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Introduction

Many algebraic structures are de�ned by graphs. Partially commutative algebraic
structures are some of them. Let M be a variety of algebraic structures of a
functional signature Σ containing a binary operation ◦. We assume ◦ is non-commu-
tative, as otherwise it makes no sense to consider partially commutative laws. The
case of a commutative operation is trivial so suppose that this is not so.

In this survey, by a graph we mean an undirected graph without loops and
multiple edges. Graphs will be denoted by greek letters.

Let ∆ = (X,E) be a graph (possibly in�nite), with the set of vertices X =
{x1, x2, . . .} and the set of edges E = {(xi, xj)}. For a variety M de�ne the partially
commutative structure C(M,∆) on this variety as follows

(1) C(M,∆) = 〈X;xi ◦ xj = xj ◦ xi, if (xi, xj) ∈ E,M〉.
Partially commutative structures appear in di�erent areas of mathematics, for
example, in computer science and robotics. By now, the most results in partially
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commutative structures have been obtained for so called free partially commutative
groups. A free partially commutative group is a partially commutative structure in
the variety of all groups such that it is de�ned by an undirected graph without
loops. In recent years, much attention has been paid to researches into partially
commutative groups in soluble and nilpotent varieties. Partially commutative as-
sociative and Lie algebras are studied as well. In this survey, papers on partially
commutative groups and Lie algebras are discussed. There are so many results in
free partially commutative groups that a speci�c survey is needed for them. So, the
results on free partially commutative groups are not included in this survey. Some
information on these results can be found in [7, 11].

There are two sections in the survey. In Sec. 1, results for partially commutative
groups of some varieties are discussed. This section contains four subsections. In
Subsec. 1.1, algebraic properties of partially commutative metabelian groups are
observed. The results on the structure of the groups, their centralizers, annihilators,
bases, subgroups, inclusions into matrix groups, automorphism groups, and cent-
ralizer dimensions are described. At the end of the subsection, a decomposition
of a group into a direct product is discussed. Such decompositions are considered
not only for free partially commutative groups but also for partially commutative
groups of some varieties containing the variety of nilpotent groups of degree ≤ 2.

Let C be a structure. The set Th(C) of all �rst-order sentences of a signature
Σ which are true on C is called the elementary theory of C. Structures C1 and C2

are elementarily equivalent if Th(C1) = Th(C2).
The universal theory or the ∀-theory of a structure C is a subset of Th(C)

consisting of all ∀-formulas which are true on C. Structures C1 and C2 are existen-
tially equivalent if their existential theories coincide.

Results on the elementary and universal theories theories of partially commu-
tative metabelian groups are considered in Subsec. 1.2. Information on varieties
and prevarieties generated by partially commutative metabelian groups and on
equations in one variable is also presented in Subsec. 1.2. The most attention is
paid to universal theories, in particular, conditions of coincidence of two theories.
In Subsec. 1.3, results on the structure and the universal theory of a partially
commutative metabelean nilpotent group are considered. In Subsec. 1.4, theorems
on centralizers and annihilators in partially commutative pro-p-groups are discussed.

Sec. 2 mainly presents results on partially commutative Lie algebras in some
varieties. This section consists of two subsections.

In Subsec. 2.1 algebraic results on partially commutative Lie algebras are dis-
cussed. In this subsection the results on isomorphisms, bases, annihilators and
centralizers of partially commutative Lie algebras of some varieties are collected.

In Subsec. 2.2, logical questions for partially commutative Lie algebras are dis-
cussed. Those are questions on universal and elementary theories of partially com-
mutative Lie algebras.

In Sec. 2, there is a parallel presentation of results for partially commutative and
partially commutative metabelian Lie algebras. Moreover, a description of a linear
basis is also considered in the case of partially commutative nilpotent Lie algebras.

Results on partially commutative groups de�ned by in�nite graphs are also
discussed in Sec. 2, since there are analogous theorems for partially commutative
Lie algebras in this section.

Sec. 1 is written by the second author while Sec. 2 is written by the �rst one.
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1. Partially commutative groups

This section is a survey of results for partially commutative groups in soluble
varieties.

Research into groups de�ned by generators and de�ning relations forms a large
�eld of algebra. This �eld is called combinatorial group theory. It has a speci�c
collection of problems and methods. A lot of these methods have analogues in
algebraic topology. Studies in combinatorial group theory have been intensive since
the second half of the 20th century. One of the classes of objects studied in combinatorial
group theory consists of groups whose generators are the vertices of a graph.

Let ∆ = (X,E) be a graph. For any variety M and any graph ∆ the partially
commutative group G(M,∆) in the variety M has a representation

G(M,∆) = 〈X |xixj = xjxi, if (xi, xj) ∈ E;M〉.

Although generally problems considered for free partially commutative groups and
for partially commutative groups in soluble varieties are same, research methods
di�er signi�cantly. Methods e�ectively used for researches into algebraic properties
in partially commutative groups of soluble varieties are those using modules over
group rings, splitting extensions, Fox derivatives, etc.

Let G be a group, g, h ∈ G. Then we use the following notation. [g, h] =
g−1h−1gh, G′ = [G,G]. The subgroup G′ is called the commutant of G. The
variety of metabelian groups A2 is given by the identity [[y1, y2], [y3, y4]] = 1. It
means that this variety consists of groups G having an abelian normal subgroup
A (possibly trivial) such that the quotient group G/A is commutative. Denote a
partially commutative group G(A2,∆) by M∆ for short. Let Nc be the variety of
nilpotent groups of nilpotence degree at most c. This variety consists of all groups
satisfying the identity vc+1 = 1, where v2 = [y1, y2], vc+1 = [vc, yc+1]. For a graph
∆ denote by Mc,∆ the partially commutative group de�ned by ∆ in the variety
A2 ∩Nc .

Some results on partially commutative metabelian groups can be found in [38].

1.1. Algebraic properties of partially commutative metabelian groups.

Torsion. If N2 ⊆M then the quotient group G(M,∆)/G′(M,∆) has no elements
of �nite order.

Note that the periodic part of a group G(M,∆) can be non-trivial. This is so,
for example, if M is a variety of centrally metabelian groups and ∆ is a completely
disconnected graph with at least four vertices (see [12]). The following theorem
implies that partially commutative metabelian group has no elements of �nite order.

Theorem 1. [36] A groupM∆ can be approximated by nilpotent torsion-free groups.

Center. Let ∆ = (X;E) be a graph, Y a non-empty subset of the set X. We use
the following notation.

(2) Y ⊥ = {x ∈ X | (x, y) ∈ E for all y ∈ Y }.

Denote by 〈Y 〉 the group generated by Y .
The following theorem describes the center of a partially commutative metabelian

group, the quotient group by the center, and the relation of the center and the
commutant.
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Theorem 2. [36] Let ∆ = (X;E) be a graph. Then the following statements hold.
1) If X⊥ is non-empty then Z(M∆) = 〈X⊥〉, otherwise the center of M∆ is trivial.
2) If the subgraph Γ of ∆ is generated by the set X\X⊥ then M∆/Z(M∆) ∼= MΓ.
3) The intersection of the center Z(M∆) and the commutant M ′∆ is trivial.

Centralizers. Let ∆ = (X;E) be a graph. It is interesting to consider partially
commutative groups of varieties M such that u, v ∈ X commute in the correspon-
ding group if and only if u and v are adjacent. Suppose thatM contains N2. It turns
out that for u, v ∈ X the commutator [u, v] is equal to the identity in G(M,∆) if
and only if (u, v) ∈ E.

In Sec. 1, we denote by G the quotient group G/G′ and by g the image of g ∈ G
in the group G via the natural homomorphism G→ G.

Let G be a metabelian (non-abelian) group. Its commutant G′ is a non-trivial
abelian group and G acts on G′ by conjugations: c 7→ g−1cg, for g ∈ G and c ∈ G′.
Since the elements in G′ act identically G′ is a right module on the integral group
ring Z[G]. Denote the action of g on c ∈ G′ by cg. For elements α = l1g1 + . . . +
lmgm ∈ Z[G] and c ∈ G′ we put

cα = (cl1)g1 · . . . · (clm)gm .

The centralizers of elements xi ∈ X and the centralizers in the commutant
C(g) = C(g) ∩M ′∆ of elements g ∈M∆ are described in the following theorem.

Theorem 3. [13, 36] Let X = {x1, . . . , xn} be the set of vertices of the de�ning
graph ∆ of a group M∆ and {x1}⊥ = {x2, . . . , xm}. The following statements hold.
1) An element g ∈M∆ lies in the centralizer C(x1) of the element x1 if and only if

g = xl11 . . . x
lm
m

∏
2≤i<j≤m

[xi, xj ]
αij ,

where l1, . . . , lm ∈ Z, αij ∈ Z[M∆].
2) For any m ≤ n, 1 ≤ i1 < . . . < im ≤ n and for any non-zero integers q1, . . . , qm
the following equation holds

C(xq1i1 . . . x
qm
im

) = C(xi1) ∩ . . . ∩ C(xim).

