СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

ON THE ORLICZ COHOMOLOGY OF STAR-BOUNDED SIMPLICIAL COMPLEXES

YA.A.KOPYLOV

Abstract

We prove that the Whitney transformation induces an isomorphism between the Orlicz cohomology of a star-bounded simplicial complex and the cohomology of the corresponding Orlicz-Sullivan complex. Our main result is an extension of the isomorphism in the L_{p} case proved by Gol'dshtein, Kuz'minov, and Shvedov in 1988.

Keywords: star-bounded complex, Orlicz-Sullivan complex, differential form, Orlicz cohomology.

Introduction

In 1976 in [1], Atiyah defined simplicial L_{2}-cohomology for free simplicial cocompact group actions. Later in [3], Cheeger and Gromov used simplicial l_{2}-cohomology to define singular l_{2}-cohomology for countable groups. For arbitrary p, L_{p}-methods in the study of simplicial complexes were initiated by Gol'dshtein, Kuz'minov, and Shvedov in [6]. They proved the de Rham isomorphism for L_{p}-cohomology of a triangulated Riemannian manifold under certain conditions on the triangulation. In [7], Gromov also considered the ℓ_{p}-cohomology of a simplicial complex with bounded geometry and proved its quasi-isometry invariance in the uniformly contractible case. The ℓ_{p}-cohomology of simplicial complexes and it quasi-invariance properties was also considered by Pansu [10].

In his thesis [4], Ducret introduced the L_{π}-cohomology of a simplicial complex of bounded geometry for a sequence of real numbers $\pi=\left(p_{k}\right), 1 \leq p_{k}<\infty$, and, under certain conditions, established the L_{π}-de Rham isomorphism.

[^0]In 2017 in [2], Carrasco Piaggio introduced simplicial ℓ^{Φ}-cohomology for a Young function Φ and proved its quasi-isometry invariance in the uniformly contractible case. He also proved the de Rham theorem in degree 1 for Orlicz cohomology. Then, in [11], Sequeira introduced a relative version of simplicial ℓ_{p}-cohomology and Orlicz cohomology and established its quasi-isometry for Gromov-hyperbolic uniformly contractible simplicial complexes of bounded geometry. He also proved the de Rham isomorphism for Orlicz cohomology of Lie groups.

In the present paper, by analogy with [6], we establish an isomorphism between the Orlicz cohomology of a star-bounded simplicial complex and the cohomology of the corresponding Orlicz Sullivan complex.

The structure of the article is as follows: In Section 1, we recall the main notions and necessary properties of Young functions and Orlicz function spaces. Section 2 deals with the Orlicz cohomology of star-bounded simplicial complexes. First, we introduce an Orlicz Sullivan complex on a Riemannian manifold. Then we recall the definition of the Whitney transformation and prove that it induces an isomorphism between the Orlicz cohomology of a star-bounded simplicial complex and the cohomology of the corresponding Orlicz Sullivan complex (Theorem 2.5).

1. Young Functions and Orlicz Function Spaces

A function $\Phi: \mathbb{R} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called a Young function if
(i) Φ is even and convex;
(ii) $\Phi(0)=0, \lim _{t \rightarrow \infty} \Phi(t)=\infty$.

Let Φ be a Young function and let (Ω, Σ, μ) be a measure space.
Given a measurable function $f: \Omega \rightarrow \mathbb{R}$, we put

$$
\rho_{\Phi}(f):=\int_{\Omega} \Phi(f) d \mu
$$

The linear space
$L^{\Phi}=L^{\Phi}(\Omega)=L^{\Phi}(\Omega, \Sigma, \mu)=\left\{f: \Omega \rightarrow \mathbb{R}\right.$ measurable : $\rho_{\Phi}(a f)<\infty$ for some $\left.a>0\right\}$
is called an Orlicz space on (Ω, Σ, μ).
Below we as usual identify two functions equal outside a set of measure zero.
The gauge (or Luxemburg) norm of a function $f \in L^{\Phi}$ is defined by the formula

$$
\|f\|_{(\Phi)}=\|f\|_{L^{(\Phi)}(\Omega)}=\inf \left\{\lambda>0: \rho_{\Phi}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

We will need the following familiar assertion, which we prove here for completeness:

Lemma 1.1. If Φ is a Young function and α is a positive number then the norms $\|\cdot\|_{(\Phi)}$ and $\|\cdot\|_{(\alpha \Phi)}$ are equivalent:

$$
\begin{array}{ll}
\|\cdot\|_{(\Phi)} \leq\|\cdot\|_{(\alpha \Phi)} \leq \alpha\|\cdot\|_{(\Phi)} & \text { if } \alpha \geq 1 ; \\
\alpha\|\cdot\|_{(\Phi)} \leq\|\cdot\|_{(\alpha \Phi)} \leq\|\cdot\|_{(\Phi)} & \text { if } \alpha<1 .
\end{array}
$$

Proof. Assume first that $\alpha \geq 1$.
Put $\widetilde{\Phi}=\alpha \Phi$. We have for any $\lambda>0$ and $f \in L^{\Phi}(\Omega)$ due to convexity:

$$
\begin{equation*}
\rho_{\widetilde{\Phi}}\left(\frac{f}{\alpha \lambda}\right)=\alpha \rho_{\Phi}\left(\frac{f}{\alpha \lambda}\right) \leq \rho_{\Phi}\left(\frac{f}{\lambda}\right) \tag{1.1}
\end{equation*}
$$

