

Keywords: graph, homological genus, harmonic automorphism, fixed
point, Wiman theorem

1. INTRODUCTION

Let X be a finite connected graph. Loops and multiple edges are admitted. We
provide each edge of X (including loops) by two possible orientations. Define the
genus g of the graph X to be the rank of its first homology group. An automorphism
group of a graph is said to act harmonically if it acts freely on the set of its directed
edges and purely harmonically if it also has no invertible edges.

By [1] and [2], a finite group acting harmonically on a graph of genus g is a
discrete analogue of a finite group of automorphisms of a closed Riemann surface
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of genus g. In papers [2, 3], a discrete version of the classical 84(g — 1) Hurwitz
theorem is established. Discrete versions of the Oikawa and the Arakawa theorems
that refine the Hurwitz theorem for various classes of groups were obtained in [5].

An automorphism of a graph X is said to be harmonic if it generates a cyclic
group acting harmonically on X. In paper [6] a discrete analogue of the Wiman
theorem has been established. More precisely, it was shown that the order of a
harmonic automorphism of a graph X of genus g > 2 does not exceed 2¢g + 2 and
this bound is achieved for any even g. The size of cyclic group acting harmonically
on X with given number of fixed points was estimated from the above in [4].

In [7] the following problem for cyclic group Z, acting purely harmonically on
a graph X of genus g with fixed points is solved. Given subgroup Zy4 < Z,, the
signature of orbifold X/Z, through the signature of X/Z,, is expressed. As a result,
the formulas are given for the number of fixed points for generators of group Z4
and for genus of orbifold X/Z4. For Riemann surfaces, similar results were obtained
earlier by M. J. Moore [8].

In the present paper, we deal with cyclic group Z,, acting purely harmonically
on a graph X of genus g > 2. We investigate on how many fixed points are there
for a generator of group Z, in the case of the three largest possible orders n =
29 + 2,2g,2g — 1. The respective results are given by Theorems 1,2 and 3. In the
last section, we illustrate the obtained results by series of examples.

2. BASIC DEFINITIONS AND PRELIMINARY FACTS

In this paper, a graph X is a finite connected multigraph, possibly with loops.
We provide each edge of X including loops, by the two possible orientations. Denote
by V(X) the set of vertices and by E(X) the set of directed edges of X. Given e €
E(X), by & we denote edge e taking with the opposite orientation. Let G < Aut(X)
be a group of automorphisms of a graph X. An edge e € E(X) is called invertible
if there is g € G such that g(e) = e. Let G act without invertible edges. Define the
quotient graph X /G so that its vertices and edges are G-orbits of the vertices and
edges of X. Denote by ¢ : G — X/G the respective canonical map. Note that if the
endpoints of an edge e € E(X) lie in the same G-orbit then the G-orbit of e is a
loop in the quotient graph X/G. We say that the group G acts harmonically on a
graph X if it acts freely on the set of directed edges F(G) which simply means that,
each element of G that fixes an edge ¢ € E(G) is the identity. If G acts harmonically
and without invertible edges, we say that G acts purely harmonically on X.

Let G be a finite group acting purely harmonically on a graph X. For every
¥ € V(X) denote by G; the stabilizer of ¢ in the group G and by |G| its order. For
each vertex v € V(X/G) we prescribe the number m,, = |G;|, where & € ¢~ 1(v).
Since G acts transitively on each fibre of ¢, these numbers are well-defined. The
point v, for which m, > 2, will be called branch point of order m,,.

Define the genus v = v(X) of a graph X as its cyclomatic number or Betti
number (equivalently, rank of the first homology group). More precisely,

V(X)) =1 [V(X)[ + |EX)],
where |V(X)| and |E(X)| is the number of vertices and edges of X respectively.

We prefer to view the quotient graph X/G as a one-dimensional orbifold. In
this case, the notion of signature is very important. If the group G acts purely
harmonically on X, the signature of X/G is defined as the sequence (v;m1,...,m;),
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where v is genus of X/G and my,ms,..., m, are branch orders of the covering
v: X = X/G.
The following theorem has been proved in [7].