Let us notice a couple of useful properties of centralizers of elements in groups
M∆ de�ned by trees or cycles. These properties are used to study the universal
theories of partially commutative metabelian groups. In [13], it was shown that the
intersection of centralizers C(xi)∩C(xj) of two di�erent elements xi, xj ∈ X in M∆

is trivial if ∆ is a tree. If ∆ is a cycle of length at least 4 then the intersection of
centralizers C(xi) ∩ C(xj) ∩ C(xl) of three di�erent elements in X is trivial [14].

Annihilators. Let c be an element in M ′∆. The annihilator Ann(c) of c is the ideal

of the ring Z[M∆], consisting of elements γ, such that cγ = 1.
For any two non-adjacent vertices xi, xj of ∆ de�ne the ideal Ai,j of the ring

Z[M∆] as follows. If xi and xj lie in di�erent connected components of ∆ then put
Ai,j = 0. Otherwise, let ai = xiM

′
∆ and consider all paths {xi, xi1 , . . . , xim , xj}

connecting xi and xj . To each path assign the element (1 − ai1) . . . (1 − axim
) ∈

A = Z[M∆] = Z[a±1
1 , . . . , a±1

n ]. Let Ai,j be the ideal generated by these elements.

Theorem 4. [13] Let ∆ = (X;E) be a graph with the set of vertices X = {x1, . . . , xn}.
If (xi, xj) /∈ E then Ann([xi, xj ]) = Ai,j.
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The trivialization of an element α in a group ring Z[G] is the image ε(α) of this
element under the ring homomorphism

ε : Z[G]→ Z

extending the group homomorphism G → 1. Useful properties of annihilators Aij
are given in the following theorem.

Theorem 5. [13] Let X = {x1, . . . , xn} be the set of vertices of a graph ∆ and
A = Z[M∆] = Z[a±1

1 , . . . , a±1
n ]. Then the following statements hold.

1) If n ≥ 3, a ∈ A, and a(1− a3)2 ∈ A1,2 then a(1− a3) ∈ A1,2.
2) If n ≥ 2, x1, x2 are non-adjacent vertices of ∆ and a, γ ∈ A are such that
ε(γ) 6= 0 and aγ ∈ A1,2 then a ∈ A1,2.
3) if n ≥ 2, a ∈ A, q, q1, . . . , qm are non-zero integers, 1 < i1 < ... < im ≤ n, and

a(1− aq1a
q1
i1
. . . aqmim ) ∈ A1,2

then a ∈ A1,2.
4) if n ≥ 2, 1 ≤ m ≤ n, q1, . . . , qm are nonzero integers, 1 ≤ i1 < · · · < im ≤ n,
and

a(1− aq1i1 . . . a
qm
im

) ∈ A1,2

for an element a ∈ A then all elements a(1− aij ) for j = 1, . . . ,m are in A1,2.

Let us recall the de�nition of an associator. Consider a right module L over a
commutative ring A. A simple ideal P of A is associated with L if there exists an
element 0 6= x ∈ L such that the annihilator of this element

Ann(x) = {a ∈ A |xa = 0}
coincides with P . The set of ideals associated with the module L is the associator
of L. In [14], for a partially commutative group M∆ the associator Z[M∆] of the
module M ′∆ is described.

Basis and canonical representation of elements. The authors of [13] provided a
theorem on canonical representation of elements of a partially commutative meta-
belian group. However, the proof of this theorem had a mistake and this was noticed
in the paper [36] of the second author of [13]. Later on, in [14, 36] theorems on a
canonical representation of some elements in the commutant of M∆ were proved.
The presentation found there enabled to study the universal theory of a group M∆

de�ned by a tree ∆. However, a complete proof of the theorem on a canonical
representation of elements in partially commutative metabelian group was given by
the second author of this survey and [13] only in 2020.

The following theorem describes a basis of the commutant of a partially commu-
tative metabelian group. It implies a canonical representation of elements of a the
group.

Theorem 6. [46] Let the set X = {x1, . . . , xr} of vertices of a graph ∆ be ordered
as follows x1 < x2 < . . . < xr. Then a basis of the commutant M ′∆ is the set we
denote by B′(M∆) consisting of all elements v of the form

v = [xi, xj ]
xj1

t1 ...xjm
tm
, {t1, . . . , tm} ⊂ Z \ {0}

such that the following conditions are satis�ed:
(1) j ≤ j1 < j2 . . . < jm ≤ r, 1 ≤ j < i ≤ r;
(2) the vertices xi and xj are in di�erent connected components of the graph ∆v,
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which is generated by all vertices of the set {xi, xj , xj1 , . . . , xjm};
(3) xi = max(∆v,xi), where ∆v,xi the connected component of the graph ∆v con-
taining xi.

Corollary 1. Let B′(M∆) be linearly ordered. Then any element g of the group
M∆ can be uniquely written in the form

g = xα1
1 . . . xαr

r vβ1

1 . . . vβm
m ,

where αi, βj ∈ Z and v1 < . . . < vm, vj ∈ B′(M∆).

Centralizer dimensions. The notion of the centralizer dimension was introduced by
A.Myasnikov and P. Shumyatsky [21] for comparison of universal theories of groups.
Suppose that a sequence

A1 ⊂ A2 ⊂ . . . ⊂ An
of subsets of a group G is such that the chain of centralizers of these subsets

C(A1) > C(A2) . . . > C(An)

is strictly descending. The centralizer dimension of a group G is the greatest n for
which such subsets A1, A2, . . . , An of G exist if there is such an n. The centralizer
dimension is denoted by Cdim(G). If the greatest n does not exist then we write
Cdim(G) =∞.

In [2], it was shown that centralizer dimension of a free partially commutative
nilpotent group of class 2 coincides with centralizer dimension of the free partially
commutative group de�ned by the same graph.

It is known [21] that the centralizer dimension of a �nitely generated metabelian
group is �nite. In papers [41, 42], properties of centralizer dimensions of partially
commutative groups were studied and the exact value of Cdim(M∆), where ∆ is a
tree or a cycle, was found.

Theorem 7. [41] Let ∆ be a tree with at least 3 vertices. If ∆ is a star then
Cdim(M∆) = 3. Otherwise, Cdim(M∆) = 5.

Let g1, . . . , gm ∈ M∆ be a �nite system of elements and g1, . . . , gm the images
of g1, . . . , gm in the free abelian group M∆ via the natural homomorphism M∆ →
M∆. The rank of the system g1, . . . , gm is the rank of the subgroup generated by
g1, . . . , gm.

Let M∆ be a non-abelian group. De�ne a parameter α(M∆) for M∆ as follows.
Assume Z(M∆) = 1. In [42], the following statement has been proved. Let the
de�ning graph ∆ of a partially commutative metabelian groupG have n vertices and
Z(G) = 1. Then if rank of a system {g1, . . . , gm} is equal to n then the centralizer
C(g1, . . . , gm) is trivial. Put α(M∆) = a, where a is the largest integer such that
for any system of elements g1, . . . , gm ∈ M∆ of rank at least a the centralizer
C(g1, . . . , gm) is trivial. If the center of M∆ is non-trivial then M∆/Z(M∆) is a
partially commutative group with no center. In this case, put

α(M∆) = α(M∆/Z(M∆)).

De�ne a parameter β for a group M∆ as follows. Let b be the least natural
number such that for any distinct vertices xi1 , . . . , xib of ∆ the intersection

C(xi1) ∩ . . . ∩ C(xib)

is trivial. Then put β(M∆) = b.
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Theorem 8. [42] Let M∆ be a non-abelian group. Then

Cdim(M∆) ≤ α(M∆) + β(M∆) + 1.

Corollary 2. [42] For any group M∆ the following equation holds:

Cdim(M∆) ≤ 2n+ 1,

where n is quantity of vertices of ∆.

The following theorem shows that the value of centralizer dimension is not
bounded by a function of rank of a group and this value can be arbitrarily large
even in the case of a two-generated metabelian group.

Theorem 9. [42] For any n ∈ N there exists a two-generated untwisted metabelian
group of centralizer dimension at least n.

By Theorem 7, centralizer dimensions of partially commutative metabelian gro-
ups de�ned by trees are bounded as well as centralizer dimensions of partially
commutative groups de�ned by cycles.

Theorem 10. [42] If M∆ is a partially commutative group de�ned by a cycle of
length at least 5 then Cdim(M∆) = 7.