Put

$$
M_{\Phi}=\left\{\lambda: \rho_{\Phi}\left(\frac{f}{\lambda}\right) \leq 1\right\} ; \quad M_{\widetilde{\Phi}}=\left\{\tilde{\lambda}: \rho_{\widetilde{\Phi}}\left(\frac{f}{\tilde{\lambda}}\right) \leq 1\right\}
$$

If $\lambda \in M_{\Phi}$ then it follows from (1.1) that $\alpha \lambda \in M_{\tilde{\Phi}}$, and hence $\lambda \in \frac{1}{\alpha} M_{\widetilde{\Phi}}$. Therefore, $M_{\Phi} \subset \frac{1}{\alpha} M_{\widetilde{\Phi}}$. This gives $\inf M_{\Phi} \geq \frac{1}{\alpha} \inf M_{\widetilde{\Phi}}$, or

$$
\|\cdot\|_{(\alpha \Phi)} \leq \alpha\|\cdot\|_{(\Phi)} .
$$

On the other hand, if $f \in L^{\widetilde{\Phi}}(\Omega)$ then

$$
\begin{equation*}
\rho_{\Phi}\left(\frac{f}{\lambda}\right)=\frac{1}{\alpha} \rho_{\widetilde{\Phi}}\left(\frac{f}{\lambda}\right) \leq \rho_{\widetilde{\Phi}}\left(\frac{f}{\lambda}\right) . \tag{1.2}
\end{equation*}
$$

Using (1.2), we conclude that $M_{\widetilde{\Phi}} \subset M_{\Phi}$, and hence

$$
\|\cdot\|_{(\Phi)}=\inf M_{\Phi} \leq \inf M_{\widetilde{\Phi}}=\|\cdot\|_{(\alpha \Phi)} .
$$

The case of $\alpha<1$ is obtained by noticing that $\Phi=\frac{1}{\alpha} \widetilde{\Phi}$.
Remark 1.2. The above considerations also hold for Orlicz sequence spaces with integrals replaced by infinite sums.

2. Orlicz Cohomology of Star-Bounded Simplicial Complexes

2.1. The Sullivan complex. Let K be a simplicial complex and let $|K|$ its geometric realization. We will endow $|K|$ with the standard metric induced by embedding $|K|$ into a Hilbert space, where each vertex of K is mapped to a point having one coordinate equal to one and the remaining coordinates equal to zero. The embedding is affine on each simplex of K.

Denote by $C^{k}(K)$ the space of real k-cochains of K.
As was observed in [6], given a simplex T and a face T^{\prime} of T, the identical embedding $j_{T^{\prime}, T}: T^{\prime} \rightarrow T$ induces a restriction mapping of the spaces of forms $j_{T^{\prime}, T}^{*}: \Omega_{\infty}^{*}(T) \rightarrow \Omega_{\infty}^{*}\left(T^{\prime}\right)$. The norm of each of the operators $j_{T^{\prime}, T}^{*}$ does not exceed 1.

A Sullivan form, or, briefly, an S-form, of degree k on K is a collection $\omega=$ $\{\omega(T)\}_{T \in K}$, where $\omega(T) \in \Omega_{\infty}^{k}(T)$ for each $T \in K$, satisfying the following condition: if T^{\prime} is a face of T then $j_{T^{\prime}, T^{*}}^{*} \omega(T)=\omega\left(T^{\prime}\right)$.

Denote by $S^{k}(K)$ the vector space of Sullivan forms of degree k on K. The form $\omega(T)$ is called the T-component of the form ω.

Given a Sullivan k-form ω, define the exterior differential Sullivan form $d \omega$ componentwise. Since $d j_{T^{\prime}, T}^{*}=j_{T^{\prime}, T}^{*} d$, we have $d S^{k}(K) \subset S^{k+1}(K)$. Thus, $\left(S^{*}(K), d\right)$ is a cochain complex of real vector spaces. It is called the Sullivan complex of the simplicial complex K. Its cohomology space is denoted by $H^{k}\left(S^{*}(K)\right)$.

Define the integration morphism [4, 6] as the linear mapping $I: S^{k}(K) \rightarrow C^{k}(K)$,

$$
(I \omega)(T)=\int_{T} \omega(T)
$$

where $\omega \in S^{k}(K), T \in K$ (recall that T is regarded as a standard Euclidean simplex). Then the transformation $I: S^{*}(K) \rightarrow C^{*}(K)$ of cochain complexes induces an isomorphism in cohomology (see [12]).

Let M be a smooth manifold and let $\tau:|K| \rightarrow M$ be its smooth triangulation. Consider the spaces

$$
L^{\infty}\left(M, \Lambda^{k}\right)=\left\{\omega \in L_{\mathrm{loc}}^{1}\left(M, \Lambda^{k}\right):\|\omega\|_{\infty}=\operatorname{ess} \sup |\omega(x)|<\infty\right\}
$$

$$
\Omega_{\infty}^{k}(M)=\left\{\omega \in L^{\infty}\left(M, \Lambda^{k}\right): d \omega \in L^{\infty}\left(M, \Lambda^{k+1}\right)\right\}
$$

The elements of $\Omega_{\infty}^{*}(M)$ are sometimes called flat forms.
The following assertion can be found in [13]:
Proposition 2.1. Let $f: M_{1} \rightarrow M_{2}$ be a Lipschitz mapping between Riemannian manifolds. Then for any flat form $\omega \in \Omega_{\infty}^{k}\left(M_{2}\right)$ the form $f^{*} \omega$ is well defined and is a flat form. Moreover, $d f^{*} \omega=f^{*} d \omega$.