Theorem A (Moore formula for graphs). Let Z, be a cyclic group acting
harmonically on a graph X and h be an element of order d, d > 1 in the group Z,.
Denote by (y;m1,...,m,) the signature of the orbifold X/Z,,. Then the number of
fized points of h is given by the formula
n
>

dlm;

As an important consequence of Theorem A we have the following proposition.

Proposition 1. Let Z,, be a cyclic group acting harmonically on a graph X and
(v;m1,...,m,) be the signature of the orbifold X/Z,. Then the number of fixed
points of a generator of Z,, coincides with the number of entities m; in the signature
which are equal to n.

Let Z,, be a cyclic group acting harmonically a graph X of genus g > 2. Recall
the following results proved in [6]. First of all, we get n < 2g+ 2. The upper bound
n = 2g + 2 is attained for any even g¢. In this case, the signature of the orbifold
X/Z, is (0;2,9 + 1), that is X/Z, is a tree with two branch points of order 2 and
g + 1 respectively. Moreover, if n < 2g 4+ 2, then n < 2g. The upper bound n = 2g
is attained when X/Z,, is an orbifold of the signature (0;2,2¢), and also for n = 12
when X/Z,, is an orbifold of the signature (0;3,4). The third largest cyclic group
Z,, of order n = 2g — 1 appeared only in two cases: for n = 3 and X/Z, is an
orbifold of the signature (0;3,3), and for n = 15 and X/Z,, is an orbifold of the
signature (0;3,5).

In the next section, we describe the number of fixed points of an automorphism
generating the above group Z,, for the three largest possible values n = 2g + 2,2g
and 2g — 1.

3. MAIN RESULTS
The main results of the paper are given by the following three theorems.

Theorem 1. Let X be a graph of genus g > 2 and Z,, = (T : T" = 1) be a cyclic
group acting purely harmonically on X. Suppose that n = 2g + 2. Then T acts on
the graph X without fized points.

Proof. By Theorem 3 from [6], we know that if T is an automorphism of order
n = 2g + 2 then the signature of the orbifold X/Z, is (0;2,9 + 1). Note that by
Proposition 1 if the signature of orbifold X/Z, is equal to (y;m1,...,m;), then the
number of fixed points of a generator of Z,, coincides with the number of entities
m; in the signature which are equal to n.

In our case, vy =0,7=2,m; =2,mgy =g+ 1. Sincen=2g+2 >m; =2 and
n = 2g+2 > mg = g+1, there are no numbers m; equal to n. Hence, automorphism
T of the largest possible order 2g + 2 acts on a graph X of genus g without fixed
points.
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Theorem 2. Let X be a graph of genus g > 2 and Z,, = (T : T™ = 1) be a cyclic
group acting purely harmonically on X. Suppose that n = 2g. Then for n # 12
automorphism T acts on the graph X with one fized point. If n = 12, then either T
has one fixed point or acts fized point free on the graph X.

Proof. Now, by virtue of Theorem 4 from [6], we get either (i) (y;m1,...,m,) =
(0;2,2g), where ¢ > 2, or (ii) (y;m1,...,m;) = (0;3,4), where ¢ = 6. In the
first case, exactly one of the numbers m; is equal to n = 2g. By Proposition 1,
automorphism 7' has one fixed point. In the second case, all the numbers m; are
differ from n, that is T has no fixed points.

Theorem 3. Let X be a graph of genus g > 2 and Z,, = (T : T" = 1) be a cyclic
group acting purely harmonically on X. Suppose that n = 2g— 1. Then either T has
two fized points or acts fized point free on the graph X. In the first case, g = 2; in
the second g = 8.

Proof. By (|6], Theorem 4), the cyclic group Z,, of order n = 2¢g — 1 appears
only in the following two cases:

(iii) n = 3 and X/Z,, is an orbifold of the signature (0;3,3), g = 2;

(iv) n = 15 and X/Z, is an orbifold of the signature (0;3,5), g = 8.

In case (a), v = 0,r = 2, m; = 3, my = 3. Hence m; = mgy = n and we get
exactly two fixed points for automorphism 7.

In case (b), v =0, r =2, m; = 3, mag = 5. Now n > my, ms. By Proposition 1
automorphism 7" has no fixed points.

In the next section, we illustrate all the obtained results by examples.