By analogy with Cdim(G) the centralizer dimension in commutant Cdim(G)
is de�ned. To de�ne Cdim(G) centralizers in commutant C(Ai) = C(Ai) ∩ G′ are
considered instead of centralizers C(Ai). Centralizer dimensions in commutant can
also be used for a comparison of universal theories.

In [41], the centralizer dimensions Cdim are de�ned for partially commutative
groups de�ned by trees and cycles.

Inclusions, subgroups, retracts. For any variety M and any graph ∆ the following
statement holds. Let ∆ be a graph and Γ its subgraph generated by a set of vertices
Y ⊆ V (∆). Then there exists a retraction of G(M,∆) onto the group G(M,Γ) such
that this retraction is identical on Y and takes all other elements in V (∆) to the
identity.

Let us describe a couple of embeddings of partially commutative metabelian
groups into a group of matrices. They allied to the Magnus embedding. This
embedding is very important in theory of soluble groups. Recall the de�nition
of the Magnus embedding for a free metabelian group Mn of rank n for n ≥ 2.
Let X = {x1, . . . , xn} be a basis of Mn, An a free abelian group with a basis
{a1, . . . , an}, B = Z[An], and F a free right B-module with a basis {f1, . . . , fn}.
Consider the matrix group

Wn =

(
An 0
F 1

)
.

The map

µ : xi 7→
(
ai 0
fi 1

)
, for i = 1, . . . , n,

is extended up to the Magnus embedding µ of the group Mn to the group Wn.
The embedding µ takes a commutator [xi, xj ] to the matrix(

1 0
τij 1

)
, where τij = fi(aj − 1) + fj(1− ai).
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Let ∆ = (X;E) be a graph and R∆ a normal subgroup generated by all commu-
tators [xp, xq] such that (xp, xq) ∈ E. Then µ maps R∆ to the submodule L of the
module F such that L is generated by all τpq for which (xp, xq) ∈ E. Let T = F/L.
The Magnus embedding µ ofMn toWn induces an embedding µ∆ of the groupM∆

to the group of matrices

(3) W∆ =

(
An 0
T 1

)
.

In [43] the existence of one more embedding of a groupM∆ to a group of matrices
was shown.

Theorem 11. [43] Let ∆ be a connected graph, {x1, . . . , xn} the set of vertices of
∆ and a basis of the free metabelian group Mn, ai the image of xi under the natural
homomorphism Mn → An = Mn/M

′
n, and δ = (a1 − 1) · . . . · (an − 1) ∈ B. Then

the group M∆ is embeddable to the group of matrices

(4) W∆ =

(
An 0
T/Tδ 1

)
,

where the ring B and the module T = F/L are de�ned above.

Groups W∆ and W∆ are splittable. For this reason, they are preferable for a
study of universal theories. This will be discussed in Subsection 1.2.

Let us present some theorems on subgroups. In [36] it was shown that if a group
M∆ is nilpotent then it is abelian. The following theorem states even more.

Theorem 12. [43] Any nilpotent subgroup of M∆ is abelian.

The Fitting subgroup Fit(G) of a group G is the product of all nilpotent normal
subgroups of G.

Theorem 13. [43] The Fitting subgroup of a groupM∆ is equal to the direct product
of the center and the commutant of this group.

Let G = (X |R,A2) and H = (Y |S,A2) be represented in the variety of
metabelian groups by generators and de�ning relations. If X ∩ Y = ∅ then the
group T = (X t Y |RtS,A2) is called the metabelian product of G and H. Let us
denote the metabelian product of metabelian groups G1, . . . , Gn byM(G1, . . . , Gn).

Theorem 14. [39] Any partially commutative metabelian group is a subgroup of
a direct product of some �nite (possibly empty) set of free abelian groups Ai and

some �nite (possibly empty) set of metabelian products Mj = M(B
(j)
1 , . . . , B

(j)
rj ) of

free abelian groups B
(j)
1 , . . . , B

(j)
rj .

Automorphisms. A vertex x of a graph ∆ is called an end-point if its degree is equal
to 1.

An automorphism α of a group G is called an IA-automorphism if this automor-
phism acts identically on the quotient group G. The group of IA-automorphisms
is denoted by IAut(G).

Theorem 15. [45] Suppose that a graph ∆ has no cycles. If an IA-automorphism
α of the group M∆ �xes all end-points and isolated vertices of ∆ then α is the
identical automorphism.
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Both requirements are essential. If there is a cycle in ∆ or α is not identical on
the quotient group by the commutant then Theorem 15 does not hold.

Each automorphism α of the group M∆ induces an automorphism α of the free
abelian group M∆ = M∆/M

′
∆. The group of induced automorphisms is called the

group of quotient automorphisms of the group M∆ and is denoted by F∆. Clearly,
F∆
∼= Aut(M∆)/IAut(M∆).
In [45], a description of a group of matricesM∆ is given. This description uses

the order on the set X of the vertices of ∆. This order is de�ned in the same work
and it depends not only on X but also on the structure of ∆. It induces the order
on the basis of the group M∆. An automorphism α of the group M∆ is called a
matrix automorphism if its matrix [α] in the chosen basis belongs to the group of
matricesM∆. The following statement holds.

Theorem 16. [45] Let ∆ be a graph with no cycles. Then each quotient group
automorphism of the group M∆ can be written as a product of an automorphism of
the graph ∆ and a matrix automorphism.

Groups G and H are called commensurable if there exist subgroups G1 and H1

of �nite index in the groups G and H respectively such that G1
∼= H1.

Let a linear group A be Q-de�nable. This means that A ≤ GL(n,C) and its
basic set is de�ned by a system of equations with coe�cients in Q. A subgroup
B ≤ A ∩ GL(n,Q) = AQ is called an arithmetic group or an arithmetic subgroup
of A if it is commensurable with AZ = A ∩GL(n,Z).

Corollary 3. [45]. Let ∆ be a graph with no cycles. Then the group F∆ of M∆ is
arithmetic.

Let us give some more information on automorphisms of partially commutative
metabelian groups (see [40] for details). Let ∆ = (X;E), be a graph with the set
of vertices X = {x1, . . . , xn}. In [19], Laurence de�ned four sets of automorphisms
generating the group Aut(F∆).
(1) The set of graph automorphisms, namely the set of elements in Aut(F∆) such
that these elements are induced by automorphisms π : ∆→ ∆ of the graph ∆.
(2) The set of inverting automorphisms α ∈ Aut(F∆). These are automorphisms
taking one of the vertices xi ∈ X to x−1

i and �xing all other vertices.
(3) Consider two distinct vertices xi, xj , such that (xj , x) ∈ E implies (xi, x) ∈ E
for any x ∈ X, x 6= xi. The third set consists of transvections taking xj to xjx

±1
i

or to x±1
i xj and �xing all other vertices.

(4) The fourth set consist of locally interior automorphisms de�ned as follows. Let
xi ∈ X. Consider the subgraph Γ obtained by deleting xi, all vertices adjacent to
xi, and all edges incident to deleted vertices. Let Λ be a union of some connected
components of Γ. Then de�ne β ∈ Aut(F∆) setting β(xj) = x−1

i xjxi for xj ∈ Λ
and β(xj) = xj for xj /∈ Λ.

It follows from [47] that if ∆ has at least three connected components and each
of these components is a complete graph then the group Aut(M∆) is not generated
by automorphisms induced by the Laurence automorphisms.

In [40], a stronger result was obtained. Namely, if ∆ is a connected graph or
even a tree then the group Aut(M∆) can contain automorphisms not induced
by automorphisms of the partially commutative group F∆. In the same paper,
a monoid P of matrices over a ring Z[a±1

1 , . . . , a±1
n ] of integer Laurent polynomials

and a congruence ≈ on this monoid are de�ned in such a way that the group of
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automorphisms acting identically on the quotient group M∆ is isomorphic to the
quotient monoid of P by ≈.

The structure of the group of automorphisms of partially commutative class two
nilpotent group was studied in [32].

Direct decompositions. A groupG is decomposable into a direct product ifG = A×B
for some groups A 6= 1 and B 6= 1. In [33], the question on existence of direct
decomposition for partially commutative groups in varieties containing N2 was
studied. Two theorems were proved.

Theorem 17. [33] Let M be a variety of groups such that this variety contains N2.
Suppose that a group G = G(M,Γ) decomposes into a direct product H ×A, where
A is an abelian group. Then there exists a subgraph ∆ of the graph Γ such that the
set of vertices of ∆ contains X\X⊥ and H ∼= G(M,∆).

Theorem 18. [33]. Let M be a variety of soluble groups such that this variety
contains N2. If a graph ∆ is not connected then the group G(M,∆) is not decom-
posable into a direct product.