Given $\omega \in \Omega_{\infty, \text { loc }}^{k}(M)$ and a simplex $T \in K$, we put

$$
\omega(T)=\left(\left.\tau\right|_{T}\right)^{*} \omega
$$

The following assertion is [6, Lemma 1]:
Lemma 2.2. The collection of forms $\varphi_{\tau} \omega=\{\omega(T)\}_{T \in K}$ is an S-form on K. The mapping $\varphi_{\tau}: \Omega_{\infty, \text { loc }}^{k}(M) \rightarrow S^{k}(K)$ is an isomorphism of vector spaces.
2.2. The Whitney transformation. In what follows, we assume that the complex K in question is of finite dimension n.

In addition to the mapping $I: S^{*}(K) \rightarrow C^{*}(K)$, there is a mapping $w: C^{*}(K) \rightarrow$ $S^{*}(K)$, called the Whitney transformation (see [13]), defined as follows.

Let T be an s-simplex of the complex K and let T^{k} be a k-face of $T, k \leq s$. For each of the vertices e_{i}, the barycentric coodinate function $\beta_{i}:|K| \rightarrow \mathbb{R}$ is defined (see [13]). For $c \in C^{k}(K)$ and $T=\left[e_{0}, e_{1}, \ldots, e_{s}\right]$, we put

$$
\theta(T)=k!\sum_{0 \leq i_{0}<\cdots<i_{k} \leq s}^{k} c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right) \sum_{r=0}^{k}(-1)^{r} \beta_{i_{r}} d \beta_{i_{0}} \wedge \cdots \wedge \widehat{d \beta_{i_{r}}} \wedge \cdots \wedge d \beta_{i_{k}},
$$

where ${ }^{\wedge}$ means the omission of the corresponding term. The k-form $\theta(T)$ does not depend on the order of the vertices of T. If T^{\prime} is a face of T then $\theta\left(T^{\prime}\right)=j_{T^{\prime}, T} \theta(T)$. Therefore, $w(c)=\{\theta(T)\}_{T \in K}$ is an S-form on K. Moreover, $d w(c)=w(\delta c)$ for any cochain $c \in C^{*}(K)$.
2.3. $\ell_{\Phi_{I}, \Phi_{I I}}$-Cohomology of a simplicial complex. Let $\delta: C^{k}(K) \rightarrow C^{k+1}(K)$ be the coboundary operator. If Φ is a Young function and $c \in C^{k}(K)$ then consider the space

$$
C_{\Phi}^{k}(K)=\left\{c \in C^{k}(K): \sum_{\operatorname{dim} T=k} \Phi(a|c(T)|)<\infty \text { for some } a>0\right\} .
$$

Endow the space $C_{\Phi}^{k}(K)$ with the gauge norm

$$
\|c\|_{(\Phi)}=\inf \left\{\lambda>0: \sum_{\operatorname{dim} T=k} \Phi\left(\frac{|c(T)|}{\lambda}\right) \leq 1\right\} .
$$

$C_{\Phi}^{k}(K)$ is a Banach space continuously isomorphic to $\ell^{\Phi}(\mathbb{Z})$. Put

$$
Z_{\Phi}^{k}(K)=\left\{c \in C_{\Phi}^{k}(K): \delta c=0\right\} .
$$

Given two Young functions Φ_{I} and $\Phi_{I I}$, we also put

$$
B_{\Phi_{I}, \Phi_{I I}}^{k}(K)=\delta C_{\Phi_{I}}^{k-1}(K) \cap C_{\Phi_{I I}}^{k}(K) \subset Z_{\Phi_{I I}}^{k}(K)
$$

let $\bar{B}_{\Phi_{I}, \Phi_{I I}}^{k}(K)$ be the closure of $B_{\Phi_{I}, \Phi_{I I}}^{k}(K)$ in $C_{\Phi_{I I}}^{k}(K)$.
The k th $\ell_{\Phi_{I}, \Phi_{I I}}$-cohomology of K is the seminormed space

$$
H_{\Phi_{I}, \Phi_{I I}}^{k}(K)=Z_{\Phi_{I I}}^{k}(K) / B_{\Phi_{I}, \Phi_{I I}}^{k}(K) ;
$$

the reduced k th $\ell_{\Phi_{I}, \Phi_{I I}}$-cohomology of K is the Banach space

$$
\bar{H}_{\Phi_{I}, \Phi_{I I}}^{k}(K)=Z_{\Phi_{I I}}^{k}(K) / \bar{B}_{\Phi_{I}, \Phi_{I I}}^{k}(K) .
$$

If $\Phi_{I}=\Phi_{I I}=\Phi$ then we will write only one subscript Φ in all the above notations instead of Φ, Φ.

Like in the case of the complex $\left(C_{p}^{*}(K), \delta\right)$ (see [6]), the following lemma holds. The technique of dealing with estimates of gauge norms here and in some situations below is borrowed from [2, p. 446], where the boundedness of the operator δ in Orlicz spaces was established under different constraints on K.

We call a simplicial complex star-bounded if the number of simplices in the star of each of its vertices is bounded from above.
Lemma 2.3. If K is a star-bounded simplicial complex then $\delta\left(C_{\Phi}^{k}(K)\right) \subset C_{\Phi}^{k+1}(K)$ and $\delta: C_{\Phi}^{k}(K) \rightarrow C_{\Phi}^{k+1}(K)$ is a bounded operator.