4. EXAMPLES

Example 1. To illustrate Theorem 1 consider the complete bipartite graph
X = Ky 441 of genus g with vertices uq,ua,v1,v2,...,041 and edges u;v;, i =
1,2,7=1,2,...,9 + 1. Let g be even and cyclic group Zsg1o = Zy ® Zgy1 acts
on K g1 by substitution (u1,u2)(v1,v2,...,vg+1). Then the orbifold X/Zay 42 is a
path graph with vertices that are branched points of order 2 and g+ 1 respectively.

Example 2. (i) To describe an automorphism of order n = 2g with one fixed
point acting purely harmonically on a graph of genus g consider a graph X on g+1
vertices u, vj, j = 1,2,..., g such that for each j it has two edges e;, e;44 between
the vertices u, and v; (see Fig. 1). Let T be an automorphism of X of order n fixing
u and sending v; to v;41 and e; to e;44, where the indices ¢ and j are taken modulo
g and 2g respectively. To see the action of Zy, on X one can imagine X as a star
graph with 2¢g edges whose opposite vertices are identified. Then the factor-graph
X/Zs, is an orbifold of signature (0;2,2g) consisting of two vertices and one edge
between them.

(ii) To construct an automorphism 7' of order n = 12 acting fixed point free on
a graph X of genus 6 we set X = K3 4. Here K34 is the complete bipartite graph
with vertices uq,ug2,us, v1,v2,v3,v4 and edges wvj, ¢ = 1,2,3, j = 1,2,3,4. The
action of automorphism 7" on vertices of X is given by the order 12 substitution
T = (u1,u2,usz)(vy,ve,v3,v4). If Z1o = (T'), then the respective orbifold X/Z;s has
signature (0;3,4).
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FiGg. 1. Genus g graph X with Z,, harmonic action.

Example 3. (iii) Let X be the theta graph consisting of two vertices v and
v joined by three edges e, eo,e3. Let T be an order three automorphism of X
circularly permutated edges eq, ea, e3 and leaving vertices u and v fixed. Then the
group Zs = (T') acts purely harmonically on X and the factor graph X/Zs is an
orbifold of signature (0;3, 3).

(iv) Let Kss be the complete Dbipartite graph with vertices
U1, U2, U3, V1,V2,V3,V4,v5 and edges wv;, 1 = 1,2,3,5 = 1,2,3,4,5. We note
that K35 is a graph of genus eight and define an automorphism 7" of X by the
order 15 substitution T' = (ug,usg,us)(v1,v2,v3,v4,v5). Then T acts fixed point
free on X and the orbifold X/(T") has signature (0;3,5).

REFERENCES

[1] M. BAaKER, S. NoRINE, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Notes
15 (2009), 2914-2955. MR2525845

[2] S. Corry, Genus bounds for harmonic group actions on finite graphs, Inter. Math. Res. Not.
19 (2011), 4515-4533. MR2838048

[3] S. Corry, Mazimal harmonic group actions on finite graphs, Discrete Math. 838 (2015),
784-792. MR3303857

[4] G. Gromapzki, A.D. MEDNYKH, I.A. MEDNYKH, On automorphisms of graphs and
Riemann surfaces acting with fized points, Anal. Math. Phys. 9 (2019), 2021-2031.
MR4038121

[5] A.D. MepnykH, I.A. MeEDNYKH, R. NEDELA, On the Oikawa and Arakawa Theorems for
Graphs, Proc. Steklov Inst. Math. 304:1 (2019), 133-140. MR3758063

[6] A. Mebp~nvkH, I. MEDNYKH, On Wiman's theorem for graphs, Discrete Math. 338 (2015),
1793-1800. MR3351702

[7] A. Mep~nvyknH, I. MepNykH, Two Moore’s theorems for graphs, Rend. Istit. Mat. Univ.
Trieste 52 (2020), 469-476. MR4207647

[8] M.J. Moorg, Fized points of automorphisms of a compact Riemann surfaces, Canad. J.
Math. 22 (1970), 922-932. MR265584

ALEKSANDR DMITRIEVICH MEDNYKH
SOBOLEV INSTITUTE OF MATHEMATICS,
4, KOPTYUGA AVE.,

NovosiBirsk, 630090, Russia

NovosIBIRSK STATE UNIVERSITY,
1, PIROGOVA STR.,

NovosiBirsk, 630090, Russia
Email address: smedn@mail.ru