1.2. Logical properties of partially commutative metabelian groups.

Elementary equivalence and isomorphism. In [16], it was shown that two partially
commutative associative algebras are isomorphic if and only if so are their de�ning
graphs. Using this result, C.Droms [8] proved an analogous one for partially com-
mutative groups in the variety of all groups. He established the following fact.

Theorem 19. [8] If M contains the variety N2 then G(M,Γ) and G(M,∆) are
isomorphic if and only if so are the graphs Γ and ∆.

The following theorem provides a criterion of coincidence of elementary theories
of a partially commutative group in a nilpotent variety containing N2 and an
arbitrary group.

Theorem 20. [33] Let a variety of nilpotent groups M contain N2. Then if a �nitely
generated group H has the same elementary theory as G(M,∆) then G(M,∆) ∼= H.

Theorem 20 implies the following result.

Corollary 4. [33] Let G = G(M,Γ) and H = G(M,∆) be groups in a variety M
of nilpotent groups such that M contains N2. Then the elementary theories of the
groups G and H coincide if and only if Γ ∼= ∆.

An elementary theory Th(G) is called soluble if there is an e�ective procedure
checking for any sentence Φ if this sentence belongs to Th(G).

In [22], G.A.Noskov proved that the elementary theory of an almost soluble
group is soluble if and only if the group is almost abelian. So, if a variety M is
soluble and N2 ⊆M then the elementary theory of a group G(M,∆) is not soluble.

Universal theories. One of the reasons for research into centralizer dimensions Cdim
and Cdim is the coincidence of universal theories of groups implies the equality of
their centralizer dimensions.

In Subsection 1.1, inclusions (3) and (4) of a group M∆ into the groups of
matricesW∆ andW∆ were de�ned. In [13], it was shown that the universal theories
of these groups of matrices are soluble. But the universal theory of M∆ coincides
with no universal theories of groups of matrices. This result was obtained in [42].
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Therefore we can only say that a groupM∆ is embeddable into a metabelian group
with a soluble universal theory. The problem on the solubility of the universal theory
of a group M∆ has not been solved yet. It is included in the Kourovka Notebook
[18]. It is known that the universal theory of a free abelian group is soluble. In
[5, 6], O.Chapius proved that the universal theory of a free metabelian group is
also soluble. Obviously, groups with soluble universal theories can be obtained from
free abelian and free metabelian groups by using the direct product of groups. For
instance, if ∆4 is the 4-cycle then the universal theory of the group G∆4 is soluble,
since it is isomorphic to the direct product of two free 2-generated metabelian
groups. One can �nd a non-trivial example of a partially commutative metabelian
group having a soluble universal theory. So, in [41], it was shown that if Γ4 is
the linear graph on four vertices then the universal theory of partially commutative
metabelian groupMΓ4 is soluble. The proof follows from the coincidence of universal
theories of groups M∆4 and MΓ4 .

In [3], the problem on the universal equivalence of partially commutative meta-
belian groups with acyclic de�ning graphs was considered. The following theorem
was proved.

Theorem 21. [3] Suppose that the graph ∆∗ is obtained from a graph ∆ by deleting
all end-points and the edges incident to the end-points. Let Ap be the variety of
abelian groups of exponent p, where p is a prime number or 0. If ∆ and Γ are graphs
with no cycles such that each connected component of these graphs has at least three
vertices then the groups G(ApA,Γ) and G(ApA,∆) are universally equivalent if and
only if Γ∗ ∼= ∆∗.

If any connected component of ∆ of Γ contains less then three vertices then the
corresponding connected component in ∆∗ (correspondingly in Γ∗) is empty and
the statement of Theorem 21 does not hold.

To prove Theorem 21, generalizations many algebraic properties of a group M∆

to groups G(ApA,∆) were used. These generalizations were obtained in [3].
The study of partially commutative metabelian group was continued in [14]. In

this paper, an equivalence relation on the set of vertices of a graph ∆ is de�ned.
Then, an adjacency relation is determined on the set of equivalence classes. So, a
new graph ∆z, appears. This graph is called the compression of the initial one and
it is usually simpler then ∆. Let us give a strict de�nition of the compression of
a graph. We say that two vertices x and y of a graph Γ are equivalent and write
x ∼ y if x⊥ ∪ {x} = y⊥ ∪ {y} (x⊥ is de�ned in (2)). Note that equivalent vertices
are always adjacent. Then the compression of ∆ is the quotient graph ∆z = ∆/ ∼.

An end-point z in [15] is called bad if there exists a vertex x adjacent to z and
adjacent to at least to two vertices y and v, where y is also an end-point.

Denote by ∆′ the graph obtained by deleting one-by-one all bad vertices and the
edges incident to them.

Theorem 22. [14, 15] For any graph ∆ the universal theories of the groups M∆

and M∆? coincide as well as the universal theories of M∆ and M∆′ .

The paper [14] gives an example of graph ∆ such that this graph is not a tree
while its compression ∆? is. For this reason, the universal theory of a group de�ned
by a tree can coincide with the universal theory of a group de�ned by a graph with
cycles. Theorem 22 implies that the condition of acyclicity of the de�ning graph in
Theorem 21 is essential even for partially commutative groups in the variety A2.
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It follows from Theorem 22 that the universal theory of metabelian product of
free abelian groups coincides with one of a free metabelian group.

For partially commutative metabelian groups de�ned by cycles the following
theorem holds.

Theorem 23. [14]. If n,m ≥ 3 then groups M∆n
and M∆m

de�ned by cycles of
lengths n and m respectively are universally equivalent if and only if n = m.

Let ∆ be a graph with the set of vertices X = {x1, . . . , xn}. Denote by ϕ(∆) the
following sentence.

∃v1 . . . vn(
∧

(xi,xj)∈∆

[vi, vj ] = 1 ∧
∧

(xi,xj)/∈∆

[vi, vj ] 6= 1 ∧
∧
i 6=j

vi 6= vj ∧
∧
i=1,n

vi 6= 1).

V.N.Remeslennikov formulated the following conjecture.

Let M be a variety of groups. If the universal theories of the groups F (M,Γ1) and
F (M,Γ2) are distinct then there exist a graph ∆ such that the sentence ϕ(∆) is
true on one of these groups and is false on the other one.

In [20], the a�rmative solution of this conjecture was obtained for partially
commutative nilpotent R-groups of class 2, where R is a binomial ring. Let G and
H be two partially commutative nilpotent R-groups of class 2 and ∆ and Γ de�ning
graphs of G and H respectively. It turns out that if G and H are not universally
equivalent then their universal theories di�er in ϕ(Γ) or ϕ(∆).

However, for partially commutative metabelian groups the analogous result does
not hold. A counterexample was obtained in [41]. It is not known if the conjecture
holds for the variety of metabelian groups. Nevertheless, if only formulas of the
form ϕ(∆), where ∆ is a tree, are considered then the corresponding result is not
true. In [41], the second author of this survey has found two groups MΓ1

and MΓ2

such that these groups have distinct universal theories while for any tree T the
corresponding formula ϕ(T ) is true on one of these groups if and only if it is true
on the other one.

Quasi-varieties. A sentence of the type

∀z1 . . . , zm((w1(z1, . . . , zm) = 1 ∧ . . . ∧ wr(z1, . . . , zm) = 1) −→ w(z1, . . . , zm) = 1),

where w and wi are group words is called a quasi-identity. A class of groups
satisfying a collection of quasi-identities is called a quasi-variety. A non-empty
class of groups form a quasi-variety if and only if this class is closed with respect
to taking subgroups, cartesian products, and ultra-products. Denote by qvar(G)
the quasi-variety generated by a group G. A class of groups closed with respect to
taking subgroups and cartesian products is called a pre-variety.

In [39], it was shown that there exist free partially commutative groups F∆i
such

that
qvar(F∆1) ⊂ qvar(F∆2) ⊂ . . . ⊂ qvar(F∆n) ⊂ . . . ,

and all inclusions in this in�nite chain are strict. This is not so for partially
commutative metabelian groups. For them, the following theorem holds.

Theorem 24. [39] Any two non-abelian partially commutative metabelian groups
generate equal quasi-varieties

The same result takes place for pre-varieties.
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Theorem 25. [39] Any two non-abelian partially commutative metabelian groups
generate equal pre-varieties.

The positive universal theory of a group G is the set of all sentences Φ of the
form

Φ = ∀z1 . . . zm

∨
i∈I

∧
ji∈Ji

wji(z1, . . . , zm) = 1

 ,

such that these sentences are true on G, where wji(z1, . . . , zm) are group words.
Let us denote the positive universal theory of a group G by Th+

∀ (G).
The following theorem shows that not only quasi-varieties and pre-varieties

generated by partially commutative metabelian groups coincide but also positive
universal theories of such groups do.

Theorem 26. [39] Let MΓ and M∆ be non-abelian groups. Then Th+
∀ (MΓ) =

Th+
∀ (M∆).