Proof. Let the number of $(k+1)$-simplices in the star of a k-simplex be bounded by N. For $\lambda>0$, we have

$$
\begin{aligned}
& \quad \sum_{\operatorname{dim} T=k+1} \Phi\left(\frac{|\delta c(T)|}{\lambda(k+2)}\right)=\sum_{\operatorname{dim} T=k+1} \Phi\left(\left|\sum_{\operatorname{dim} T^{\prime}=k} \frac{\left[T: T^{\prime}\right]}{\lambda(k+2)} c\left(T^{\prime}\right)\right|\right) \\
& \quad \leq \sum_{\operatorname{dim} T=k+2} \sum_{\operatorname{dim} T^{\prime}=k} \frac{\left|\left[T: T^{\prime}\right]\right|}{(k+2)} \Phi\left(\left|\frac{c\left(T^{\prime}\right)}{\lambda}\right|\right) \\
& \left.\left.\leq \frac{1}{k+2} \sum_{\operatorname{dim} T^{\prime}=k} \Phi\left(\left|\frac{c\left(T^{\prime}\right)}{\lambda}\right|\right) \sum_{\operatorname{dim} T=k+1} \right\rvert\, T: T^{\prime}\right] \left\lvert\, \leq \frac{N}{k+2} \sum_{\operatorname{dim} T^{\prime}=k} \Phi\left(\frac{\left|c\left(T^{\prime}\right)\right|}{\lambda}\right) .\right.
\end{aligned}
$$

Here we have put $\left[T: T^{\prime}\right]=0$ if T^{\prime} is not a boundary simplex for T. Since $\|$. $\left\|_{\left(\frac{N}{k+1} \Phi\right)} \sim\right\| \cdot \|_{(\Phi)}$, the set of λ for which $\frac{N}{k+2} \sum_{\text {dim } T^{\prime}=k} \Phi\left(\frac{\left|c\left(T^{\prime}\right)\right|}{\lambda}\right) \leq 1$ is not empty, and is in fact an interval, and so such λ can be taken arbitrarily close to $\|c\|_{\left(\frac{N}{k+2} \Phi\right)}$. For such λ,

$$
\sum_{\operatorname{dim} T=k+1} \Phi\left(\frac{|\delta c(T)|}{\lambda(k+2)}\right) \leq 1,
$$

and hence $\left\|\frac{\delta c}{k+2}\right\| \leq \lambda$, or

$$
\begin{equation*}
\|\delta c\| \leq \lambda(k+2) . \tag{2.1}
\end{equation*}
$$

Taking infimum on the right-hand side of (2.1) and applying Lemma 1.1, we obtain

$$
\|\delta c\|_{(\Phi)} \leq\|c\|_{\left(\frac{N}{k+2} \Phi\right)} \leq L\|c\|_{(\Phi)}
$$

for some positive constant L depending only on N and k. Thus, the operator δ : $C_{\Phi}^{k}(K) \rightarrow C_{\Phi}^{k+1}(K)$ is bounded.

Given a closed subcomplex $L \subset K$, denote by $C_{\Phi}^{k}(K, L)$ the subspace in $C_{\Phi}^{k}(K)$ consisting of chains equal to 0 on L. The exact sequence of complexes

$$
0 \rightarrow C_{\Phi}^{*}(K, L) \rightarrow C_{\Phi}^{*}(K) \rightarrow C_{\Phi}^{*}(L) \rightarrow 0
$$

induces an exact sequence of cohomology spaces

$$
\cdots \rightarrow H_{\Phi}^{i}(K) \rightarrow H_{\Phi}^{i}(L) \rightarrow H_{\Phi}^{i+1}(K, L) \rightarrow H_{\Phi}^{i+1}(K) \rightarrow \ldots
$$

For an S-form θ of degree k on K and a Young function Φ, we put

$$
\|\theta\|_{S_{\Phi}^{*}(K)}=\inf \left\{\lambda: \sum_{T \in K} \Phi\left(\frac{\|\theta(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right) \leq 1\right\}
$$

It is easy to see that $S_{\Phi}^{*}(K)$ is a Banach space (cf. [4, Proposition 2.3]) and in fact can be treated in many aspects as an Orlicz sequence space.

Since the norm of the differential $d: \Omega_{\infty}^{k}(T) \rightarrow \Omega_{\infty}^{k+1}(T)$ is at most $1, d\left(S_{\Phi}^{k}(K)\right) \subset$ $S_{\Phi}^{k+1}(K)$. We thus obtain the L_{Φ} Sullivan complex $\left\{S_{\Phi}^{*}(K), d\right\}$.

If L is a subcomplex of a simplicial complex K then the mapping $j_{L, K}^{*}: S_{\Phi}^{k}(K) \rightarrow$ $S_{\Phi}^{k}(L)$ is defined by the formula

$$
j_{L, K}^{*}\{\omega(T)\}_{T \in K}=\{\omega(T)\}_{T \in L} .
$$

Lemma 2.4. If L is a subcomplex in a star-bounded finite-dimensional simplicial complex K then $j_{L, K}^{*}$ is an epimorphism.
Proof. As was in fact demonstrated in the proof of [6, Lemma 2], if T is a simplex then there exists a bounded linear operator $\gamma: S_{\Phi}^{*}(\partial T) \rightarrow \Omega_{\Phi}^{*}(T)$ such that $j_{T^{\prime}, T} \circ$ $\gamma(\omega)(T)=\omega\left(T^{\prime}\right)$ for any face T^{\prime} of T.

