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ON A METRIC PROPERTY OF PERFECT COLORINGS

A.A. TARANENKO

Abstract. Given a perfect coloring of a graph, we prove that the L1

distance between two rows of the adjacency matrix of the graph is not less
than the L1 distance between the corresponding rows of the parameter
matrix of the coloring. With the help of an algebraic approach, we deduce
corollaries of this result for perfect 2-colorings and perfect colorings in
distance-l graphs and distance-regular graphs. We also provide examples
of in�nite graphs, where the obtained property rejects several putative
parameter matrices of perfect colorings.
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graph, square grid, triangular grid.

1. Definitions and main result

Following [8], we consider perfect colorings in a more general setting than perfect
colorings of simple graphs or multigraphs. More speci�cally, we associate a graph
G on n vertices with a real n × n-matrix M that is called its adjacency matrix.
So under a graph we mean an oriented graph with edges labelled by mu,v. We use
V (G) to denote the vertex set of the graph G.

De�ne a perfect k-coloring of a graph G with the parameter matrix S to be a
partition of the set V (G) into disjoint classes Ji, i = 1, . . . , k, such that for all
u ∈ Ji it holds si,j =

∑
v∈Jj

mu,v. This de�nition of a perfect coloring generelizes

equitable partitions introduced by Delsarte [3].
Note that classes Ji can be considered as vertices of some graph H de�ned by the

adjacency matrix S. Then a perfect coloring can be de�ned as a map f : V (G) →
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V (H) that puts every vertex v of the graph G to its color f(v), i.e., f(v) = i if and
only if v ∈ Ji.

In many papers, a perfect coloring of simple graph G is said to be a partition of
its vertex set into color classes such that the colored neighborhood of each vertex
is de�ned by a color of the vertex.

At last, perfect colorings can be treated as special perfect structures [8]: a perfect
coloring is a triple of matrices (M,P, S) connected by a relation MP = PS, where
M and S are square matrices of orders n and k respectively, P is a (0, 1)-matrix of
sizes n× k in which each row contains exactly one unity entry.

In the present note, we bound the L1 distance between rows of the parameter
matrix of a perfect coloring by the L1 distance between the corresponding rows of
the adjacency matrix of a graph.

Recall that the L1 distance between two n-tuples x = (x1, . . . , xn) and y =
(y1, . . . , yn), xi, yi ∈ R, is

d(x, y) =

n∑
i=1

|xi − yi|.

Given a real matrix A of order n, we use [A]i to denote the i-th row of A.

Theorem 1. Let f be a perfect k-coloring of a graph G with the parameter matrix
S and let M be the adjacency matrix of G. Then for all u, v ∈ V (G) we have

d([M ]u, [M ]v) ≥ d([S]f(u), [S]f(v)).

Proof. By the de�nition,

d([S]f(u), [S]f(v)) =

k∑
j=1

|sf(u),j − sf(v),j |.

Since f is a perfect coloring, the set V (G) is partitioned into k disjoint subsets
J1, . . . , Jk such that for every u ∈ V (G) we have sf(u),j =

∑
w∈Jj

mu,w. Consequently,

k∑
j=1

|sf(u),j − sf(v),j | =
k∑

j=1

|
∑
w∈Jj

(mu,w −mv,w)|.

Using the inequality |a+ b| ≤ |a|+ |b|, we deduce
k∑

j=1

|
∑
w∈Jj

(mu,w −mv,w)| ≤
∑

w∈V (G)

|mu,w −mv,w|.

It only remains to note that∑
w∈V (G)

|mu,w −mv,w| = d([M ]u, [M ]v).

�

2. Corollaries for simple graphs

Let us specialize Theorem 1 for some classes of graphs and colorings. In this
section, we assume everywhere that G is an r-regular simple undirected graph with
no loops. In other words, the adjacency matrixM of G is a symmetric (0, 1)-matrix
with zeroes within the main diagonal and row sums equal to r.
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Given a vertex v of a simple graph G, let N (v) denote the neighborhood of the
vertex v that is the set of all vertices u ∈ V (G) such that u and v are adjacent.
Then for simple graphs G, Theorem 1 takes the following form.

Theorem 2. Let G be a simple r-regular graph and f be a perfect coloring of G
with the parameter matrix S. Assume that there are vertices u, v ∈ V (G) of colors
f(u) = i, f(v) = j such that |N (u) ∩N (v)| = h. Then

d([S]i, [S]j) ≤ 2(r − h).

If the inequality becomes an equality, then distributions of colors in sets N (u)∩N (v),
N (u) \ N (v), and N (v) \ N (u) are determined by the parameter matrix S and do
not depend on the coloring f .

Proof. The theorem follows from Theorem 1 and the fact that d([M ]u, [M ]v) =
2(r − |N (u) ∩N (v)|).

For perfect colorings of simple graphs the equality

d([M ]u, [M ]v) = d([S]f(u), [S]f(v))

means that the symmetric di�erence N (u)∆N (v) contains exactly |sf(u),j−sf(v),j |
vertices of each color j. Since [S]f(u) and [S]f(v) are distributions of colors in sets
N (u) and N (v) respectively, we know color distributions for sets N (u) ∩ N (v),
N (u) \ N (v), and N (v) \ N (u). �

2.1. Perfect 2-colorings. The parameter matrix of perfect colorings in 2 colors is
usually written as

S =

(
a b
c d

)
.