Equations. In Subsection 1.1, the inclusion of a group M∆ into the corresponding
group of matrices W∆ was de�ned. In [44], it was shown that, in general, the
universal theories of groups M∆ and W∆ are distinct. This result was obtained by
comparing centralizer dimensions of these groups. However, the groups M∆ and
W∆ have some common properties allied to their universal theories. Namely, the
following theorem was proven.

Theorem 27. [44] An equation

g1x
m1 . . . glx

ml = 1, gi ∈M∆,

is solvable in M∆ if and only if it is so in W∆.

The analogue of Theorem 27 does not hold for equations of two unknowns.
Moreover, this analogue does not hold even for a totally disconnected graph ∆.

1.3. Partially commutative metabelian nilpotent groups.

Mal'cev basis. Let N2,c be the intersection of the variety of metabelian groups A2

with the variety of nilpotent groups Nc.
We introduce some notation from [37]. In this paper, a basis of a group Mc,∆ =

G(N2,c,∆) is constructed. LetG be a �nitely generated nilpotent torsion-free group.
As is known, G has a central series

G = G1 > G2 > . . . > Gs+1 = 1

with in�nite cyclic quotient groups. Let us choose elements a1, . . . , as ∈ G such that
Gi = 〈ai, Gi+1〉. The ordered system of elements (a1, . . . , as) is called a Mal'cev
basis of the group G. Each element g ∈ G can be written in the form

g = at11 . . . atss , ti ∈ Z
uniquely.

Let ∆ = (X;E) be a graph with the set of vertices X = {x1, . . . , xn} and
v(xi1 , . . . , xim) a representation of an element v ∈Mc,∆ via generators in X, where
vertices xi1 , . . . , xim occur in this representation. Then set σ(v) = {xi1 , . . . , xim}.
Note that, σ(v) depends not only on v but also on a speci�c representation via
generators of the group. Denote by ∆v the subgraph of ∆ generated by the set
σ(v). The connected component of the graph ∆v containing a vertex x ∈ σ(v) is
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denoted by ∆v,x. Let us order the set X as x1 < x2 < . . . < xr. Denote the greatest
vertex in a connected component ∆v,x by max(∆v,x). De�ne the commutator cm =
[y1, y2, . . . , ym] by induction: c2 = [y1, y2], cm = [cm−1, ym]. Let B′(Mc,∆) be the
set of commutators of the form

v = [xj1 , xj2 , . . . , xjm ], 2 ≤ m ≤ c
in a group Mc,∆ such that the following conditions are satis�ed:
(1) 1 ≤ j2 ≤ j3 ≤ . . . ≤ jm ≤ r, j2 < j1 ≤ r;
(2) the vertices xj1 and xj2 are in di�erent connected components of the graph ∆v;
(3) xj1 = max(∆v,xj1

).

Theorem 28. [37] The set of elements B(Mc,∆) = XtB′(Mc,∆) is a Mal'cev basis
of the group Mc,∆.

The canonical representation from Theorem 28 is used in [15] for study of
algebraic properties and the universal theory of a group G = Mc,∆. Let us present
the main results of this paper. The following theorem is similar to Theorem 5 on
annihilators of partially commutative metabelian groups and it uses the ideals Aij
de�ned in Theorem 5. Let I be the augmentation ideal of a ring Z[G], i.e. the kernel
of the natural homomorphism Z[G]→ Z.

Theorem 29. [15] Let xi and xj be two non-adjacent vertices of a graph ∆. Then
the annihilator of the commutator [xi, xj ] in the group Mc,∆ is equal to Ai,j +Ic−1.

Let us present a theorem on the centralizers of elements of a groupMc,∆. Denote
by C(g) the centralizer of g and by C(g) the centralizer of g in the commutant,
namely the set

C(g) = C(g) ∩M ′c,∆.
As usual, let γm(G) denote the mth element of the lower central series of G.

Theorem 30. [15] Let X = {x1, . . . , xn} be the set of vertices of a graph ∆ and
G = Mc,∆. Then the following conditions hold.
1) If xn is an isolated vertex then

C(xn) = 〈xn〉 × γc(G).

2) If xn is adjacent to only one vertex (say to xn−1) then

C(xn) = 〈xn−1〉 × 〈xn〉 × γc(G).

3) If xn is adjacent to vertices xr+1, . . . , xn−1, where r ≤ n−3, then C(xn) consists
of all elements of the form

n∏
p=r+1

xp
lp ·

∏
r+1≤i<j≤n−1

[xi, xj ]
fi,j · γc(G),

where lp ∈ Z, fi,j ∈ Z[G].

The following theorem can be used to �nd the centralizers in commutant for any
elements of a group Mc,∆.

Theorem 31. [15] Let ∆ = (X;E) be a graph with the set of vertices X =
{x1, . . . , xn} and G = Mc,∆. Then

C(gxl1i1 . . . x
lt
it

) =

t⋂
j=1

C(xij )
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for any integers 1 ≤ i1 < . . . < it ≤ n, any non-zero integers l1, . . . , lt, and any
element g in the commutant G′.

To study the universal theory of a group Mc,∆ the following theorem is useful.

Theorem 32. [15] Let ∆ = (X;E) be a tree, u, v two distinct vertices of X. Then
in the group G = Mc,∆ the following identity holds:

C(u) ∩ C(v) = γc(G).

Theorem 32 implies a description of the center of a partially commutative nilpo-
tent metabelian group.

Theorem 33. [15] Let ∆ = (X;E). Then the center of G = Mc,∆ is the direct

product of the group γc(G) and the cyclic groups generated by vertices xi ∈ X⊥.

Let us move on to the results on the universal theory of a group Mc,∆. The
de�nition of the graph ∆′ is given in Subsec. 1.2 before Theorem 22, the graph ∆∗

is de�ned in Theorem 21.

Theorem 34. [15] Let ∆ be a graph. The groups Mc,∆ and Mc,∆′ have the same
universal theories.

Theorem 35. [15]. Let Γ1 and Γ2 be trees. The groups Mc,Γ1
and Mc,Γ2

have the
same universal theories if and only if the graphs Γ∗1 and Γ∗2 are isomorphic.

Theorem 35 is an analogue of Theorem 21.

1.4. Partially commutative metabelian pro-p-groups. In [1], centralizers of
elements and annihilators of commutators in partially commutative metabelian pro-
p-groups were studied. The results obtained for partially commutative metabelian
pro-p-groups are similar to those for partially commutative metabelian abstract
groups in [13]. In this subsection, we are talking about pro-p-groups. So, by a
subgroup, a homomorphism, a generating set we mean a closed subgroup, a con-
tinuous homomorphism, a generating set in the topological sense, respectively.
Denote by P a free metabelian pro-p-group and by P∆ the partially commutative
metabelian pro-p-group de�ned by a graph ∆ = (X;E). Let X = {x1, . . . , xn}. The
quotient group of P∆ by its commutant P ′∆ is a free abelian pro-p-group A with
a basis {a1, . . . , an}, where ai is an image of xi via the natural homomorphism
P∆ → P∆/P

′
∆. This group is isomorphic to the direct sum of n copies of the

additive group of the ring of integer p-adic numbers Zp. The action of P∆ on P ′∆
by conjugation

x→ xg = g−1xg

de�nes a structure of a right module on P ′∆ over the augmented group algebra
Zp[[A]]. This algebra is identi�ed with the power series algebra Zp[[y1, . . . , yn]],
where yi = ai − 1. Similarly, P ′ is a module over the algebra Zp[[y1, . . . , yn]]. For
this reason, any element f ∈ P can be written in the form

f = xl11 . . . x
ln
n

∏
1≤i<j≤n

[xi, xj ]
αij ,

where li ∈ Zp, αij ∈ Zp[[y1, . . . , yn]].
For a graph ∆ and any of its vertices xi and xj , let us de�ne the ideal Ai,j of

the algebra Zp[[y1, . . . , yn]] as it was made for a partially commutative metabelian
group and for a partially commutative metabelian nilpotent group. Namely, if the
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vertices xi and xj lie in di�erent connected components of ∆ then set Ai,j = 0. If
the vertices xi and xj lie in the same connected component then consider each path
(xi, xi1 , . . . , xir , xj) between these vertices. To each such path assign the product
yi1 . . . yir if length of the path is greater than 1 and 1 otherwise. By de�nition, the
ideal Ai,j is generated by all such elements. In particular, if xi, xj are adjacent then
Ai,j contains 1. So, this ideal coincides with the entire algebra Zp[[y1, . . . , yn]].

Let us formulate the main results of paper [1].

Theorem 36. [1] Let x1, . . . , xn, where n ≥ 2, be vertices of the de�ning graph ∆ of
a partially commutative metabelian pro-p-group P∆. Then for i 6= j, the annihilator
of the commutator [xi, xj ] in the algebra Zp[[y1, . . . , yn]] coincides with the ideal
Ai,j.