Let now K be a star-bounded finite-dimensional simplicial complex, L be its subcomplex, and $K^{(j)}$ be the j th skeleton of K. Let us prove by induction on j that $j_{L, L \cup K^{(j)}}^{*}$ is an epimorphism. Put $K_{j}=L \cup K^{(j)}$. Suppose that $\omega_{j-1} \in S_{\Phi}^{k}\left(K_{j-1}\right)$, and $j_{L, K_{j-1}}^{*} \omega_{j-1}=\omega$. Put

$$
\omega_{j}(T)= \begin{cases}\omega_{j-1}(T) & \text { if } T \in K_{j-1} \\ \gamma \circ j_{\partial T, K_{j-1}}^{*} \omega_{j-1}(T) & \text { if } T \in K_{j} \backslash K_{j-1}\end{cases}
$$

Then ω_{j} is an S-form on K_{j}. Indeed, take a simplex $T \in K, T^{\prime} \in \partial K$ and calculate $j_{T^{\prime}, T}^{*} \omega_{j}(T)$. If $T \in K_{j-1}$ then, clearly $j_{T^{\prime}, T^{*}}^{*} \omega_{j}(T)=\omega\left(T^{\prime}\right)$. Let now $T \in K_{j} \backslash K_{j-1}$. Then

$$
j_{T^{\prime}, T}^{*} \omega_{j}(T)=j_{T^{\prime}, T}^{*} \circ \gamma \circ j_{\partial T, K_{j-1}}^{*} \omega_{j-1}(T)=j_{\partial T, K_{j-1}}^{*} \omega_{j-1}\left(T^{\prime}\right)=\omega_{j-1}\left(T^{\prime}\right)=\omega_{j}\left(T^{\prime}\right)
$$

by the definition of γ.
Estimate the norm of ω_{j}. Let $\|\gamma\|$ be the norm of the operator $\gamma: S_{\Phi}(\partial T) \rightarrow$ $\Omega_{\infty}^{*}(T)$. We infer for any $\lambda>0$ (the sums below can be finite or infinite):

$$
\begin{aligned}
& \quad \sum_{T \in K_{j}} \Phi\left(\frac{\left\|\omega_{j}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda(j+1)(\|\gamma\|+1)}\right) \\
& \leq \sum_{T \in K_{j-1}} \Phi\left(\frac{\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda(j+1)(\|\gamma\|+1)}\right)+\sum_{T \in K_{j} \backslash K_{j-1}} \Phi\left(\frac{\left\|\gamma \circ j_{\partial T, K_{j-1}}^{*} \omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda(j+1)(\|\gamma\|+1)}\right) \\
& \quad \leq \sum_{T \in K_{j-1}} \Phi\left(\frac{\left.\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}^{\lambda(j+1)(\|\gamma\|+1)}\right)}{} \quad+\sum_{T \in K_{j} \backslash K_{j-1}} \Phi\left(\frac{\|\gamma\|}{\lambda(j+1)(\|\gamma\|+1)} \sum_{T^{\prime} \in \partial T}\left\|\omega_{j-1}\left(T^{\prime}\right)\right\|_{\Omega_{\infty}^{k}\left(T^{\prime}\right)}\right)\right. \\
& \quad \leq \frac{1}{(j+1)(\|\gamma\|+1)} \sum_{T \in K_{j-1}} \Phi\left(\frac{\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right)
\end{aligned}
$$

$$
+\frac{1}{j+1} \sum_{T \in K_{j} \backslash K_{j-1}} \sum_{T^{\prime} \in \partial T} \Phi\left(\frac{\|\gamma\|}{\lambda(\|\gamma\|+1)}\left\|\omega_{j-1}\left(T^{\prime}\right)\right\|_{\Omega_{\infty}^{k}\left(T^{\prime}\right)}\right)=\mathbb{A}
$$

Let N be the supremum of the number of j-dimensional simplices in the stars of $(j-1)$-dimensional simplices. We proceed as follows:

$$
\begin{aligned}
\mathbb{A} \leq \frac{1}{j+1} \sum_{T \in K_{j-1}} & \Phi\left(\frac{\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right) \\
+\frac{N}{j+1} \frac{\|\gamma\|}{\|\gamma\|+1} \sum_{T^{\prime} \in K_{j-1}} & \Phi\left(\frac{\left\|\omega_{j-1}\left(T^{\prime}\right)\right\|_{\Omega_{\infty}^{k}\left(T^{\prime}\right)}}{\lambda}\right) \\
& \leq \frac{N+1}{j+1} \sum_{T \in K_{j-1}} \Phi\left(\frac{\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right)
\end{aligned}
$$

In accordance with Lemma 1.1, $\|\cdot\|_{S_{\frac{N+1}{j+1} \Phi}^{*}(K)} \sim\|\cdot\|_{S_{\Phi}^{*}(K)}$. Therefore, for all λ sufficiently close to $\left\|\omega_{j-1}\right\|_{S_{\frac{N+1}{j+1} \Phi}^{*}}$, we have

$$
\frac{N+1}{j+1} \sum_{T \in K_{j-1}} \Phi\left(\frac{\left\|\omega_{j-1}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right) \leq 1
$$

For such λ,

$$
\sum_{T \in K_{j}} \Phi\left(\frac{\left\|\omega_{j}(T)\right\|_{\Omega_{\infty}^{k}(T)}}{\lambda(j+1)(\|\gamma\|+1)}\right) \leq 1
$$

Consequently, as in the proof of Lemma 2.3, we obtain

$$
\left\|\frac{\omega_{j}}{\lambda(j+1)(\|\gamma\|+1)}\right\|_{S_{\Phi}^{*}(K)} \leq\left\|\omega_{j-1}\right\|_{S_{\frac{N+1}{j+1} \Phi}^{*}(K)}
$$

Thus, $\omega_{j} \in S_{\Phi}^{*}\left(K_{j}\right)$ and also $j_{L, K_{j}} \omega_{j}=\omega$. Since K is finite-dimensional, the lemma is proved.