It is easy to see that if G is an r-regular graph, then S has two di�erent eigenvalues:
the trivial eigenvalue λ1 = r and the second eigenvalue λ2 = r − (b + c) = a − c.
Since a+ b = c+ d = r, the parameters b and c uniquely de�ne the matrix S. Thus
we will say that a perfect coloring in 2 colors with the parameter matrix S is a
(b, c)-coloring.

Lemma 1. Let

S =

(
a b
c d

)
be the parameter matrix of a perfect (b, c)-coloring of an r-regular graph G. Then

d([S]1, [S]2) = 2|λ2| = 2|r − (b+ c)|.

Proof. By equalities a+ b = c+ d = r and λ2 = r − (b+ c), we have

d([S]1, [S]2) = |a− c|+ |b− d| = 2|r − (b+ c)| = 2|λ2|.

�

For further applications, we state Theorem 2 for perfect (b, c)-colorings.

Theorem 3. Let G be an r-regular graph and f be a perfect (b, c)-coloring of G.
Assume that there are vertices u, v ∈ V (G) of di�erent colors such that |N (u) ∩
N (v)| = h. Then the following hold.

• If u and v are adjacent, then h+ 2 ≤ b+ c ≤ 2r − h.
• If u and v are non-adjacent, then h ≤ b+ c ≤ 2r − h.
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Moreover, in each case if the left inequality attains an equality, then all vertices from
N (u) \ (N (v) ∪ {v}) (and N (v) \ (N (u) ∪ {u})) have the same color as the vertex
u (vertex v). If the right inequality is achieved, then all vertices from N (u) \ N (v)
(or N (v) \ N (u)) have the same color as the vertex v (vertex u).

Proof. By Theorem 2, we have

d([S]f(u), [S]f(v)) ≤ 2(r − h).

Since vertices u and v have di�erent colors, Lemma 1 gives

d([S]f(u), [S]f(v)) = d([S]1, [S]2) = 2|r − (b+ c)| ≤ 2(r − h),

that is equivalent to the required inequalities for non-adjacent vertices.
Equality 2(r−(b+c)) = −2(r−h) means that the sum b+c attains the maximal

possible value. Then the setN (u) (andN (v)) contains the maximal possible number
of vertices whose color is di�erent from f(u) (f(v)). It implies that sets N (u)\N (v)
and N (v) \ N (u) are monochromatic.

Similarly, if 2(r − (b + c)) = 2(r − h), then the sum b + c attains the minimal
possible value, and N (u) (N (v)) contains the minimal possible number of vertices
with colors di�erent from f(u) (f(v)). If vertices u and v are non-adjacent, then
v 6∈ N (u) and u 6∈ N (v), so we conclude that sets N (u) \ N (v) and N (v) \ N (u)
are monochromatic. If vertices u and v are adjacent, then sets N (u) \ N (v) and
N (v)\N (u) contain at least one vertex (v or u) of colorN (v) andN (u), respectively.
It means that the sets N (u) \ (N (v) ∪ {v}) and N (v) \ (N (u) ∪ {u}) should be
monochromatic and a better inequality 2(r − (b+ c)) ≤ 2(r − h− 2) holds. �

2.2. Colorings in distance graphs. As before, we use M for the adjacency
matrix of a simple graph G. It is well known, that powers of M count the number
of paths from one vertex of G to another: the number of paths of length l in G
from a vertex u to a vertex v is equal to the (u, v)-entry of the matrix M l. We will
say that M l is the adjacency matrix of the distance-l graph Gl. Note that in most
cases Gl is not a simple graph but a multigraph.

In [8] it was proved the following.

Proposition 1. If a triple of matrices (M,P, S) is a perfect coloring, then for every
polynomial p(x) ∈ R[x] the triple (p(M), P, p(S)) is also a perfect coloring.

So we can specialize Theorem 1 for distance-l graphs.

Theorem 4. Let G be a simple graph and f be a perfect coloring of G with the
parameter matrix S. Then for all l ∈ N and for all vertices u, v ∈ V (G) it holds

d([M l]u, [M l]v) ≥ d([Sl]f(u), [Sl]f(v)).

Proof. The result follows from Theorem 1 and Proposition 1. �

In special graphs, it is possible to express some subsets of vertices by the means
of a polynomial on the adjacent matrix. One of the most useful examples of such
sets and graphs are balls and spheres in distance-regular graphs.

For vertices u, v of a simple graph G, let ρ(u, v) denote the distance between u
and v (the length of the shortest path between them). The ball Br(u) of a radius r
and with center u is a set {v : ρ(u, v) ≤ r}, and the sphere Wr(u) of a radius r and
with center u is a set {v : ρ(u, v) = r}.
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It is well known (see, e.g. [2]) that in a distance-regular graph G for every
r ≤ diam(G) there are polynomials pBr and pWr such that for each u ∈ V (G)
rows [pBr (M)]u and [pWr (M)]u are the indicator functions of a ball Br(u) and a
sphere Wr(u), respectively. Thus, for distance-regular graphs we have the following
theorem.