Theorem 37. [1] Let x1, . . . , xn, where n ≥ 2, be vertices of the de�ning graph ∆
of a partially commutative metabelian pro-p-group P∆ and let x2, . . . , xm be all the
vertices adjacent to x1. An element g ∈ P∆ lies in the centralizer of x1 if and only
if it can be written in the form

g = xl11 . . . x
lm
m

∏
2≤i<j≤m

[xi, xj ]
γi,j ,

where li ∈ Zp, γi,j ∈ Zp[[y1, . . . , yn]].

The following theorem has not been published yet. It is analogous to Theorem 6
and gives a description of a basis for the commutant of a partially commutative
metabelian pro-p-group.

Theorem 38. Let the set {x1, . . . , xn} of vertices of a graph ∆ be ordered. Then a
basis B(P ′∆) of the commutant P ′∆ over Zp is the set of all elements w of the form

w = [xi, xj ]
y
s1
j1
...ysmjm , {s1, . . . , sm} ⊂ N,

such that the following conditions are satis�ed:
1) xj ≤ xj1 < . . . < xjm , xj < xi;
2) the vertices xi, xj are in di�erent connected components of graph ∆w generated
by all vertices of the set {xi, xj , xj1 , . . . , xjm};
3) xi = max{∆w,xi

}, where ∆w,xi
the connected component of the graph ∆w

containing xi.

2. Partially commutative Lie algebras

Research into partially commutative Lie algebras only began about 30 years ago
and these algebras have not been studied so intensively as partially commutative
groups.

Since partially commutative groups and Lie algebras are rather similar objects,
many results for groups have analogues for Lie algebras. Moreover, some methods
for studying Lie algebras come from those for studying groups. Nevertheless, there
are speci�c methods for researching Lie algebra.

Let Γ = (A;E) be a graph with a (�nite or in�nite) set of vertices A =
{a1, a2, . . . } and a set of edges E. If ai and aj are adjacent in Γ then we write
ai ↔ aj . Similarly, if B ⊆ A and ai ↔ aj for any aj ∈ B then we write ai ↔ B.
Finally, let B,C ⊆ A. Then B ↔ C means ai ↔ aj for any ai ∈ B and any aj ∈ C.
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Given B ⊆ A denote by Γ(B) the full subgraph of Γ generated by the set of
vertices B, namely put Γ(B) = (B;E∩B2). For a subgraph ∆ of a graph Γ = 〈A;E〉
denote by A(∆) the set of vertices of ∆.

Let R be a unital commutative ring and Γ = (A;E) be an undirected graph
without loops. The de�nition of a partially commutative Lie R-algebra in a variety
M can be written as follows.

LR(M,∆) = 〈A | [ai, aj ] = 0 if ai ↔ aj ;M〉.

Indeed, by (1)

(5) [ai, aj ] = [aj , ai]

for any i and j such that ai ↔ aj . On the other hand, [f, g] = −[g, f ] for any
elements f and g of any Lie R-algebra. In particular,

(6) [ai, aj ] = −[aj , ai].

Combining (5) and (6) we obtain 2[ai, aj ] = 0 if ai ↔ aj . Therefore, characteristic
of R is equal to 2 or [ai, aj ] = 0. In the former case, the corresponding Lie R-algebra
is commutative, so the notion of partial commutativity makes no sense. So, in this
section we assume that characteristic of the basic ring (or the �eld) is not equal to
2. We say that the algebra LR(M,∆) is de�ned by ∆ and that ∆ is the de�ning
graph of LR(M,∆).

In this section, we talk mainly about results in partially commutative and par-
tially commutative metabelian Lie R-algebras. Some results concern partially com-
mutative nilpotent Lie R-algebras. For a domain R and a graph Γ = (A;E) with
the set of vertices A and the set of edges E denote by LR(A; Γ), MR(A; Γ), and
Nm,R(A; Γ) the partially commutativeR-algebra, partially commutative metabelian
Lie R-algebra, and partially commutative nilpotent R-algebra of nilpotency degree
m respectively de�ned by Γ.

Let [u] be a Lie monomial in a (�nite or in�nite) set of generatorsA = {a1, a2, . . . }.
The multi-degree of [u] is the vector δ = (δ1, δ2, . . . , ), where δi is the number of
occurrences of ai in [u].

For a Lie monomial [u] of multi-degree (δ1, δ2, . . . , ) put supp([u]) = {ai | δi 6= 0}.
Extend this notation to the set of all Lie polynomials as follows. If g =

∑
j αj [uj ]

is a Lie polynomial then supp(g) =
⋃
j supp([uj ]).

2.1. Algebraic properties of partially commutative Lie algebras.

Isomorphisms. As far as we know partially commutative algebras have been ex-
plored since 80's. We start with the result for partially commutative associative
algebras obtained by K.H.Kim, L.Makar-Limanov, J.Neggers, and F.W.Roush
[16]. This result has been already mentioned in Subsection 1.2. Nevertheless, we
decided to give it in more detail because this is one of the signi�cant results for
partially commutative algebras.

For an undirected graph without loops Γ = (A;E) and a domain R denote by
AR(A; Γ) the partially commutative associative R-algebra de�ned by Γ.

Theorem 39. Let Γ = (A;E) and ∆ = (B;F ) be undirected graphs without
loops and F a �eld. The partially commutative associative algebras AF(A; Γ) and
AF(B; ∆) are isomorphic if and only if the graphs Γ and ∆ are isomorphic.
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G.Duchamp and D.Krob in [10] generalized this result to the case of associative
R-algebras where R is an arbitrary domain. Besides, in the same paper they stated
a criterion for existence of an isomorphism between partially commutative Lie
algebras. The analogous criterion holds also for partially commutative metabelian
Lie algebras [30]. In all cases, two algebras are isomorphic if and only if their de�ning
graphs are isomorphic.

Bases. Finding linear bases is a signi�cant problem because a linear basis is a very
important tool for studying algebras.

The �rst result on bases of partially commutative Lie algebras was obtained by
G.Duchamp and D.Krob in [9], but they did not give an explicit description of a
basis. Their algorithm was recursive. More precisely, let R be a unital commutative
ring and Γ(A;E) a graph without loops. The corresponding partially commutative
Lie R-algebra LR(A; Γ) is considered, a totally disconnected set B ⊆ A is chosen,
and the problem is reduced to �nding a linear basis of the algebra LR(A\B; Γ(A\B)).

An explicit construction for bases of partially commutative Lie algebras was
obtained in [23]. To make this description let us �rst recall the de�nition of Lyndon�
Shirshov words.

Denote by A? and A# the sets of all associative and non-associative words
(associative monomials with no coe�cient) in A respectively. We de�ne the empty
word by 1.

Let us extend an arbitrary well order on A to the lexicographic order on A?.
An associative word u is called an associative Lyndon�Shirshov word if for any

pair of nonempty words v and w such that u = vw we have wv < u.
A non-associative word (non-associative monomial with no coe�cient) [u] is

called a Lyndon�Shirshov word if

(1) The word u obtained from [u] by omitting brackets is an associative Lyndon�
Shirshov word;

(2) if [u] = [[u1], [u2]], then [u1] and [u2] are Lyndon�Shirshov words (it follows
from (1) that u1 > u2);

(3) if [u] =
[
[[u11], [u12]], [u2]

]
, then u2 > u12.

Denote the set of all non-associative Lyndon�Shirshov words in A by LS(A). It was
shown in [34] that the set LS(A) is a basis of the free Lie R-algebra generated by
A.

For a partially commutative Lie algebra LR(A; Γ) over a domain R de�ne by
induction partially commutative Lyndon�Shirshov words (PCLS-words for short).

(1) All elements of A are PCLS-words.
(2) a Lyndon�Shirshov word [u] such that `([u]) > 1 is a PCLS-word if [u] =

[[v], [w]], where [v] and [w] are PCLS-words and there is an element in
supp([v]) such that it is not connected by an edge of Γ to the �rst letter of
[w].

(3) There are no other PCLS-words.

Denote the set of all PCLS-words of a partially commutative Lie R-algebra
LR(A; Γ) by PCLS(A; Γ). Using the method of Gr�obner�Shirshov bases an explicit
description of a bases of a partially commutative Lie algebras was obtained.

Theorem 40. [23] Let R be a unital commutative ring, Γ a �nite undirected graph
without loops, and A the set of vertices of Γ. Then the set PCLS(A; Γ) is a basis
of the partially commutative Lie R-algebra LR(A; Γ).



686 E.N. POROSHENKO, E.I. TIMOSHENKO

A linear basis for a partially commutative nilpotent algebra can be easily obtained
from a linear basis of a partially commutative algebra.