Under the conditions of Lemma 2.4, denote by $S_{\Phi}^{*}(K, L)$ the kernel of the mapping $j_{L, K}^{*}: S_{\Phi}^{*}(K) \rightarrow S_{\Phi}^{*}(L)$. Then we have an exact cohomology sequence

$$
\cdots \rightarrow H^{k}\left(S_{\Phi}^{*}(K, L)\right) \rightarrow H^{k}\left(S_{\Phi}^{*}(K)\right) \rightarrow H^{k}\left(S_{\Phi}^{*}(L)\right) \rightarrow H^{k+1}\left(S_{\Phi}^{*}(K, L)\right) \rightarrow \ldots
$$

2.1. 2.4. The isomorphism between the simplicial and Orlicz-Sullivan

 cohomology.Theorem 2.5. Let K be an arbitrary star-bounded finite-dimensional simplicial complex and L be its subcomplex. The Whitney transformation takes the cochain complex $\left\{C_{\Phi}^{*}(K, L), d\right\}$ to $S_{\Phi}^{*}(K, L)$ and induces a topological isomorphism of the cohomology spaces.
Proof. Let $\operatorname{dim} K=n, c \in C_{\Phi}^{k}(K, L), T \in K, \operatorname{dim} T=s, \theta=w(c)$. Then the definition of the Whitney transformation implies that

$$
\|\theta(T)\|_{\Omega_{\infty}^{k}(T)} \leq\binom{ s+1}{k+1} \sum_{0 \leq i_{0}<\cdots<i_{k} \leq \operatorname{dim} T}\left|c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right)\right| .
$$

We have for $\lambda>0$:

$$
\begin{gathered}
\sum_{T \in K} \Phi\left(\frac{\|\theta(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda\binom{n+1}{k+1}^{2}}\right) \leq \sum_{T \in K} \Phi\left(\frac{\left(\begin{array}{c}
\binom{\operatorname{dim} T+1}{k+1} \\
0 \leq i_{0}<\cdots<i_{k} \leq \operatorname{dim} T
\end{array}\left|c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right)\right|\right.}{\binom{n+1}{k+1}^{2} \lambda}\right) \\
\quad \leq \sum_{T \in K} \Phi\left(\frac{\sum_{0 \leq i_{0}<\cdots<i_{k} \leq \operatorname{dim} T}\left|c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right)\right|}{\binom{\operatorname{dim} T+1}{k+1} \lambda}\right) \\
\quad \leq \sum_{T \in K} \sum_{0 \leq i_{0}<\cdots<i_{k} \leq \operatorname{dim} T} \frac{\frac{1}{\binom{\operatorname{dim} T+1}{k+1}} \Phi\left(\frac{\left|c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right)\right|}{\lambda}\right)}{} \quad \leq \sum_{T \in K} \sum_{0 \leq i_{0}<\cdots<i_{k} \leq \operatorname{dim} T} \Phi\left(\frac{\left|c\left(\left[e_{i_{0}}, \ldots, e_{i_{k}}\right]\right)\right|}{\lambda}\right) \leq \bar{N} \sum_{\operatorname{dim} T=k} \Phi\left(\frac{|c(T)|}{\lambda}\right)
\end{gathered}
$$

for some constant $\bar{N}>0$ due to the star-boundedness of K. Thus,

$$
\left\|\frac{w(c)}{\binom{n+1}{k+1}^{2}}\right\|_{S_{\Phi}^{*}(K, L)} \leq\|c\|_{C_{\bar{N} \Phi}(K, L)^{*}},
$$

whence (cf. Lemma 1.1)

$$
\|w(c)\|_{S_{\Phi}(K, L)} \leq \mathrm{const}\|c\|_{C_{N \Phi}^{*}(K, L)}
$$

which implies that the operator $c \mapsto w(c)$ is a bounded operator $C_{\Phi}^{k}(K, L) \rightarrow$ $S_{\Phi}^{k}(K, L)$.

Now, let $\omega \in S_{\Phi}^{k}(K, L)$. Denote by v_{k} the volume of the standard k-dimensional simplex. Given a k-dimensional simplex T of K,

$$
\left|\int_{T} \omega(T)\right| \leq\|\omega(T)\|_{\Omega_{\infty}^{k}(T)} v_{k} .
$$

Hence, for any $\lambda>0$,

$$
\sum_{\operatorname{dim} T=k} \Phi\left(\left|\frac{I \omega(T)}{\lambda v_{k}}\right|\right) \leq \sum_{\operatorname{dim} T=k} \Phi\left(\frac{\|\omega(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda v_{k}} v_{k}\right)=\sum_{\operatorname{dim} T=k} \Phi\left(\frac{\|\omega(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right) .
$$

Therefore,

$$
\|I \omega(T)\|_{C_{\Phi}^{k}(K, L)} \leq v_{k}\|\omega\|_{S_{\Phi}^{k}(K, L)}
$$

This means that the operator $\omega \mapsto I \omega$ is a continuous operator $S_{\Phi}^{k}(K, L) \rightarrow$ $C_{\Phi}^{k}(K, L)$.