Theorem 5. Let G be a simple distance-regular graph with polynomials pBr (x) and
pWr (x) corresponding to balls and spheres of radius r in G, respectively. Suppose
that f is a perfect coloring of G with the parameter matrix S. Then for all vertices
u, v ∈ V (G)

|Br(u)∆Br(v)| ≥ d([pBr (S)]f(u), [pBr (S)]f(v));

|Wr(u)∆Wr(v)| ≥ d([pWr (S)]f(u), [pWr (S)]f(v)).

3. Applications and examples

The above results can be applied to reject some putative parameter matrices of
perfect colorings for a given graph G. For perfect 2-colorings, our method is more
useful if the second eigenvalue of the parameter matrix has a large absolute value. It
is also interesting for in�nite graphs (i.e., graphs with an in�nite number of vertices)
because the standard spectral condition on the existence of perfect colorings is not
applicable for them.

3.1. Square and triangular grids. Our �rst example is a simple proof that there
are no perfect (4, 3)-colorings of the square grid. The square grid is an in�nite 4-
regular graph with the vertex set Z2 and edges ((x, y), (x+1, y)) and ((x, y), (x, y+
1)), x, y ∈ Z.

Suppose that f is a perfect (4, 3)-color of the square grid. By Theorem 3, in
the coloring f there are no vertices u = (x, y) and v = (x + 1, y + 1) of di�erent
colors because h = |N (u) ∩ N (v)| = 2 and 7 = b + c > 2r − h = 6. So for a given
vertex (x, y) all vertices (x+ t, y+ t), t ∈ Z, have the same color in f as the vertex
(x, y). Then every vertex is adjacent to an even number of vertices of each color
that contradicts to the parameters of f .

An approach similar to the presented one was used before in characterization of
3-colorings in the square grid [6] and in studying multiple coverings of the square
grid with balls of a constant radius [1].

Let us apply this technique to perfect 2-colorings in the triangular grid that is
an in�nite 6-regular graph with the following local structure:

For any pair of adjacent vertices u and v from the triangular grid we have h =
|N (u) ∩ N (v)| = 2. By Theorem 3, for every perfect (b, c)-coloring of the grid it
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holds 4 ≤ b + c ≤ 10. In particular, there are no perfect (1, 1)-, (2, 1)-, (6, 5)-, and
(6, 6)-colorings in the triangular grid.

One can also show that the triangular grid has no perfect (3, 1)-, (5, 5)-, and
(6, 4)-colorings (when b+c achieves one of the possible equalities). Indeed, Theorem 3
allows us to determine colors of vertices in sets N (u) \ (N (v) ∪ {v}) and N (v) \
(N (u) ∪ {u}) that gives a contradiction to the parameters of the coloring at the
vertex w:

The similar reasoning implies that there is a unique (up to transformations of
the plane) perfect (2, 2)-coloring of the triangular grid:

For more information on perfect 2-colorings of the triangular grid see [7].

3.2. Circulant graphs. Our results can be widely used for perfect colorings in
circulant graphs. Perfect colorings in some classes of such graphs were previously
studied in [4, 5].

Given a (multi)set D = {d1, . . . , dm}, where di ∈ N, a circulant (multi)graph
C(d1, . . . , dm) is a 2m-regular (multi)graph with the vertex set Z and edges (x, y),
where |x − y| ∈ D. It is easy to see that every perfect coloring f of C(d1, . . . , dm)
is periodic: there is some T ∈ N such that f(x+ T ) = f(x) for all x ∈ Z.
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Theorem 6. Assume that for a (multi)set D = {d1, . . . , dm} and for t ∈ N we
have |{±d1, . . . ,±dm} ∩ {t ± d1, . . . , t ± dm}| = h. If b + c > 4m − h or b + c < h
(or b+ c < h+ 2 if t ∈ D), then the period T of every perfect (b, c)-coloring of the
circulant (multi)graph C(d1, . . . , dm) divides t.

Proof. Let f be a perfect (b, c)-coloring of the (multi)graph C(d1, . . . , dm) with
period T . If T is not a divisor of t, then there are vertices x and x+t in C(d1, . . . , dm)
that are colored with di�erent colors by f . By the condition of the theorem, |N (x)∩
N (x + t)| = h. It only remains to note that the demanded inequalities on b + c
contradict to Theorem 3. �

For example, consider a circulant graph C(1, 2, 4). For t = 3 we have

h = |{±1,±2,±4} ∩ {3± 1, 3± 2, 3± 4}| = 4.

So all (b, c)-colorings of C(1, 2, 4) with b + c < 4 or b + c > 8 have a period T
such that T divides 3, and, consequently, T = 3. Searching all perfect colorings of
C(1, 2, 4) of period 3, it is easy to see that there are no (1, 1)-, (2, 1)-, (5, 4)-, (5, 5)-,
(6, 4)-, (6, 5)-, and (6, 6)-colorings among them. Therefore, these colorings do not
exist in C(1, 2, 4).
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