Theorem 41. [24] Let R be a unital commutative ring, Γ a �nite undirected graph
without loops, and A the set of vertices of Γ. Then the set of all the elements
of PCLS(A; Γ) whose lengthes are not greater than m is a basis of the partially
commutative nilpotent R-algebra NR,m(A; Γ).

In [23] and [24] the set A is supposed to be �nite, but it is easy to see that this
restriction is not essential and so, Theorem 40 and Theorem 41 hold for algebras
de�ned by in�nite graphs Γ as well.

The problem of �nding a linear basis for a partially commutative metabelian
Lie algebra is also rather interesting. An explicit description of such a basis was
obtained in [26]. The idea used for constructing a basis for a partially commutative
metabelian Lie algebra is similar to one for a partially commutative Lie algebra.
Namely, a basis is constructed by choosing some elements from a linear basis of a
free metabelian Lie algebra of the corresponding variety.

A basis for a free metabelian Lie algebra was obtained independently by L.A.Bo-
kut [4] and A. L. Shmelkin [35]. Let A = {a1, a2, . . . , an} be the set of generators of
free metabelian algebra. Then the set of all the elements of the form

[[. . . [ai1 , ai2 ], . . . ], aik ],

where ai1 > ai2 , ai2 6 ai3 6 · · · 6 aik is a basis of this algebra. Denote this set by
Bas(A).

Fix an arbitrary multi-degree δ = (δ1, δ2, . . . , δn), where n = |A|. Let N =∑n
i=1 δi, Aδ = {ai ∈ A | δi 6= 0}, and b the smallest element of Aδ with respect to

the lexicographic order. Denote the connected components of the graph Γ(Aδ) by
∆0,∆1, . . . ,∆k in such a way that b ∈ A(∆0). Let [ui] ∈ Bas(A) be an element
of multi-degree δ such that [ui] = [[. . . [[aji,1 , b], aji,3 ], . . . ], aji,N ], where aji,1 is
the largest element of A(∆i). Denote by Bδ(A; Γ) the subset {[u1], [u2], . . . , [uk]}.
Finally, put

Bas(A; Γ) =
⋃
δ

Bδ(A; Γ),

where the union is taken on all multi-degrees.

Theorem 42. [26] Let R be a unital commutative ring and Γ a �nite undirected
graph without loops. Then the set Bas(A; Γ) is a basis of the partially commutative
metabelian Lie R-algebraMR(A; Γ).

Note that Theorem 42 also holds for in�nitely generated partially commutative
metabelian Lie algebras.

Annihilators. Let R be an in�nite integral domain and R[A] be the set of all
commutative associative polynomials over R. The derived subalgebra M′R(A; Γ)
of the R-algebraMR(A; Γ) is an R[A]-module with respect to the adjoint represen-
tation.

De�ne the ideal IΓ
i,j of R[A] as follows. If ai and aj are vertices belonging to

di�erent connected components in Γ then put IΓ
i,j = 0. Suppose this is not so.

Then for each path (ai, b1, b2, . . . , bs, aj) connecting these vertices in Γ consider
the associative monomial b1b2 . . . bs. De�ne I

Γ
i,j as the ideal generated by all such

monomials.
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Theorem 43. [26] Let R be an in�nite domain and Γ = (A;E) a �nite undirected
graph without loops. For ai, aj ∈ A if ai and aj are not adjacent in Γ then the
annihilator of [ai, aj ] inMR(A; Γ) is equal to IΓ

i,j.

Centralizers. As well as for isomorphisms, the �rst results for centralizers of par-
tially commutative algebras were obtained for associative ones. For a graph Γ =
(A;E) denote by Γc the complement of Γ, i.e. the graph (A;A2\(E ∪ idA)), where
idA = {(a, a) | a ∈ A}. In 1980, K.H.Kim and F.W.Roush obtained a description
of centralizers of monomials [17].

Theorem 44. Let R be a unital commutative ring, Γ a �nite undirected graph
without loops, and A the set of vertices of Γ. Let also u be a monomial of degree > 0
in the partially commutative associative R-algebra AR(A; Γ) and let v be a monomial
of degree > 0 in AR(A; Γ) such that this monomial commutes with u. Finally, let
∆1,∆2, . . . ,∆p be the connected components of Γc(supp(u)). Write u = u1u2 . . . up,
where supp(ui) = A(∆i). Then v is a product of generators a such that a 6∈ supp(u)
but a↔ supp(u), and words w such that some power of w equals one of the ui.

It seems that the requirement of �niteness of the de�ning graph can be elimina-
ted.

We use the following notation Let R be a domain and L a Lie R-algebra. For
f, g ∈ L\{0} we write f v g if αf = βg for some α, β ∈ R. For any g ∈ L the
centralizer of g is denoted by C(g). We also put C(g) = C(g) ∩ L′.

Unlike the case of partially commutative associative algebras, centralizers of
elements of partially commutative Lie algebras over domains have been described
completely, i.e. for an arbitrary domain R an explicit description for centralizers of
all elements in any R-algebra LR(A; Γ) has been obtained.

Theorem 45. [25] Let R be a domain Γ a �nite undirected graph without loops, and
A the set of vertices of Γ. For an arbitrary element g of the Lie R-algebra LR(A; Γ)
denote by ∆1,∆2, . . . ,∆p all connected components of the graph Γc(supp(g)). Then
g =

∑p
i=1 gi, where supp(gi) = A(∆i) for all i = 1, 2, . . . p, and C(g) consists of

elements of the form h =
∑p
i=1 hi + h(1), where for each i = 1, 2, . . . p either hi = 0

or gi v hi. Moreover, supp(g)↔ supp(h(1)).

For partially commutative metabelian Lie algebras there is no complete descrip-
tion of centralizers. Nevertheless, in [26, 27] some speci�c results were obtained.

For f ∈ M′R(A; Γ) and g ∈ R[A] denote by f.g the image of f via the adjoint
action by g.

Theorem 46. Let R be a domain, Γ a �nite undirected graph without loops, and
A = {a1, a2, . . . , an} the set of vertices of this graph. Then for partially commutative
metabelian Lie R-algebraMR(A; Γ) the following statements hold.
1) If an is an isolated vertex in Γ then C(an) consists of the elements v of the form

v = αnan,

where αn ∈ R.
2) If the degree of xn is equal to 1 in G (say, it is adjacent to an−1) then C(an)
consists of all elements v of the form

v = αn−1an−1 + αnan,
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where αn−1, αn ∈ R.
3) If an is adjacent to ar+1, . . . , an−1 in Γ (r 6 n − 3), then C(an) consists of all
elements v of the form

v =

n∑
k=r+1

αkak +
∑

r+16i<j6n−1

[ai, aj ].fij ,

where αk ∈ R, fij ∈ R[A\{an}].

There are some results on �centralizers in the commutant� C(g) in partially
commutative metabelian Lie R-algebras.

Theorem 47. [26] Let R be a domain, Γ a �nite undirected graph without loops,
and A = {a1, a2, . . . , an} the set of vertices of this graph. Then in the partially
commutative metabelian Lie R-algebraMR(A; Γ) the following equation holds.

C
( m∑
j=1

αijaij
)

=

m⋂
j=1

C(aij )

for any elements ai1 , ai2 , . . . , aim and for any αi1 , αi2 , . . . , αim ∈ R\{0}.

Theorem 47 has some corollaries for partially commutative metabelian Lie R-
algebras de�ned by speci�c graphs.

Corollary 5. [27] Let R be a domain, Cn a cycle of length n > 3, and A =
{a1, a2, . . . , an} the set of vertices of Cn. Then the following statements hold in
MR(A;Cn).
a) If ai and aj are adjacent then C(αai + βan) = 0 for any α, β ∈ R\{0}.
b) If ai and aj are not adjacent then for any α, β ∈ R\{0} the set C(αai +
βaj) consists of linear combinations of non-zero Lie monomials [ur] such that
A(supp([ur])) = A\{ai, aj}. Moreover, any element of C(αxi + βxj) can be rep-
resented in the form f = [ai−1, ai+1].g for some g ∈ R[A].
c) If m > 3, then C(

∑m
j=1 αjxij ) = 0 for any ai1 , ai2 , . . . , aim and α1, α2, . . . , αm ∈

R\{0}.

Corollary 6. [26] Let R be a domain, Γ a �nite tree, and A = {a1, a2, . . . , an}
the set of vertices of this tree. Suppose that g =

∑m
j=1 αjaij , where m > 2 and

αj ∈ R\{0} for j = 1, 2, . . . ,m. Then C(g) = 0 inMR(A; Γ).

2.2. Logical properties of partially commutative

and partially commutative metabelian Lie algebras.