Since we have two transformations $w: C_{\Phi}^{*}(K, L) \rightarrow S_{\Phi}^{*}(K, L)$ and $I: S_{\Phi}^{*}(K, L) \rightarrow$ $C_{\Phi}(K, L)$ with $I \circ w=\operatorname{id}_{C_{\Phi}^{*}(K, L)}$, the induced mapping of the cohomology spaces $\varkappa: H^{*}\left(S_{\Phi}^{*}(K, L)\right) \rightarrow H^{*}\left(C_{\Phi}^{*}(K, L)\right)$ is an epimorphism. We need to prove that \varkappa is a monomorphism. Since I is an epimorphism, for this it suffices to find for every cocycle $\theta \in S_{\Phi}(K, L)$ with $I \theta=0$ an S-form $\omega \in S_{\Phi}^{k-1}(K, L)$ with the property $d \omega=\theta$.

Let $K^{(j)}$ be the j th skeleton of K and let $K_{j}=L \cup K^{(j)}$. Using induction on j, construct S-forms $\omega_{j} \in S_{\Phi}^{k-1}(K, L), j \geq k$, such that $d \omega_{j}=j_{K_{j}, K}^{*} \theta$.

Let T be the standard j-simplex. Then $S_{\Phi}^{*}(T, \partial T)=S^{*}(T, \partial T)$, and hence, by Sullivan's theorem,

$$
H^{k}\left(S_{\Phi}^{*}(T, \partial T)\right)= \begin{cases}\mathbb{R}, & k=j \\ 0, & k<j\end{cases}
$$

The isomorphism $H^{j}\left(S_{\Phi}^{*}(T, \partial T)\right) \cong \mathbb{R}$ is given by the mapping $\theta \mapsto \int_{T} \theta(T)$.
Denote by B^{k} the space of k-dimendional boundaries of the complex $S_{\Phi}^{*}(T, \partial T)$. The space B^{k} is closed in $S_{\Phi}^{k}(T, \partial T)$, and hence the mapping $d: S_{\Phi}^{k-1}(T, \partial T) \rightarrow B^{k}$ is an epimorphism of Banach spaces. By Banach's Theorem, there is a constant C satisfying the following condition: for every $\alpha \in B^{k}$, there exists $\beta \in S_{\Phi}^{k-1}(T, \partial T)$ such that

$$
d \beta=\alpha \text { and }\|\beta\|_{S_{\Phi}^{k-1}(T, \partial T)} \leq C\|\alpha\|_{S_{\Phi}^{k}(T, \partial T)}
$$

Turn to constructing the forms ω_{j}. If $T \in K_{k-1}$ then we put $\omega_{k}(T)=0$. Let $T \in K_{k} \backslash K_{k-1}$. Since $\int_{T} \theta(T)=0$ and $d \theta=0$, we have $j_{T, K}^{*} \theta \in B^{k}$. There exists a form $\beta_{T} \in \Omega_{\infty}^{k-1}(T, \partial T)=S_{\Phi}^{k-1}(T, \partial T)$ such that

$$
d \beta_{T}=j_{T, K}^{*} \theta \text { and }\left\|\beta_{T}\right\|_{\Omega_{\infty}^{k-1}(T)} \leq C^{\prime}\|\theta(T)\|_{\Omega_{\infty}^{k}(T)} .
$$

Here the constant C^{\prime} does not depend on T since all k-dimensional simplices in K are isometric to the standard simplex. Put $\omega_{k}(t)=\beta_{T}$. We have

$$
\begin{aligned}
\sum_{T \in K_{k}} \Phi\left(\frac{\left\|\omega_{k}(T)\right\|_{\Omega_{\infty}^{k-1}(T)}}{\lambda C^{\prime}}\right)=\sum_{T \in K_{k} \backslash K_{k-1}} \Phi\left(\frac{\left\|\beta_{T}\right\|_{\Omega_{\infty}^{k-1}(T)}}{\lambda C^{\prime}}\right) \\
\leq \sum_{T \in K_{k} \backslash K_{k-1}} \Phi\left(\frac{C^{\prime}\|\theta(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda C^{\prime}}\right) \leq \sum_{T \in K_{k}} \Phi\left(\frac{\|\theta(T)\|_{\Omega_{\infty}^{k}(T)}}{\lambda}\right) .
\end{aligned}
$$

This implies that $\omega_{k} \in S_{\Phi}^{k-1}(K, L)$ and

$$
\left\|\omega_{k}\right\|_{S_{\Phi}^{k-1}(K, L)} \leq C^{\prime}\|\theta\|_{S_{\Phi}^{k}(K, L)}
$$

Suppose that we have constructed a form $\omega_{j-1} \in S^{k-1}\left(K_{j-1}, L\right)$ for which $d \omega_{j-1}=j_{K_{j}, K}^{*} \theta$. Using Lemma 2.4, find a form $\omega^{\prime} \in S_{\Phi}^{k-1}\left(K_{j}, L\right)$ such that $j_{K_{j-1}, K_{j}}^{*} \omega^{\prime}=\omega_{j-1}$. If $T \in K_{j-1}$ then put $\omega^{\prime \prime}(T)=0$. Let $T \in K_{j} \backslash K_{j-1}$. Then $j_{\partial T, K_{j}}^{*}\left(\theta-d \omega^{\prime}\right)=0$. Therefore, $\theta-d \omega^{\prime}$ is a cocycle of the complex $S_{\Phi}^{*}(T, \partial T)$. Since $H^{k}\left(S_{\Phi}^{*}(T, \partial T)\right)=0$ for $k<j$, we have $\theta-d \omega^{\prime} \in B^{k}$. There exists a form $\tilde{\beta}_{T}$ such that

$$
d \tilde{\beta}_{T}=\theta-d \omega^{\prime} \quad \text { and }\left\|\tilde{\beta}_{T}\right\|_{\Omega_{\infty}^{k-1}(T, \partial T)} \leq C^{\prime}\left\|\theta-d \omega^{\prime}\right\|_{\Omega_{\infty}^{k}(T, \partial T)}
$$