Universal equivalence. Conditions of universal equivalence of partially commutative
Lie R-algebras over domains R were studied in the series of papers [26, 27, 28, 29,
31]. The problem of �nding a criteria for universal equivalence on the entire class of
partially commutative (metabelian) Lie R-algebras seems to be very complicated.
So, this problem is considered on some speci�c classes of R-algebras. Although the
methods used in partially commutative and partially commutative metabelian Lie
R-algebras di�er, essentially the results turned out to be similar. The �rst criterion
for universal equivalence were obtained for Lie R-algebras de�ned by cycles and
trees.

Theorem 48. [28] Let R be a domain and Cn = (A;E) and Cm = (B;F ) cycle
graphs such that |A| = n, |B| = m with n,m > 3. Then the partially commutative
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Lie R-algebras LR(A;Cn) and LR(B;Cm) are universally equivalent if and only if
n = m.

The analogous result holds also for partially commutative metabelian Lie R-
algebras with some restriction on a domain R.

Theorem 49. [27] Let R be a domain containing Z as a subring and Cn = (A;E)
and Cm = (B;F ) cycle graphs such that |A| = n, |B| = m with n,m > 3. Then the
partially commutative metabelian Lie R-algebras MR(A;Cn) and MR(B;Cm) are
universally equivalent if and only if n = m.

A criterion of universal equivalence of partially commutative R-algebras, where
R is a domain was found in [28]. The analogous result in the metabelian case was
obtained in [26]. Despite the fact that this result was obtained only for partially
commutative metabelian rings it can be easily generalized to the case of partially
commutative metabelian R-algebra where R is a domain containing Z as a subring.

It turned out that these results can be generalized to the case of algebras de�ned
by graphs with at most countably many vertices.

Let ∆ = (A;E) be a graph. Denote by A∗ the set obtained from A by deleting
all end-points of ∆ and put ∆∗ = ∆(A∗). Actually, the de�nition of the graph ∆∗

coincides with one given in Theorem 21.
We say that a tree Γ (�nite or in�nite) is a tree of �nite type if the tree Γ∗ is

�nite and a tree of in�nite type if Γ∗ is in�nite.

Theorem 50. [29] Let R be a domain, Γ = (A;E) a tree of in�nite type, and
∆ = (B;F ) a tree of �nite type, where the sets A and B are at most countable.
Then the partially commutative Lie R-algebras LR(A; Γ) and LR(B; ∆) are not
universally equivalent for any domain R.

The following theorem is an analogue of Theorem 50 for partially commutative
metabelian Lie algebras.

Theorem 51. [29] Let R be a domain containing Z as a subring, Γ = (A;E) a
tree of in�nite type, and ∆ = (B;F ) a tree of �nite type, where the sets A and B
are at most countable. Then the partially commutative metabelian Lie R-algebras
MR(A; Γ) andMR(B; ∆) are not universally equivalent.

So, there are separate criteria for Lie algebras de�ned by graphs of �nite type
and for Lie algebras de�ned by graphs of in�nite type. The case of �nite type
graphs is considered in Theorem 52 for partially commutative Lie algebras and in
Theorem 53 for partially commutative metabelian Lie algebras.

Theorem 52. [28, 29] Let R be a domain, Γ = (A;E) and ∆ = (B;F ) be trees
of �nite type such that A and B are at most countable and |A∗| > 2, |B∗| > 2.
Then partially commutative Lie R-algebras LR(A; Γ) and LR(B; ∆) are universally
equivalent if and only if Γ∗ ' ∆∗.

Theorem 53. [26, 29] Let R be a domain containing Z as a subring, Γ = (A;E)
and ∆ = (B;F ) be trees of �nite type such that A and B are at most countable
and |A∗| > 2, |B∗| > 2. Then the partially commutative metabelian Lie R-algebras
LR(A; Γ) and LR(B; ∆) are universally equivalent if and only if Γ∗ ' ∆∗.

Finally, the following two theorems provide criteria for universal equivalence of
partially commutative and partially commutative metabelian Lie algebras generated
by graphs of in�nite type.
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Graphs Γ and ∆ are mutually locally embeddable if any �nite subgraph of each
graph Γ and ∆ is isomorphically embeddable to the other one. The following
theorem shows that two partially commutative Lie algebras are generated by graphs
of di�erent types then this algebras are not universally equivalent.

Theorem 54. [29] Let R be a domain, Γ = (A;E) and ∆ = (B;F ) trees of in�nite
type with at most countable sets of vertices. Then the partially commutative Lie
R-algebras LR(A; Γ) and LR(B; ∆) are universally equivalent if and only if Γ∗ and
∆∗ are mutually locally embeddable.

Theorem 55. [29] Let R be a domain containing Z as a subring, Γ = (A;E) and
∆ = (B;F ) trees of in�nite type and these trees with at most countable sets of
vertices. Then the partially commutative metabelian Lie R-algebrasMR(A; Γ) and
MR(B; ∆) are universally equivalent if and only if Γ∗ and ∆∗ are mutually locally
embeddable.

Note that the statements similar to ones in Theorems 50�55 were obtained
for countably generated partially commutative metabelian groups. The following
theorem shows that no partially commutative metabelian group de�ned by a graph
of �nite type can be universally equivalent to one de�ned by a graph of in�nite
type.

Theorem 56. [29] Let Γ = (A;E) be a tree of in�nite type, and ∆ = (B;F ) be a
tree of �nite type, where the sets A and B are at most countable.Then the partially
commutative metabelian groups G = (A2,Γ) and H = (A2,∆) are not universally
equivalent.

The following two theorems establish criteria of universal equivalence of partially
commutative metabelian groups de�ned by graphs of �nite (Theorem 57) and
in�nite (Theorem 58) types.

Theorem 57. [29] Let Γ = (A;E) and ∆ = (B;F ) be trees of �nite type such that
A and B are at most countable, at least one of them is countable, and |A∗| > 2,
|B∗| > 2. Then the partially commutative metabelian groups G = (A2,Γ) and H =
(A2,∆) are universally equivalent if and only if Γ∗ ' ∆∗.

Actually, Theorem 57 generalizes the criterion of universal equivalence of partially
commutative metabelian groups de�ned by �nite trees [14].

Theorem 58. [29] Let R be a domain, Γ = (A;E) and ∆ = (B;F ) trees of in�nite
type and these trees have at most countable sets of vertices. Then the partially
commutative metabelian groups G = (A2,Γ) and H = (A2,∆) are universally
equivalent if and only if Γ∗ and ∆∗ are mutually locally embeddable.

It is rather easy to see that the condition on cardinalities of sets A and B in
Theorems 50�58 can be excluded.

The results in [28, 29] for partially commutative Lie algebras were generalized
in [31] as follows.

Theorem 59. Let R be a domain, Γ = (A;E) and ∆ = (B;F ) be �nite undirected
graphs without loops, triangles, squares, and isolated vertices. Then the partially
commutative Lie R-algebras LR(A; Γ) and LR(B; ∆) are universally equivalent if
and only if Γ∗ ' ∆∗ and the numbers of two-vertex connected components in Γ and
∆ are equal.
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In [28], it was shown that the class of partially commutative Lie algebras de�ned
by �nite trees is not distinguished in the class of all �nitely generated partially
commutative algebras by universal theories.

Elementary equivalence. The problem of �nding criteria for elementary equivalence
for partially commutative and partially commutative metabelian Lie algebras was
studied in [30]. This problem can be considered for algebras not only in �classical�
signature, but also when Lie algebras are considered as two-sorted algebraic systems.
Namely, there are three operations considered: addition and multiplication of ele-
ments in the algebra and multiplication of an element in the basic �eld by an
element in the algebra.

Criteria for elementary equivalence of partially commutative and partially com-
mutative metabelian Lie algebras were found in the case when Lie algebras over a
�eld are considered as two-sorted systems and for Lie rings.

Theorem 60. [30] Let F be a �eld and Γ = (A;E) and ∆ = (B;F ) be �nite
undirected graphs without loops.

(1) The partially commutative Lie algebras LF(A; Γ) and LF(B; ∆), considered
as two-sorted algebraic systems are elementarily equivalent if and only if
Γ ' ∆.

(2) The partially commutative metabelian Lie algebrasMF(A; Γ) andMF(B; ∆),
considered as two-sorted algebraic systems are elementarily equivalent if and
only if Γ ' ∆.

Theorem 61. [30] Let Γ = (A;E) and ∆ = (B;F ) be �nite undirected graphs
without loops.

(1) The partially commutative Lie rings LZ(A; Γ) and LZ(B; ∆) are elementa-
rily equivalent if and only if Γ ' ∆.

(2) The partially commutative metabelian Lie rings MZ(A; Γ) and MZ(B; ∆)
are elementarily equivalent if and only if Γ ' ∆.
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