Put $\omega^{\prime \prime}(T)=\tilde{\beta}_{T}$. This gives an S-form $\omega^{\prime \prime} \in S_{\Phi}^{k-1}\left(K_{j}, L\right)$. Let $\omega_{j}=\omega^{\prime}+\omega^{\prime \prime}$. Then $\omega_{j} \in S_{\Phi}^{k-1}\left(K_{j}, L\right)$ and $d \omega_{j}=j_{K_{j}, K}^{*} \theta$. This finishes the induction step. Since $\operatorname{dim} K<\infty$, for $j \geq \operatorname{dim} K$ we obtain the S-form $\omega=\omega_{j} \in S_{\Phi}^{k-1}(K, L)$ for which $d \omega=0$. Consequently, I induces an isomorphism of the cohomology groups. Both mappings I and w induce continuous mappings of the cohomology spaces. Hence, I and w induce mutually inverse isomorphisms in cohomology.

Theorem 2.5 is proved.
Remark 2.6. In [6], the isomorphism between the ℓ_{p}-cohomology of a star-bounded simplicial complex and the cohomology of the corresponding L_{p} Sullivan complex
was one of key tools in proving the L_{p} de Rham isomorphism. It reduced the problem to proving that the L_{p}-cohomology of a Riemannian manifold is isomorphic to the cohomology of the L_{p} Sullivan complex corresponding to the triangulation under consideration. This involves homotopy operators constructed with the use of regularization. However, in contrast to the L^{p} spaces, where there is practically no difference between the norm and the corresponding modular, regularization in Orlicz spaces was proved to be bounded only in norm (see [8]), and not in the strong modular sense (cf. [9]), which makes it impossible to glue up a global estimate of the Orlicz norm of a homotopy operator from existing "local" estimates. Thus, the general Orlicz-de Rham isomorphism remains an open problem. The Orlicz-de Rham isomorphism was established by Sequeira in the particular case of Lie groups (see [11, Theorem 1.5]).

The author is grateful to Vladimir Gol'dshein and Emiliano Sequeira for a careful reading of the manuscript and valuable remarks, which substantially improved the exposition.

References

[1] M.F. Atiyah, Elliptic operators,discrete groups and von Neumann algebras, Asterisque, 3233 (1976), 43-72. Zbl 0323.58015
[2] M. Carrasco Piaggio, Orlicz spaces and the large scale geometry of Heintze groups, Math. Ann., 368:1-2 (2017), 433-481. Zbl 1421.53054
[3] J. Cheeger, M. Gromov, L_{2}-cohomology and group cohomology, Topology, 25 (1986), 189215. Zbl 0597.57020
[4] S. Ducret, $L_{q, p}$-cohomology of Riemannian manifolds and simplicial complexes of bounded geometry, Thèse 4544 (2009). École Polytechnique Fédérale de Lausanne, 2009.
[5] G. Elek, Coarse cohomology and l_{p}-cohomology, K-Theory, 13:1 (1998), 1-22. Zbl 0899.46059
[6] V.M. Gol'dshtein, V.I. Kuz'minov, I.A. Shvedov, De Rham isomorphism of the L_{p} cohomology of noncompact Riemannian manifolds, Sib. Math. J. 29:2 (1988), 190-197. Zbl 0668.58051
[7] M. Gromov, Asymptotic invariants of infinite groups, London Math. Soc. Lecture Notes Ser., 182, Cambridge Univ. Press, Cambridge, 1993. Zbl 0841.20039
[8] Ya.A. Kopylov, R.A. Panenko, De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds, Sib. Élektron. Mat. Izv. 12 (2015), 361-371. Zbl 1408.58003
[9] J. Musielak, Orlicz spaces and modular spaces. Lecture Notes in Mathematics. 1034. Springer-Verlag, Berlin etc., 1983. Zbl 0557.46020
[10] P. Pansu, Cohomologie L_{p} : invariance sous quasiisometries, Preprint, Université Paris-Sud, 1995.
[11] E. Sequeira, De Rham's theorem for Orlicz cohomology in the case of Lie groups, Preprint arXiv:2006.09629 [math.MG], 2020.
[12] D. Sullivan, Infinitesimal computation in topology, Publ. Math. IHÉS, 47 (1977), 269-331. Zbl 0374.57002
[13] H. Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1957. Zbl 0083.28204

Yaroslav Anatol'evich Kopylov
Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Email address: yakop@math.nsc.ru; yarkopylov@gmail.com

[^0]: Kopylov, Ya.A., On the Orlicz cohomology of star-bounded simplicial complexes. (C) 2021 Kopylov Ya.A.

 The work of the author was carried out in the framework of the State Contract of the Sobolev Institute of Mathematics (Project 0314-2019-0006).

 Received July, 14, 2020, published June, 18, 2021.

